
Introduction

177

User’s Guide
1 Introduction

CODINE (Computing in Distributed Networked Environments) is a
load management tool for heterogeneous, distributed computing
environments.CODINE provides an effective method for
distributing the batch workload among multiple computational
servers. In doing so, it increases the productivity of all of the
machines and simultaneously increases the number of jobs that can
be completed in a given time period. Also, by increasing the
productivity of the workstations, the need for outside computational
resources is reduced.

CODINE provides the user with the means to submit
computationally demanding task to theCODINE system for
transparent distribution of the associated workload. In addition to
batch jobs, interactive jobs and parallel jobs can be submitted to
CODINE. Checkpointing programs are also supported.
Checkpointing jobs migrate from workstation to workstation
without user intervention on load demand. Comprehensive tools are
provided for the monitoring and controlling ofCODINE jobs.

Please refer to theCODINE Quick Start Guide for an overview on
theCODINE system, its features and components. TheCODINE
Quick Start Guide also contains a quick installation procedure for
a small sampleCODINE configuration and a glossary of terms
commonly used in theCODINE manual set.

TheCODINE User’s Guide gives an introduction for the user to
CODINE. The reader is pointed to theCODINE Reference
Manual for a detailed discussion of all availableCODINE
commands. Readers responsible for the cluster administration are
pointed to theCODINE Installation and Administration Guide
for a description of theCODINE cluster management facilities.

CODINE as well as UNIX Commands which can be found in
manual pages or the corresponding reference manuals are typeset in
emphasized font throughout theCODINE User’s Guide.
Command-line in- and output is printed inteletype font and
newly introduced or defined terms are typeset inboldface font.

CODINE User Types and Operations

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

178

2 CODINE User Types and Operations

There are four user categories inCODINE:

❏ Managers:
Managers have full capabilities to manipulateCODINE. By
default, the superusers of any machine hosting a queue have
manager privileges.

❏ Operators:
The operators can perform the same commands as the manager
with the exception of adding/deleting/modifying queues.

❏ Owners:
The queue owners are allowed to suspend/enable the owned
queues, but have no further management permissions.

❏ Users:
Users have certain access permissions as described in “User
Access Permissions” on page 188 but no cluster or queue
management capabilities. The following table adjoinsCODINE
command capabilities to the different user categories:

Table 4: CODINE Command Capabilities and User Categories

Command Manager Operator Owner User

qacct Full Full Own jobs only Own jobs only

qalter Full Full Own jobs only Own jobs only

qconf Full No modifications
to the system setup

Show configurations
and access permis-
sions only

Show configura-
tions and access
permissions only

qdel Full Full Own jobs only Own jobs only

qhold Full Full Own jobs only Own jobs only

qhost Full Full Full Full

qlogin Full Full Full Full

qmod Full Full Own jobs and owned
queues only

Own jobs only

Navigating through the CODINE System

179

3 Navigating through the CODINE System

3.1 Overview on Host Functionality

TheHost Configuration button in theqmon main menu
allows you to retrieve an overview on the functionality which is
associated with the hosts in yourCODINE cluster. However, unless
you do not haveCODINE manager privileges, you may not apply
any changes to the presented configuration.

The host configuration dialogues are described in theCODINE
Installation and Administration Guide in section “CODINE
Daemons and Hosts” on page 60.

The subsequent sections provide the commands to retrieve this kind
of information from the command-line.

3.1.1 The Master Host

The location of the master host should be transparent for the user as
the master host may migrate between the current master host and
one of shadow master hosts at any time. The file
<codine_root>/<cell>/common/act_qmaster contains
the name of the current master host for theCODINE cell <cell> .

qmon Full No modifications
to the system setup

No configuration
changes

No configuration
changes

qrexec Full Full Full Full

qselect Full Full Full Full

qsh Full Full Full Full

qstat Full Full Full Full

qsub Full Full Full Full

Table 4: CODINE Command Capabilities and User Categories

Command Manager Operator Owner User

Navigating through the CODINE System

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

180

3.1.2 Execution Hosts

To display information about the hosts being configured as
execution hosts in your cluster please use the commands

The first command displays a list of the names of all hosts being
currently configured as execution hosts. The second command
displays detailed information about the specified execution host.
The third command displays status and load information about the
execution hosts. Please refer to thehost_conf manual page for
details on the information displayed viaqconf and to theqhost
manual page for details on its output and further options.

3.1.3 Administration Hosts

The list of hosts with administrative permission can be displayed
with the command

3.1.4 Submit Hosts

The list of submit host can be displayed with the command

% qconf -sel
% qconf -se hostname
% qhost

% qconf -sh

Navigating through the CODINE System

181

3.2 Queues and Queue Properties

In order to be able to optimally utilize theCODINE system at your
site, you should become familiar with the queue structure and the
properties of the queues which are configured for yourCODINE
system.

3.2.1 The Queue Control qmon Dialogue

Theqmon queue control dialogue displayed and described in
section “Controlling Queues with qmon” on page 258 provides a
quick overview on the installed queues and their current status.

3.2.2 Show Properties with the qmon Object Browser

Theqmon object browser can be used in combination with the
queue control dialogue to display the pertinent queue property
information. The object browser is opened upon clicking on the
Browser icon button in theqmon main menu. By selecting the
Queue button and moving the mouse pointer over a queue icon in
the queue control dialogue, queue property information is displayed
in a similar way as described in thequeue_conf manual page

The following figure shows an object browser example display with
a queue property print-out.

% qconf -ss

Navigating through the CODINE System

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

182

3.2.3 Queue Information from the Command-line

In order to display a list of currently configured queues use the

Figure 57: Browser queue output

Navigating through the CODINE System

183

command. To display the properties of a particular queue please
execute

A detailed description of each property can be found in the
queue_conf manual page (see section 5 of theCODINE
Reference Manual). Here is a short introduction to the most
important parameters:

❏ qname:
The queue name as requested.

❏ hostname:
The host of the queue.

❏ processors:
The processors of a multi processor system, to which the queue
has access.

❏ qtype:
The type of job which is allowed to run in this queue. Currently,
this is either batch, interactive, checkpointing, parallel or any
combination thereof or transfer alternatively

❏ slots:
The number of jobs which may be executed concurrently in that
queue.

❏ owner_list:
The owners of the queue as explained in section “Managers,

% qconf -sql

% qconf -sq queue_name

Navigating through the CODINE System

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

184

Operators and Owners” on page 190

❏ user_lists:
The user or group identifiers in the user access lists (see “User
Access Permissions” on page 188) enlisted under this parameter
may access the queue.

❏ xuser_lists
The user or group identifiers in the user access lists (see “User
Access Permissions” on page 188) enlisted under this parameter
maynot access the queue.

❏ complex_list
The complexes enlisted under this parameter are associated with
the queue and the attributes contained in these complexes
contribute to the set of requestable attributes for the queue (see
“Requestable Attributes” on page 184).

❏ complex_values
Assigns capacities as provided for this queue for certain
complex attributes (see “Requestable Attributes” on page 184).

3.3 Requestable Attributes

When submitting aCODINE job a requirement profile of the job
can be specified. The user can specify attributes or characteristics of
a host or queue which the job requires to run successfully.CODINE
will map these job requirements onto the host and queue
configurations of theCODINE cluster and will, therefore, find the
suitable hosts for a job.

The attributes which can be used to specify the job requirements are
either related to theCODINE cluster (e.g. space required on a
network shared disk), to the hosts (e.g. operating system
architecture), to the queues (e.g. permitted CPU time) or the
attributes are derived from site policies such as the availability of
installed software only on some hosts.

The available attributes include the queue property list (see “Queues
and Queue Properties” on page 181), the list of global and host
related attributes (see “Complex Types” on page 97 of theCODINE
Installation and Administration Guide) as well as administrator
defined attributes. For convenience, however, theCODINE
administrator commonly chooses to define only a subset of all
available attributes to be requestable.

Navigating through the CODINE System

185

The attributes being currently requestable are displayed in the
Requested Resources sub-dialogue (see figure 58 on
page 185) to theqmon Submit dialogue (please refer to section
“Submit Batch Jobs” on page 192 for detailed information on how
to submit jobs). They are enlisted in theAvailable Resources
selection list.

To display the list of requestable attributes from the command-line,
you first have to display the list of currently configuredcomplexes
with the command

Figure 58: Requested Resources dialogue

% qconf -scl

Navigating through the CODINE System

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

186

A so called complex contains the definition for a set of attributes.
There are three standard complexes:global (for the cluster global
attributes),host (for the host specific attributes andqueue (for
the queue property attributes). Any further complex names printed
if the above command is executed refers to an administrator defined
complex (see “The Complexes Concept” on page 95 in the
CODINE Installation and Administration Guide or the complex
format description in the section 5 of theCODINE Reference
Manual for more information on complexes).

To display the attributes of a particular complex please execute

The output for the queue complex might for example look as shown
in table 5 on page 186.

% qconf -sc complex_name[,...]

Table 5: “queue ” complex

#name shortcut type value relop requestable consumable default

#---

qname q STRING NONE == YES NO NONE

hostname h HOST unknown == YES NO NONE

tmpdir tmp STRING NONE == NO NO NONE

calendar c STRING NONE == YES NO NONE

priority pr INT 0 >= NO NO 0

seq_no seq INT 0 == NO NO 0

rerun re INT 0 == NO NO 0

s_rt s_rt TIME 0:0:0 <= NO NO 0:0:0

h_rt h_rt TIME 0:0:0 <= YES NO 0:0:0

Navigating through the CODINE System

187

The columnname is basically identical to the first column
displayed by theqconf -sq command. The queue attributes cover
most of theCODINE queue properties. Theshortcut column
contains administrator definable abbreviations for the full names in
the first column. Either the full name or the shortcut can be supplied
in the request option of aqsub command by the user.

The columnrequestable tells whether the Corresponding entry
may be used inqsub or not. Thus the administrator can, for
example, disallow the cluster’s users to request certain
machines/queues for their jobs directly, simply by setting the entries
qname and/orqhostname to be not requestable. Doing this,
implies that feasible user requests can be met in general by multiple
queues, which enforces the load balancing capabilities ofCODINE.

The columnrelop defines the relation operation used in order to
compute whether a queue meets a user request or not. The
comparison executed is

User_Request relop Queue/Host/...-Property

s_cpu s_cpu TIME 0:0:0 <= NO NO 0:0:0

h_cpu h_cpu TIME 0:0:0 <= YES NO 0:0:0

s_data s_data MEMORY 0 <= NO NO 0

h_data h_data MEMORY 0 <= YES NO 0

s_stack s_stack MEMORY 0 <= NO NO 0

h_stack h_stack MEMORY 0 <= NO NO 0

s_core s_core MEMORY 0 <= NO NO 0

h_core h_core MEMORY 0 <= NO NO 0

s_rss s_rss MEMORY 0 <= NO NO 0

h_rss h_rss MEMORY 0 <= YES NO 0

min_cpu_interval mci TIME 0:0:0 <= NO NO 0:0:0

max_migr_time mmt TIME 0:0:0 <= NO NO 0:0:0

max_no_migr mnm TIME 0:0:0 <= NO NO 0:0:0

#--- # starts a comment but comments are not saved across edits ---

Table 5: “queue ” complex

Navigating through the CODINE System

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

188

If the result of the comparison is false, the user’s job cannot be run
in the considered queue. Let, as an example, the queueq1 be
configured with a soft cpu time limit (see thequeue_conf and the
setrlimit manual pages for a description of user process limits) of
100 seconds while the queueq2 is configured to provide 1000
seconds soft cpu time limit.

The columnsconsumables anddefault are meaningful for
the administrator to declare so called consumable resources (see
section “Consumable Resources” on page 105 of theCODINE
Installation and Administration Guide). The user requests
consumables just like any other attribute. TheCODINE internal
bookkeeping for the resources is however different.

Now, let a user submit the following request:

Thes_cpu=0:5:0 request (see theqsub manual page for details on
the syntax) asks for a queue which at least grants for 5 minutes of
soft limit cpu time. Therefore, only queues providing at least 5
minutes soft CPU runtime limit are setup properly to run the job.

☞ CODINE will only consider workload information in the
scheduling process if more than one queue is able to run a
job.

3.4 User Access Permissions

Access to queues and otherCODINE facilities (e.g. parallel
environment interfaces - see section „Parallel Jobs“ on page 219)
can be restricted for certain users or user groups by theCODINE
administrator.

% qsub -l s_cpu=0:5:0 nastran.sh

Navigating through the CODINE System

189

☞ CODINE automatically takes into account the access
restrictions configured by the cluster administration. The
following sections are only important if you want to query
your personal access permission.

For the purpose of restricting access permissions, the administrator
creates and maintains so called access lists (or in shortACL s). The
ACLs contain arbitrary user and UNIX group names. The ACLs are
then added toaccess-allowed- or access-denied-lists in the queue
or in the parallel environment interface configurations (see
queue_conf or codine_pe in CODINE Reference Manual
section 5, respectively).

User‘s belonging to ACLs which are enlisted in access-allowed-lists
have permission to access the queue or the parallel environment
interface. User‘s being members of ACLs in access-denied-lists
may not access the concerning resource.

TheUserset Configuration dialogue opened via theUser
Configuration icon button in theqmon main menu allows you
to query for the ACLs you have access to via theUserset
Configuration dialogue. Please refer to the section “Managing
User Access” on page 126 of theCODINE Installation and
Administration Guide for details.

From the command-line a list of the currently configured ACLs can
be obtained by the command:

The entries in one or multiple access lists are printed with the
command:

% qconf -sul

Navigating through the CODINE System

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

190

The ACLs consist of user account names and UNIX group names
with the UNIX group names being identified by a prefixed “@” sign.
This way you can determine to which ACLs your account belongs.

☞ In case you have permission to switch your primary UNIX
group with the newgrp command, your access permissions
may change.

You can now check for those queues or parallel environment
interfaces to which you have access or to which access is denied for
you. Please query the queue or parallel environment interface
configuration as described in “Queues and Queue Properties” on
page 181 and “Configuring PEs with qmon” on page 158 in the
CODINE Installation and Administration Guide. The
access-allowed-lists are nameduser_lists . The
access-denied-list have the namesxuser_lists . If your user
account or primary UNIX group is associated with a
access-allowed-list you are allowed to access the concerning
resource. If you are associated with a access-denied-list you may
not access the queue or parallel environment interface. If both lists
are empty every user with a valid account can access the concerning
resource.

3.5 Managers, Operators and Owners

A list of CODINE managers can be obtained by

% qconf -su acl_name[,...]

Navigating through the CODINE System

191

and a list of operators by

☞ The superuser of aCODINE administration host is
considered as manager by default.

The users, which are owners to a certain queue are contained in the
queue configuration database as described in section “Queues and
Queue Properties” on page 181. This database can be retrieved by
executing

The concerning queue configuration entry is calledowners .

% qconf -sm

% qconf -so

% qconf -sq queue_name

Submit Batch Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

192

4 Submit Batch Jobs

4.1 Shell Scripts

Shell scripts, also called batch jobs, are in principal a sequence of
UNIX command-line instructions assembled in a file. Script files
are made executable by the UNIXchmod command. If scripts are
invoked, a proper command interpreter is started (e.g.csh, tcsh,
sh, or ksh) and each instruction is interpreted as typed in manually
by the user executing the script. Arbitrary UNIX commands,
applications and other shell scripts can be invoked from within a
shell script.

The appropriate command interpreter is either invoked as
login-shell or not depending whether its name (csh, tcsh, sh, ksh,
...) is contained in the value list of thelogin_shellsentry of the
CODINE configuration in effect for the particular host and queue
executing the job.

☞ Note, that theCODINE configuration may be different for
the various hosts and queues configured in your cluster. You
can display the effective configurations via the-sconf and
-sq options of theqconf command (refer to theCODINE
Reference Manual for detailed information).

If the command interpreter is invoked as login-shell, the
environment of your job will be exactly the same as if you just have
logged-in and executed the job-script. In case of usingcsh for
example,.login and .cshrc will be executed in addition to the
system default start-up resource files (e.g. something like
/etc/login) while only.cshrc will be executed ifcsh is not
invoked as login-shell. Refer to the manual page of the command
interpreter of your choice for a description of the difference
between being invoked as login-shell or not.

4.1.1 Example Script File

Below is the listing of a simple shell script, which first compiles the
applicationflow from its Fortran77 source and then executes it.

Submit Batch Jobs

193

Your local system user’s guide will provide detailed information
about building and customizing shell scripts (you might also want
to look at thesh, ksh, csh or tcsh manual page). In the following,
theCODINE User’s Guide will emphasize on specialities which
are to be considered in order to prepare batch scripts forCODINE.

In general, all shell scripts that you can execute from your
command prompt by hand can be submitted toCODINE as long as
they do not require a terminal connection (except for the standard
error and output devices, which are automatically redirected) and as
long as they do not need interactive user intervention. Therefore, the
script given above is ready to be submitted toCODINE and will
perform the desired action.

4.2 Submitting CODINE jobs

4.2.1 Submitting jobs with qmon (Simple Example)

Theqmon Job Submission dialogue is either invoked from the
qmon main menu or from theqmon job control dialogue. Pressing
theSubmit icon button in theqmon main menu opens the
dialogue as well as pushing theSubmit button in theJob
Control dialogue. The screen for enteringGeneral parameters
looks as follows (see section „Submitting Jobs with qmon
(Advanced Example)“ on page 200 for a discussion of the
Advanced parameter screen).

#!/bin/csh

This is a sample script file for compiling and
running a sample FORTRAN program under CODINE.

cd TEST

Now we need to compile the program 'flow.f' and
name the executable 'flow'.

f77 flow.f -o flow

Once it is compiled, we can run the program.

flow

End of script file.

Submit Batch Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

194

Throughout section 4 “Submit Batch Jobs” we will only deal with
batch jobs. So please make sure that the defaultBatch icon is
displayed on the top of the button column on the right side of the
screen. If anInteractive icon is displayed instead, please click
to the icon to change it back to the Batch icon. Please refer to
section “Submit Interactive Jobs” on page 224 for detailed
information on interactive jobs.

Figure 59: Job Submission dialogue

Submit Batch Jobs

195

To submit a job you first have to select its script file. Use the file
icon button on the right side of theJob Script input window to
open the following file selection box and to select the job‘s script
file.

Quitting the file selection dialogue with theOK button will transfer
the selected file name to theJob Submission dialogue‘sJob
Script input window. Now just click to theSubmit button on
the right side of the Job Submission screen to submit the job to the
CODINE system.

☞ To get immediate feedback from the job submission you
either need to have theqmon Job Control dialogue open
(see section „Monitoring and Controlling Jobs with qmon“
on page 242) or you need theqmon Object Browser
opened with the display messages facility activated (see
section „Additional Information with the qmon Object
Browser“ on page 252).

Figure 60: Job script selection box

Submit Batch Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

196

4.2.2 Submitting jobs with qmon (Extended Example)

The standard form of theJob Submission dialogue (see figure
71 on page 226) provides the means to configure the following
parameters for a job:

❏ A prefix string which is used for script embeddedCODINE
submit options (please refer to section “Active CODINE
Comments:” on page 207 for detailed information).

❏ The job script to be used. If the associated icon button is pushed,
a file selection box is opened (see figure 60 on page 195)

❏ The task ID range for submitting array jobs (see “Array Jobs” on
page 217).

❏ The name of the job (a default is set after a job script is
selected).

❏ Arguments to the job script.

❏ The job’s initial priority value. Users without manager or
operator permission may only lower their initial priority value.

❏ The time at which the job is to be considered eligible for
execution. If the associated icon button is pushed, a helper
dialogue for entering the correctly formatted time is opened (see
figure 61 on page 197)

❏ A flag indicating whether the job is to be executed in the current
working directory (for identical directory hierarchies between
the submit and the potential execution hosts only).

❏ The command interpreter to be used to execute the job script
(see “How a Command Interpreter Is Selected” on page 205). If
the associated icon button is pushed. a helper dialogue for
entering he command interpreter specifications of the job is
opened (see figure 62 on page 198).

❏ A flag indicating whether the job’s standard output and standard
error output are to be merged together into the standard output
stream.

❏ The standard output redirection to be used (see “Output
Redirection” on page 206). A default is used if nothing is
specified. If the associated icon button is pushed, a helper
dialogue for entering the output redirection alternatives
(“Output redirection box” on page 198).

Submit Batch Jobs

197

❏ The standard error output redirection to be used. Very similar to
the standard output redirection.

❏ The resource requirements of the job (see “Resource
Requirement Definition” on page 213). If resources are
requested for a job, the icon button changes its color.

❏ A selection list button defining whether the job can be restarted
after being aborted by a system crash or similar events and
whether the restart behavior depends on the queue or is
demanded by the job.

❏ A flag indicating whether the job is to be notified by SIGUSR1
or SIGUSR2 signals respectively if it is about to be suspended
or cancelled.

❏ A flag indicating that either a user hold or a job dependency is to
be assigned to the job. The job is not eligible for execution as
long as any type of hold is assigned to it (see section
„Monitoring and Controlling CODINE Jobs“ on page 242 for
more information concerning holds). The input field attached to
the Hold flag allows restricting the hold to only a specific range
of task of an array job (see “Array Jobs” on page 217).

❏ A flag forcing the job to be either started immediately if
possible or being rejected. Jobs are not queued, if this flag is
selected.

Figure 61: At time input box

Submit Batch Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

198

The buttons at the right side of theJob Submission screen allow
you to initiate various actions:

❏ Submit
Submit the job as specified in the dialogue

❏ Edit
Edit the selected script file in an X-terminal either usingvi or the
editor as defined in the$EDITOR environment variable.

❏ Clear
Clear all settings in theJob Submission dialogue including
any specified resource requests.

❏ Reload
Reload the specified script file, parse any script embedded
options (see section „Active CODINE Comments:“ on page
207), parse default settings (see section „Default Requests“ on
page 212) and discard intermediate manual changes to these
settings. This action is the equivalent to a Clear action with
subsequent specifications of the previous script file The option

Figure 62: Shell selection box

Figure 63: Output redirection box

Submit Batch Jobs

199

will only show an effect if a script file is already selected.

❏ Save Settings
Save the current settings to a file. A file selection box is opened
to select the file. The saved files may either explicitly be loaded
later-on (see below) or may be used as default requests (see
section „Default Requests“ on page 212).

❏ Load Settings
Load settings previously saved with theSave Settings
button (see above). The loaded settings overwrite the current
settings.

❏ Done
Closes theJob Submission dialogue.

❏ Help
Dialogue specific help.

Figure “Job submission example” on page 200 shows the submit
dialogue with most of the parameters set. The job configured in the
example has the script fileflow.sh which has to reside in the
working directory ofqmon. The job is calledFlow and the script
file takes the single argumentbig.data . The job will be started
with priority -111 and is eligible for execution not before midnight
of the 24th of December in the year 2000. The job will be executed
in the submission working directory and will use the command
interpretertcsh. Finally standard output and standard error output
will be merged into the fileflow.out which will be created in the
current working directory also.

Submit Batch Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

200

4.2.3 Submitting Jobs with qmon (Advanced Example)

The Advanced submission screen allows definition of the following
additional parameters:

❏ A parallel environment interface to be used and the range of
processes which is required (see section „Parallel Jobs“ on page
219).

❏ A set of environment variables which are to be set for the job
before it is executed. If the associated icon button is pushed, a
helper dialogue for the definition of the environment variables to

Figure 64: Job submission example

Submit Batch Jobs

201

be exported is opened (see figure 65 on page 202). Environment
variables can be taken fromqmon‘s runtime environment or
arbitrary environment variable can be defined.

❏ A list of name/value pairs calledContext (see figure 66 on
page 203), which can be used to store and communicate job
related information accessible anywhere from within a
CODINE cluster. Context variables can be modified from the
command-line via the-ac/-dc/-sc options toqsub, qsh, qlogin
or qalter and can be retrieved viaqstat -j.

❏ The checkpointing environment to be used in case of a job for
which checkpointing is desirable and suitable (see section
„Checkpointing Jobs“ on page 237).

❏ An account string to be associated with the job. The account
string will be added to the accounting record kept for the job and
can be used for later accounting analysis.

❏ TheVerify flag, which determines the consistency checking
mode for your job. To check for consistency of the job request
CODINE assumes an empty and unloaded cluster and tries to
find at least one queue in which the job could run. Possible
checking modes are:

• Skip - no consistency checking at all.

• Warning - inconsistencies are reported, but the job is still
accepted (may be desired if the cluster configuration is
supposed to change after submission of the job).

• Error - inconsistencies are reported and the job will be
rejected if any are encountered.

• Just verify - The job will not be submitted, but an
extensive report is generated about the suitability of the job
for each host and queue in the cluster.

❏ The events at which the user is notified via electronic mail. The
events start/end/abortion/suspension of job are currently
defined.

❏ A list of electronic mail addresses to which these notification
mails are sent. If the associated icon button is pushed, a helper
dialogue to define the mailing list is opened (see figure 67 on
page 203).

Submit Batch Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

202

❏ A list of queue names which are requested to be the mandatory
selection for the execution of the job. TheHard Queue List
is treated identical to a corresponding resource requirement as
described in “Resource Requirement Definition” on page 213.

❏ A list of queue names which are requested to be a desirable
selection for the execution of the job. TheSoft Queue List
is treated identical to a corresponding resource requirement as
described in “Resource Requirement Definition” on page 213.

❏ A list of queue names which are eligible as so calledmaster
queue for a parallel job. A parallel job is started in the master
queue. All other queues to which the job spawns parallel tasks
are calledslave queues.

❏ An argument list which is forwarded directly to the submission
client of a foreign queuing system, in case the job is executed
under theCODINE QSI (see section „The CODINE Queuing
System Interface (QSI)“ on page 166 in theCODINE
Installation and Administration Guide). TheTransfer QS
Arguments have no effect if the job executed within the
CODINE system.

❏ An ID-list of jobs which need to be finished successfully before
the job to be submitted can be started. The newly created job
depends on successful completion of those jobs.

Figure 65: Job environment definition

Submit Batch Jobs

203

Consequently, the job defined in figure 68 on page 205 has the
following additional characteristics as compared to the job
definition from section “Submitting jobs with qmon (Extended
Example)” on page 196:

❏ The job requires the use of the parallel environmentmpi . It
needs at least 4 parallel processes to be created and can utilize
up to 16 processes if available.

❏ Two environment variables are set and exported for the job.

Figure 66: Job context definition

Figure 67: Mail address specification

Submit Batch Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

204

❏ Two context variables are set.

❏ The account stringFLOW is to be added to the job accounting
record.

❏ The job is to be restarted if it fails in case of a system crash.

❏ Warnings should be printed if inconsistencies between the job
request and the cluster configuration are detected

❏ Mail has to be sent to a list of two e-mail addresses as soon as
the job starts and finishes.

❏ Preferably, the job should be executed in the queuebig_q .

Submit Batch Jobs

205

4.2.4 Extensions to Regular Shell Scripts

There are some extensions to regular shell scripts, that will
influence the behavior of the script if running underCODINE
control. The extensions are:

❏ How a Command Interpreter Is Selected
The command interpreter to be used to process the job script file
can be specified at submit time (see for example page 198).

Figure 68: Advanced job submission example

Submit Batch Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

206

However, if nothing is specified, the configuration variable
shell_start_mode determines how the command
interpreter is selected:

• If shell_start_mode is set tounix_behavior , the
first line of the script file if starting with a „#!“ sequence is
evaluated to determine the command interpreter. If the first
line has no „#!“ sequence, the Bourne-Shellsh is used by
default.

• For all other settings ofshell_start_mode the default
command interpreter as configured with theshell
parameter for the queue in which the job is started is used
(see section „Queues and Queue Properties“ on page 181
and thequeue_conf manual page).

❏ Output Redirection
Since batch jobs do not have a terminal connection their
standard output and their standard error output has to be
redirected into files.CODINE allows the user to define the
location of the files to which the output is redirected, but uses
defaults if nothing is specified.

The standard location for the files is in the current working
directory where the jobs execute. The default standard output
file name is<Job_name>.o<Job_id> , the default standard
error output is redirected to<Job_name>.e<Job_id> .
<Job_name> is either built from the script file name or can be
defined by the user (see for example the-N option in theqsub
manual page).<Job_id> is a unique identifier assigned to the
job byCODINE.

In case of array job tasks (see section „Array Jobs“ on page
217), the task identifier is added to these filenames separated by
a dot sign. Hence the resulting standard redirection paths are
<Job_name>.o<Job_id>.<Task_id> and
<Job_name>.e<Job_id>.<Task_id> .

In case the standard locations are not suitable, the user can
specify output directions withqmon as shown in figure 68 and
figure 63 or with the-e and-o qsub options. Standard output
and standard error output can be merged into one file and the
redirections can be specified on a per execution host basis. I.e.,
depending on the host on which the job is executed, the location
of the output redirection files becomes different. To build
custom but unique redirection file paths, pseudo environment

Submit Batch Jobs

207

variables are available which can be used together with theqsub
-e and-o option

• $HOME - home directory on execution machine.

• $USER - user ID of job owner.

• $JOB_ID - current job ID.

• $JOB_NAME - current job name (see -N option).

• $HOSTNAME - name of the execution host.

• $TASK_ID - array job task index number.

These variables are expanded during runtime of the job into the
actual values and the redirection path is built with them.

See theqsub manual page in section 1 of theCODINE
Reference Manual for further details.

❏ Active CODINE Comments:
Lines with a leading “#” sign are treated as comments in shell
scripts.CODINE, however, recognizes special comment lines
and uses them in a special way: the rest of such a script line will
be treated as if it were part of the command line argument list of
theCODINE submit commandqsub. Theqsub options
supplied within these special comment lines are also interpreted
by theqmon submit dialogue and the corresponding parameters
are preset when a script file is selected.

The special comment lines per default are identified by the „#$“
prefix string. The prefix string can be redefined with the
qsub -C option.

The described mechanism is called script embedding of submit
arguments. The following example script file makes use of script
embedded command-line options.

Submit Batch Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

208

❏ Environment Variables:
When aCODINE job is run, a number of variables are preset
into the job’s environment, as listed below

• ARC: TheCODINE architecture name of the node on which
the job is running. The name is compiled-in into the
cod_execd binary.

• CODINE_ROOT: TheCODINE root directory as set for
cod_execd before start-up or the default/usr/CODINE .

• COD_CELL: TheCODINE cell in which the job executes.

• COD_O_HOME: The home directory path of the job owner
on the host from which the job was submitted.

• COD_O_HOST: The host from which the job was submitted.

#!/bin/csh

#Force csh if not CODINE default shell

#$ -S /bin/csh

This is a sample script file for compiling and
running a sample FORTRAN program under CODINE.
We want CODINE to send mail when the job begins
and when it ends.

#$ -M EmailAddress
#$ -m b,e

We want to name the file for the standard output
and standard error.

#$ -o flow.out -j y

Change to the directory where the files are located.

cd TEST

Now we need to compile the program 'flow.f' and
name the executable 'flow'.

f77 flow.f -o flow

Once it is compiled, we can run the program.

flow

End of script file.

Submit Batch Jobs

209

• COD_O_LOGNAME: The login name of the job owner on
the host from which the job was submitted.

• COD_O_MAIL: The content of the MAIL environment
variable in the context of the job submission command.

• COD_O_PATH: The content of the PATH environment
variable in the context of the job submission command.

• COD_O_SHEL: The content of the SHELL environment
variable in the context of the job submission command.

• COD_O_TZ: The content of the TZ environment variable in
the context of the job submission command.

• COD_O_WORKDIR: The working directory of the job
submission command.

• COD_CKPT_ENV: Specifies the checkpointing environment
(as selected with theqsub -ckpt option) under which a
checkpointing job executes.

• COD_CKPT_DIR: Only set for checkpointing jobs. Contains
pathckpt_dir (see thecheckpoint manual page) of the
checkpoint interface.

• COD_STDERR_PATH: the pathname of the file to which the
standard error stream of the job is diverted. Commonly used
for enhancing the output with error messages from prolog,
epilog, parallel environment start/stop or checkpointing
scripts.

• COD_STDOUT_PATH: the pathname of the file to which the
standard output stream of the job is diverted. Commonly
used for enhancing the output with messages from prolog,
epilog, parallel environment start/stop or checkpointing
scripts.

• COD_TASK_ID: The task identifier in the array job
represented by this task.

• ENVIRONMENT: Always set to BATCH. This variable
indicates, that the script is run in batch mode.

• HOME: The user’s home directory path from thepasswd
file.

• HOSTNAME: The hostname of the node on which the job is
running.

• JOB_ID: A unique identifier assigned by thecod_qmaster
when the job was submitted. The job ID is a decimal integer

Submit Batch Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

210

in the range to 99999.

• JOB_NAME: The job name, built from theqsub script
filename, a period, and the digits of the job ID. This default
may be overwritten byqsub -N.

• LAST_HOST: The name of the preceding host in case of
migration of a checkpointing job.

• LOGNAME: The user’s login name from thepasswd file.

• NHOSTS: The number of hosts in use by a parallel job.

• NQUEUES: The number of queues allocated for the job
(always 1 for serial jobs)

• NSLOTS: The number of queue slots in use by a parallel job.

• PATH: A default shell search path of:
/usr/local/bin:/usr/ucb:/bin:/usr/bin

• PE: The parallel environment under which the job executes
(for parallel jobs only).

• PE_HOSTFILE: The path of a file containing the definition
of the virtual parallel machine assigned to a parallel job by
CODINE. See the description of the$pe_hostfileparameter
in codine_pe for details on the format of this file. The
environment variable is only available for parallel jobs.

• QUEUE: The name of the queue in which the job is running.

• REQUEST: The request name of the job, which is either the
job script filename or is explicitly assigned to the job via the
qsub -N option.

• RESTARTED: Indicates, whether a checkpointing job has
been restarted. If set (to value 1), the job has been
interrupted at least once and is thus restarted.

• SHELL: The user’s login shell from thepasswd file. Note:
This is not necessarily the shell in use for the job.

• TMPDIR: The absolute path to the job’s temporary working
directory.

• TMP: The same as TMPDIR; provided for compatibility
with NQS.

• TZ: The time zone variable imported fromcod_execd if set.

• USER: The user’s login name from thepasswd file.

Submit Batch Jobs

211

4.2.5 Submitting Jobs from the Command-line

Jobs are submitted toCODINE from the command-line using the
qsub command (see the correspondingCODINE Reference
Manual section). A simple job as described in section “Submitting
jobs with qmon (Simple Example)” on page 193 could be submitted
to CODINE with the command

if the script file name isflow.sh .

As opposed to this, the submit command which would yield the
equivalent to theqmon job submission described in section
“Submitting jobs with qmon (Extended Example)” on page 196
would look as follows:

Further command-line options can be added to constitute more
complex requests. The job request from section “Submitting Jobs
with qmon (Advanced Example)” on page 200, for example, would
look as follows:

% qsub flow.sh

% qsub -N Flow -p -111 -a 200012240000.00 -cwd \
-S /bin/tcsh -o flow.out -j y flow.sh big.data

Submit Batch Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

212

4.2.6 Default Requests

The last example in the above section demonstrates that advanced
job requests may become rather complex and unhandy, in particular
if similar requests need to be submitted frequently. To avoid the
cumbersome and error prone task of entering such command-lines,
the user can either embedqsub options in the script files (see
“Active CODINE Comments:” on page 207) or can utilize so called
default requests.

The cluster administration may setup a default request file for all
CODINE users. The user, on the other hand, can create a private
default request file located in the user‘s home directory as well as
application specific default request files located in the working
directories.

Default request files simply contain theqsub options to be applied
by default to theCODINE jobs in a single or multiple lines. The
location of the cluster global default request file is
<codine_root>/<cell>/common/cod_request . The
private general default request file is located under
$HOME/.cod_request , while the application specific default
request files are expected under$cwd/.cod_request .

If more than one of these files is available, they are merged into one
default request with the following order of precedence:

❏ Global default request file.

❏ General private default request file.

❏ Application specific default request file.

% qsub -N Flow -p -111 -a 200012240000.00 -cwd \
-S /bin/tcsh -o flow.out -j y -pe mpi 4-16 \
-v SHARED_MEM=TRUE,MODEL_SIZE=LARGE \
-ac JOB_STEP=preprocessing,PORT=1234 \
-A FLOW -w w -r y -m s,e -q big_q\
-M me@myhost.com,me@other.address \
flow.sh big.data

Submit Batch Jobs

213

☞ Script embedding and theqsub command-line has higher
precedence than the default request files. Thus, script
embedding overwrites default request file settings, and the
qsub command-line options my overwrite these settings
again.

☞ The qsub -clear option can be used at any time in a default
request file, in embedded script commands and in theqsub
command-line to discard any previous settings.

An example private default request file is presented below:

Unless overwritten, for all jobs of the given user the account string
would bemyproject , the jobs would execute in the current
working directory, mail notification would be sent at the beginning
and end of the jobs tome@myhost.com, the jobs are to be
restarted after system crashes, the standard output and standard
error output are to be merged and theksh is to be used as command
interpreter.

4.2.7 Resource Requirement Definition

In the examples so far the submit options used did not express any
requirements for the hosts on which the jobs were to be executed.
CODINE assumes that such jobs can be run on any host. In
practice, however, most jobs require certain prerequisites to be
satisfied on the executing host in order to be able to complete
successfully. Such prerequisites are enough available memory,
required software to be installed or a certain operating system
architecture. Also, the cluster administration usually imposes
restrictions on the usage of the machines in the cluster. The CPU
time allowed to be consumed by the jobs is often restricted, for
example.

-A myproject -cwd -M me@myhost.com -m b,e
-r y -j y -S /bin/ksh

Submit Batch Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

214

CODINE provides the user with the means to find a suitable host
for the user‘s job without a concise knowledge of the cluster‘s
equipment and its utilization policies. All the user has to do is to
specify the requirement of the user‘s jobs and letCODINE manage
the task of finding a suitable and lightly loaded host.

Resource requirements are specified via the so called requestable
attributes explained in section “Requestable Attributes” on page
184. A very convenient way of specifying the requirements of a job
is provided byqmon. TheRequested Resources dialogue,
which is opened upon pushing theRequested Resources icon
button in theJob Submission dialogue (see for example figure
68 on page 205) only displays those attributes in theAvailable
Resource selection list which currently are eligible. By
double-clicking to an attribute, the attribute is added to theHard or
Soft (see below)Resources list of the job and (except for
BOOLEAN type attributes, which are just set to „True “) a helper
dialogue is opened to guide the user in entering a value specification
for the concerning attribute.

The exampleRequested Resources dialogue displayed below
in figure 58 shows a resource profile for a job in which a
solaris64 host with an availablepermas license offering at
least 750 Megabytes of memory is requested. If more than one
queue fulfilling this specification is found, any defined soft resource
requirements are taken into account (none in our example).
However, if no queue satisfying both the hard and the soft
requirements is found, any queue granting the hard requirements is
considered to be suitable.

☞ Only if more than one queue is suitable for a job, load
criteria determine where to start the job.

Submit Batch Jobs

215

☞ The INTEGER attribute permas is introduced via an
administrator extension to the “global” complex, the
STRING attribute arch is imported from the “host”
complex while the MEMORY attribute h_vmemis imported
from the “queue” complex (see section „Requestable
Attributes“ on page 184)

An equivalent resource requirement profile can as well be submitted
from theqsub command-line:

☞ The implicit -hard switch before the first-l option has been
skipped.

Figure 69: Requested Resources dialogue

% qsub -l arch=solaris64,h_vmem=750M,permas=1 \
permas.sh

Submit Batch Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

216

The notation750M for 750 Megabytes is an example for the
CODINE quantity syntax. For those attributes requesting a memory
consumption you can specify either integer decimal, floating point
decimal, integer octal and integer hexadecimal numbers appended
by the so called multipliers:

❏ k
multiplies the value by 1000.

❏ K
multiplies the value by 1024.

❏ m
multiplies the value by 1000 times 1000.

❏ M
multiplies the value by 1024 times 1024.

Octal constants are specified by a leading 0 (zero) and digits
ranging from 0 to 7 only. Specifying a hexadecimal constant
requires to prepend the number by 0x and to use digits ranging from
0 to 9, a to f and A to F. If no multipliers are appended the values are
considered to count as bytes. If using floating point decimals, the
resulting value will be truncated to an integer value.

For those attributes imposing a time limit one can specify the time
values in terms of hours, minutes or seconds and any combination.
The hours, minutes and seconds are specified in decimal digits
separated by colons. A time of3:5:11 is translated to 11111
seconds. If a specifier for hours, minutes or seconds is 0 it can be
left out if the colon remains. Thus a value of :5: is interpreted as 5
minutes. The form used in theRequested Resources dialogue
above is an extension, which is only valid withinqmon.

4.3 How CODINE Allocates Resources

As shown in the last section, it is important for the user to know,
howCODINE processes resource requests and how resources are
allocated byCODINE. The following provides a schematic view of
CODINE’s resource allocation algorithm:

Read in and parse all default request files (see section „Default
Requests“ on page 212). Process the script file for embedded
options (see section „Active CODINE Comments:“ on page 207).
All script embedding options are read, when the job is submitted
regardless of their position in the script file. Now read and parse all
requests from the command line.

Submit Batch Jobs

217

As soon as all qsub requests are collected,Hard andsoft requests
are processed separately (thehard first). The requests are evaluated
Corresponding to the following order of precedence:

• from left to right of the script/default request file

• from top to bottom of the script/default request file

• from left to right of the command line

In other words, the command line can be used to override the
embedded flags.

The resources requestedhard are allocated. If a request is not valid,
the submit is rejected. If one or more requests cannot be met at
submit-time (e.g. a requested queue is busy) the job is spooled and
will be re-scheduled at a later time. If allhard requests can be met,
they are allocated and the job can be run.

The resources requestedsoft are checked. The job can run even if
some or all of these requests cannot be met. If multiple queues
(already meeting the hard requests) provide parts of the soft
resources list (overlapping or different parts)CODINE will select
the queues offering the most soft requests.

The job will be started and will cover the allocated resources.

It is useful to gather some experience on how argument list options
and embedded options orhard andsoft requests influence each
other by experimenting with small test scriptfiles executing UNIX
commands likehostname or date.

4.4 Array Jobs

Parametrized and repeated execution of the same set of operations
(contained in a job script) is an ideal application for theCODINE
array job facility. Typical examples for such applications are found
in the Digital Content Creation industries for tasks like rendering.
Computation of an animation is split into frames, in this example,
and the same rendering computation can be performed for each
frame independently.

The array job facility offers a convenient way to submit, monitor
and control such applications.CODINE, on the other hand,
provides an efficient implementation of array jobs, handling the
computations as an array of independent tasks joined into a single
job. The tasks of an array job are referenced through an array index

Submit Batch Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

218

number. The indices for all tasks span an index range for the entire
array job which is defined during submission of the array job by a
single qsub command.

An array job can be monitored and controlled (e.g. suspended,
resumed or cancelled) as a total or by individual task or subset of
tasks, in which case the corresponding index numbers are suffixed
to the job ID to reference the tasks. As tasks execute (very much
like regular jobs), they can use the environment variable
$COD_TASK_ID to retrieve their own task index number and to
access input data sets designated for this task identifier.

The following is an example of how to submit an array job from the
command-line:

The-t option defines the task index range. In this case,2-10:2
specifies that2 is the lowest and10 is the highest index number
while only every second index (the:2 part of the specification) is
used. Thus the array job consists of 5 tasks with the task indices 2,
4, 6, 8, and 10. Each task requests a hard CPU time limit of45
minutes (the-l option) and will execute the job scriptrender.sh
once being dispatched and started byCODINE. The tasks can use
$COD_TASK_ID to find out whether they are task 2, 4, 6, 8, or 10
and they can use their index number to find their input data record
in the data filedata.in.

The submission of array jobs from the GUIqmon works identically
to how it was described in previous chapters. The only difference is,
that the Job Tasks input window shown in figure 64 on page 200
needs to contain the task range specification with the identical
syntax as for theqsub -t option. Please refer to the qsub manual
page in theCODINE Reference Manual for detailed information
on the array index syntax.

% qsub -l h_cpu=0:45:0 -t 2-10:2 render.sh data.in

Submit Batch Jobs

219

The sections 8 “Monitoring and Controlling CODINE Jobs” and 8.5
“Controlling CODINE Jobs from the Command-line” as well as the
CODINE Reference Manual sections aboutqstat, qhold, qrls,
qmod, andqdel contain the pertinent information about monitoring
and controllingCODINE jobs in general and array jobs in
particular.

☞ Array jobs offer full access to allCODINE facilities known
for regular jobs. In particular they can be parallel jobs at
the same time or can have interdependencies with other
jobs.

4.5 Parallel Jobs

CODINE provides means to execute parallel jobs using arbitrary
message passing environments such as PVM or MPI (see thePVM
User’s Guide and theMPI User’s Guide for details) or shared
memory parallel programs on multiple slots in single queues or
distributed across multiple queues and (for distributed memory
parallel jobs) across machines. An arbitrary number of different
parallel environment (PE) interfaces may be configured
concurrently at the same time.

The currently configured PE interfaces can be displayed with the
commands:

The first command prints a list of the names of the currently
available PE interfaces. The second command displays the
configuration of a particular PE interface. Please refer to the
codine_pe manual page for details on the PE configuration.

% qconf -spl

% qconf -sp pe_name

Submit Batch Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

220

Alternatively, the PE configurations can be queried with theqmon
Parallel Environment Configuration dialogue (see
section „Configuring PEs with qmon“ on page 158 in theCODINE
Installation and Administration Guide). The dialogue is opened
upon pushing thePE Config icon button in theqmon main menu.

The example from section “Submitting Jobs with qmon (Advanced
Example)” on page 200 already defines a parallel job requesting the
PE interfacempi (for message passing interface) to be used with at
least 4 but up to (and preferably) 16 processes. The icon button to
the right of the parallel environment specification window can be
used to pop-up a dialogue box to select the desired parallel
environment from a list of available PEs (see figure 70). The
requested range for the number of parallel tasks initiated by the job
can be added after the PE name in the PE specification window of
the advanced submission screen.

The command-line submit command corresponding to the parallel
job specification described above is given in section “Submitting
Jobs from the Command-line” on page 211 and shows how the
qsub -pe option has to be used to formulate an equivalent request.
Theqsub manual page in theCODINE Reference Manual
provides more detail on the-pe syntax.

It is important to select a suitable PE interface for a parallel job. PE
interfaces may utilize no or different message passing systems, they
may allocate processes on single or multiple hosts, access to the PE

Figure 70: PE selection

Submit Batch Jobs

221

may be denied to certain users, only a specific set of queues may be
used by a PE interface and only a certain number of queue slots may
be occupied by a PE interface at any point of time. You should
therefore ask theCODINE administration for the available PE
interface(s) best suited for your type(s) of parallel jobs.

You can specify resource requirements as explained in section
“Resource Requirement Definition” on page 213 together with your
PE request. This will further reduce the set of eligible queues for the
PE interface to those queues also fitting the resource requirement
definition you specified. If, for example, the command

is submitted, the queues suitable for this job are those which are
associated to the PE interfacempi by the PE configuration and also
satisfy the resource requirement specification specified by theqsub
-l option.

☞ The CODINE PE interface facility is highly configurable. In
particular, the CODINE administration can configure the
PE start-up and stop procedures (see thecodine_pe
manual page) to support site specific needs. Theqsub -v
and -V options to export environment variables may be
used to pass information from the user who submits the job
to the PE start-up and stop procedures. Please ask the
CODINE administration if you are required to export
certain environment variables.

4.6 Submitting Jobs to Other Queueing Systems

Some sites do not wish to installCODINE on all machines for
which batch access is provided, but instead use other queueing
systems already available on these hosts. Typical examples are
machines which do not belong to the same organization, and thus
cannot be maintained by theCODINE administration, or machines

% qsub -pe mpi 1,2,4,8 -l nastran,arch=osf nastran.par

Submit Batch Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

222

utilizing a very special queuing system, interfacing specifically
designed accounting facilities and the like (very common for so
calledSupercomputers).

In these cases,CODINE offers a general interface to such queueing
systems. Access to the hosting queueing system (QS) is provided by
the concept oftransfer queues . A transfer queue is defined by
the valueTRANSFER in thetype field of the queue configuration
(see section „Queues and Queue Properties“ on page 181).

Jobs to be forwarded to another QS can be submitted like any other
CODINE job. Resource requirements are requested for the job via
qmon or theqsub command just like fornormalCODINE jobs. It
is even possible that such a job is processed either within the
CODINE system or passed to a QS, depending on the available and
best suited resources.

Sometimes it is necessary to supply QS special switches with the
job. To perform this, there are two methods available in the
CODINE QS interface:

❏ Add the options to the script file by usage of special comments
similar to the “#$” comments inCODINE (of course the QS
must support such special comments).

❏ The specialqsub option-qs_args may be used to pass such
options. Everything behind the-qs_args option is considered as
option to the QS until the-qs_end option is encountered. A
corresponding input field for such arguments is provided in the
qmon submission dialogue as well (see section „Submitting
Jobs with qmon (Advanced Example)“ on page 200).

4.7 How CODINE Jobs Are Scheduled

4.7.1 Job Scheduling

Job Priorities Concerning the order of scheduling precedence of different jobs a
first-in-first-out (fifo) rule is applied by default. I.e., allpending
(not yet scheduled) jobs are inserted in a list, with the first
submitted job being the head of the list, followed by the second
submitted job, and so on. The job submitted first will be attempted
to be scheduled first. If at least one suitable queue is available, the
job will be scheduled.CODINE will try to schedule the second job
afterwards no matter whether the first has been dispatched or not.

Submit Batch Jobs

223

This order of precedence among the pending jobs may be overruled
by the cluster administration via apriority value being assigned to
the jobs. The actual priority value can be displayed by using the
qstat command (the priority value is contained in the last column of
the pending jobs display entitledP; refer to section “Monitoring
with qstat” on page 253 for details). The default priority value
assigned to the jobs at submit time is 0. The priority values are
positive and negative integers and the pending jobs list is sorted
Correspondingly in the order of descending priority values. I.e., by
assigning a relatively high priority value to a job, the job is moved
to the top of the pending jobs list. Jobs with negative priority values
are inserted even after jobs just submitted. If there are several jobs
with the same priority value, the fifo rule is applied within that
priority value category.

Equal-Share-Sche
duling

The fifo rule sometimes leads to problems, especially if user’s tend
to submit a series of jobs almost at the same time (e.g. via
shell-script issuing one submit after the other). All jobs being
submitted afterwards and being designated to the same group of
queues will have to wait a very long time.Equal-share-scheduling
avoids this problem by sorting jobs of users already owning a
running job to the end of the precedence list. The sorting is
performed only among jobs within the same priority value category.
Equal-share-scheduling is activated if theCODINE scheduler
configuration entryuser_sort (refer to thesched_conf manual
page for details) is set toTRUE.

4.7.2 Queue Selection

If submitted jobs cannot be run, because requested resources like a
queue of a certain group are not available at submit-time, it would
be disadvantageous to immediately dispatch such jobs to a certain
queue Corresponding to the load average situation. Imagine, a
suitable queue is busy with a job, that is terribly slowed down by an
infrequently responding I/O device. The machine, hosting this
queue, might offer the lowest load average in theCODINE cluster,
however, the currently executing job might also continue to run for
a very long time.

Submit Interactive Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

224

Therefore,CODINE does not dispatch jobs requestinggeneric
queues if they cannot be started immediately. Such jobs will be
marked as spooled at thecod_qmaster, which will try to
re-schedule them from time to time. Thus, such jobs are dispatched
to the next suitable queue, that becomes available.

As opposed to this, jobs which are requested by name to a certain
queue, will go directly to this queue regardless whether they can be
started or they have to be spooled. Therefore, viewingCODINE
queues as computer sciencebatch queues is only valid for jobs
requested by name. Jobs submitted withgenericrequests use the
spooling mechanism ofcod_qmaster for queueing, thus utilizing a
more abstract and flexible queuing concept.

If a job is scheduled and multiple free queues meet its resource
requests, the job is usually dispatched to the queue (among the
suitable) belonging to the least loaded host. By setting theCODINE
scheduler configuration entryqueue_sort_methodto seqno , the
cluster administration may change this load dependent scheme into
a fixed order algorithm: the queue configuration entryseq_no is
used to define a precedence among the queues assigning the highest
priority to the queue with the lowest sequence number.

5 Submit Interactive Jobs

Submitting interactive jobs instead of batch jobs is useful in
situations where your job requires your direct input to influence the
results of the job. This is typically the case for X-windows
applications, which are interactive by definition, or for tasks in
which your interpretation of immediate results is required to steer
the further computation.

Three methods exist inCODINE to create interactive jobs:

❏ qlogin -a telnet like session is started on a host selected by
CODINE.

❏ qrsh - the equivalent of the standard Unixrsh facility. Either a
command is executed remotely on a host selected byCODINE
or a rlogin session is started on a remote host if no command
was specified for execution.

❏ qsh/qmon - anxterm is brought up from the machine executing
the job with the display set corresponding to your specification
or the setting of theDISPLAY environment variable. If the

Submit Interactive Jobs

225

DISPLAY variable is not set and if no display destination was
defined specifically,CODINE directs thexterm to the 0.0
screen of the X server on the host from which the interactive job
was submitted.

☞ To function correctly, all the facilities need proper
configuration of CODINE cluster parameters. The correct
xterm execution paths have to be defined for qsh and
interactive queues have to be available for this type of jobs.
Please contact your system administrator whether your
cluster is prepared for interactive job execution.

The default handling of interactive jobs differs from the handling of
batch jobs in that interactive jobs are not queued if they cannot be
executed by the time of submission. This is to indicate immediately,
that not enough appropriate resources are available to dispatch an
interactive job right after it was submitted. The user is notified in
such cases that theCODINE cluster is too busy currently.

This default behavior can be changed with the-now no option to
qsh, qlogin andqrsh. If this option is given, interactive jobs are
queued like batch jobs. Using-now yes, batch jobs submitted with
qsub also can be handled like interactive jobs and are either
dispatched for execution immediately or are rejected.

☞ Interactive jobs can only be executed in queues of the type
INTERACTIVE (please refer to “Configuring Queues” on
page 79 in theCODINE Installation and Administration
Guide for details).

The subsequent sections outline the usage of theqlogin andqsh
facilities. Theqrsh command is explained in a broader context in
chapter “Transparent Remote Execution” on page 228.

5.1 Submit Interactive Jobs with qmon

The only type of interactive jobs which can be submitted from
qmon are those bringing up anxterm on a host selected by
CODINE.

By clicking to the icon on top of the button column at the right side
of theJob Submission dialogue until theInteractive icon
gets displayed, the job submission dialogue is prepared for
submitting interactive jobs (see figure 71 on page 226 and figure

Submit Interactive Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

226

72 on page 227). The meaning and the usage of the selection
options in the dialogue is the same as explained for batch jobs in
section “Submitting CODINE jobs” on page 193. The basic
difference is that several input fields are set insensitive because they
do not apply for interactive jobs.

Figure 71: Interactive Job Submission dialogueGeneral

Submit Interactive Jobs

227

5.2 Submitting Interactive Jobs with qsh

Qsh is very similar toqsub and supports several of theqsub
options as well as the additional switch-display to direct the
display of thexterm to be invoked (please refer to theqsh manual
page in theCODINE Reference Manual for details).

The following command will start axterm on any available Sun
Solaris 64bit operating system host.

Figure 72: Interactive Job Submission dialogueAdvanced

Transparent Remote Execution

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

228

5.3 Submitting Interactive Jobs with qlogin

Theqlogin command can be used from any terminal or terminal
emulation to initiate an interactive session under the control of
CODINE. The following command will locate a low loaded host
with Star-CD license available and with at least one queue
providing a minimum of 6 hours hard CPU time limit.

☞ Depending on the remote login facility configured to be used
by CODINE you may be forced to enter your user name
and/or password at a login prompt.

6 Transparent Remote Execution

CODINE provides a set of closely related facilities supporting
transparent remote execution of certain computational tasks. The
core tool for this functionality is theqrsh command described in
section “Remote Execution with qrsh” on page 229. Building on top
of qrsh, two high level facilities -qtcsh andqmake - allow the
transparent distribution of implicit computational tasks via
CODINE, thereby enhancing the standard Unix facilitiesmake and
csh. Qtcsh is explained in section “Transparent Job Distribution
with qtcsh” on page 230 andqmake is described in section
“Parallel Makefile Processing with qmake” on page 233.

% qsh -l arch=solaris64

% qlogin -l star-cd=1,h_cpu=6:0:0

Transparent Remote Execution

229

6.1 Remote Execution with qrsh

Qrsh is built around the standardrsh facility (see the information
provided in<codine_root>/3rd_party for details on the
involvement ofrsh) and can be used for various purposes:

❏ to provide remote execution of interactive applications via
CODINE comparable to the standard Unix facilityrsh (also
calledremsh for HP-UX).

❏ to offer interactive login session capabilities viaCODINE
similar to the standard Unix facilityrlogin (note thatqlogin is
still required as aCODINE representation of the Unixtelnet
facility).

❏ to allow for the submission of batch jobs which, upon execution,
support terminal I/O (standard/error output and standard input)
and terminal control.

❏ to offer a means for submitting a standalone program not
embedded in a shell-script.

❏ to provide a batch job submission client which remains active
while the job is pending or executing and which only finishes if
the job has completed or has been cancelled.

❏ to allow for theCODINE-controlled remote execution of job
tasks (such as the concurrent tasks of a parallel job) within the
framework of the dispersed resources allocated by parallel jobs
(see section „Tight Integration of PEs and CODINE“ on page
165 of theCODINE Installation and Administration Guide).

By virtue of all these capabilities,qrsh is the major enabling
infrastructure for the implementation of theqtcsh and theqmake
facilities as well as for the so called tight integration ofCODINE
with parallel environments such as MPI or PVM.

6.1.1 Qrsh Usage

The general form of theqrsh command is

Transparent Remote Execution

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

230

Qrsh understands almost all options ofqsub and provides only a
few additional ones. These are:

❏ -now yes|no
controls whether the job is scheduled immediately and rejected
if no appropriate resources are available, as usually desired for
an interactive job – hence it is the default, or whether the job is
queued like a batch job, if it cannot be started at submission
time.

❏ -inherit
qrsh does not go through theCODINE scheduling process to
start a job-task, but it assumes that it is embedded inside the
context of a parallel job which already has allocated suitable
resources on the designated remote execution host. This form of
qrsh commonly is used withinqmake and within a tight
parallel environment integration. The default is not to inherit
external job resources.

❏ -verbose
presents output on the scheduling process. Mainly intended for
debugging purposes and therefore switched off per default.

6.2 Transparent Job Distribution with qtcsh

Qtcsh is a fully compatible replacement for the widely known and
used Unix C-Shell (csh) derivativetcsh (qmake is built around
tcsh - see the information provided in
<codine_root>/3rd_party for details on the involvement of
tcsh). It provides a command-shell with the extension of
transparently distributing execution of designated applications to
suitable and lightly loaded hosts viaCODINE. Which applications
are to be executed remotely and which requirements apply for the
selection of an execution host is defined in configuration files called
.qtask .

% qrsh [options] program|shell-script [arguments] \
[> stdout_file] [>&2 stderr_file] [< stdin_file]

Transparent Remote Execution

231

Transparent to the user, such applications are submitted for
execution toCODINE via theqrsh facility. Sinceqrsh provides
standard output, error output and standard input handling as well as
terminal control connection to the remotely executing application,
there are only three noticeable differences between executing such
an application remotely as opposed to executing it on the same host
as the shell:

❏ The remote host may be much better suited (more powerful,
lower loaded, required hard/software resources installed) than
the local host, which may not allow execution of the application
at all. This is a desired difference, of course.

❏ There will be a small delay incurred by the remote startup of the
jobs and by their handling throughCODINE.

❏ Administrators can restrict the usage of resources through
interactive jobs (qrsh) and thus throughqtcsh. If not enough
suitable resources are available for an application to be started
via theqrsh facility or if all suitable systems are overloaded, the
implicit qrsh submission will fail and a corresponding error
message will be returned (“not enough resources ... try later”).

In addition to the “standard” use,qtcsh is a suitable platform for
third party code and tool integration. Usingqtcsh in its
single-application execution form “qtcsh -c appl_name ”
inside integration environments presents a persistent interface that
almost never has to be changed. All the required application, tool,
integration, site and even user specific configurations are contained
in appropriately defined.qtask files. A further advantage is that
this interface can be used from within shell scripts of any type, C
programs and even Java applications.

6.2.1 Qtcsh Usage

Invocation ofqtcsh is exactly the same as fortcsh. Qtcsh extends
tcsh in providing support for the.qtask file and by offering a set
of specialized shell built-in modes.

The.qtask file is defined as follows: Each line in the file has the
format

Transparent Remote Execution

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

232

The optional leading exclamation mark “! ” defines the precedence
between conflicting definitions in a cluster global.qtask file and
the personal.qtask file of theqtcsh user. If the exclamation
mark is missing in the cluster global file, an eventually conflicting
definition in the user file will overrule. If the exclamation mark is in
the cluster global file, the corresponding definition cannot be
overwritten.

The rest of the line specifies the name of the application which,
when typed on a command line in aqtcsh, will be submitted to
CODINE for remote execution, and the options to theqrsh facility,
which will be used and which define resource requirements for the
application.

☞ The application name must appear in the command line
exactly like defined in the.qtask file. If it is prefixed with
an absolute or relative directory specification it is assumed
that a local binary is addressed and no remote execution is
intended.

☞ Csh aliases, however, are expanded before a comparison
with the application names is performed. The applications
intended for remote execution can also appear anywhere in
a qtcsh command line, in particular before or after
standard I/O redirections.

Hence, the following examples are valid and meaningful syntax:

% [!]appl_name qrsh_options

.qtask file

netscape -v DISPLAY=myhost:0

grep -l h=filesurfer

Transparent Remote Execution

233

Given this.qtask file, the followingqtcsh command lines:

will implicitly result in

Qtcsh can operate in different modes influenced by switches where
each of them can be on or off:

❏ Local or remote execution of commands (remote is default).

❏ Immediate or batch remote execution (immediate is default).

❏ Verbose or non-verbose output (non-verbose is default).

The setting of these modes can be changed using option arguments
of qtcsh at start time or with the shell builtin commandqrshmode
at runtime. See theqtcsh manual page in theCODINE Reference
Manual for more information.

6.3 Parallel Makefile Processing with qmake

Qmake is a replacement for the standard Unixmake facility. It
extendsmake by its ability to distribute independentmake steps
across a cluster of suitable machines.Qmake is built around the
popular GNU-make facilitygmake. See the information provided
in <codine_root>/3rd_party for details on the involvement
of gmake.

netscape

~/mybin/netscape

cat very_big_file | grep pattern | sort | uniq

qrsh -v DISPLAY=myhost:0 netscape

~/mybin/netscape

cat very_big_file | qrsh -l h=filesurfer grep pattern | sort | uniq

Transparent Remote Execution

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

234

To ensure that a complex distributedmake process can run to
completion,qmake first allocates the required resources in an
analogous form like a parallel job.Qmake then manages this set of
resources without further interaction with theCODINE scheduling.
It distributesmake steps as resources are or become available via
theqrsh facility with the-inherit option enabled.

Sinceqrsh provides standard output, error output and standard
input handling as well as terminal control connection to the
remotely executingmake step, there are only three noticeable
differences between executing amake procedure locally or using
qmake:

❏ Provided that the individualmake steps have a certain duration
and that there are enough independentmake steps to be
processed, the parallelization of themake process will be sped
up significantly. This is a desired difference, of course.

❏ With eachmake step to be started up remotely there will be an
implied small overhead caused byqrsh and the remote
execution as such.

❏ To take advantage of themake step distribution ofqmake, the
user has to specify as a minimum the degree of parallelization,
i.e. the number of concurrently executablemake steps. In
addition, the user can specify the resource characteristics
required by themake steps, such as available software licenses,
machine architecture, memory or CPU-time requirements.

The most common use in general ofmake certainly is the
compilation of complex software packages. This may not be the
major application forqmake, however. Program files are often
quite small (as a matter of good programming practice) and hence
compilation of a single program file, which is a singlemake step,
often only takes a few seconds. Furthermore, compilation usually
implies a lot of file access (nested include files) which may not be
accelerated if done for multiplemake steps in parallel, because the
file server can become the bottleneck effectively serializing all the
file access. So a satisfactory speed-up of the compilation process
sometimes cannot be expected.

Other potential applications ofqmake are more appropriate. An
example is the steering of the interdependencies and the workflow
of complex analysis tasks through make-files. This is common in
some areas, such as EDA, and eachmake step in such

Transparent Remote Execution

235

environments typically is a simulation or data analysis operation
with non-negligible resource and computation time requirements. A
considerable speed-up can be achieved in such cases.

6.3.1 Qmake Usage

The command-line syntax ofqmake looks very similar to the one
of qrsh:

☞ The -inherit option is also supported byqmake as
described further down below.

Specific attention has to be paid on the usage of the-pe option and
its relation to thegmake -j option. Both options can be used to
express the amount of parallelism to be achieved. The difference is
thatgmake provides no possibility with-j to specify something like
a parallel environment to use. Hence,qmake makes the
assumption, that a default environment for parallel makes is
configured which is calledmake. Furthermore,gmake´s -j allows
no specification of a range, but only for a single number.Qmake
will interpret the number given with-j as a range of
1-<given_number> . As opposed to this,-pe permits the
detailed specification of all these parameters. Consequently, the
following command-line examples are identical

while the following command-lines cannot be expressed via the-j
option:

% qmake [-pe pe_name pe_range] [further codine options] \
-- [gnu-make-options][target]

% qmake -- -j 10

% qmake -pe make 1-10 --

Transparent Remote Execution

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

236

Apart from the syntax,qmake supports two modes of invocation:
interactively from the command-line (without-inherit) or within a
batch job (with-inherit). These two modes initiate a different
sequence of actions:

❏ interactive – whenqmake is invoked on the command-line, the
make process as such is implicitly submitted toCODINE via
qrsh taking the resource requirements specified in theqmake
command-line into account.CODINE then selects a “master
machine” for the execution of the parallel job associated with
the parallelmake job and starts themake procedure there. This
is necessary, because themake process can be architecture
dependent and the required architecure is specified in the
qmake command-line. Theqmake process on the master
machine then delegates execution of individualmake steps to
the other hosts which have been allocated byCODINE for the
job and which are passed toqmake via the parallel environment
hosts file.

❏ batch – in this case,qmake appears inside a batch script with
the-inherit option (if the-inherit option was not present, a new
job would be spawned as described for the first case above).
This results inqmake making use of the resources already
allocated to the job into whichqmake is embedded. It will use
qrsh -inherit directly to startmake steps. When callingqmake
in batch mode, the specification of resource requirements or-pe
and-j options is ignored.

☞ Also single CPU jobs have to request a parallel environment
(qmake -pe make 1 --). If no parallel execution is required,
call qmake with gmake command-line syntax (without
CODINE options and “--”), it will behave like gmake .

Please refer to theqmake manual page in theCODINE Reference
Manual for further detail onqmake.

% qmake -pe make 5-10,16

% qmake -pe mpi 1-99999

Checkpointing Jobs

237

7 Checkpointing Jobs

7.1 User Level Checkpointing

Lots of application programs, especially those, which normally
consume considerable CPU time, have implemented checkpointing
and restart mechanisms to increase fault tolerance. Status
information and important parts of the processed data are repeatedly
written to one or more files at certain stages of the algorithm. These
files (called restart files) can be processed if the application is
aborted and restarted at a later time and a consistent state can be
reached, comparable to the situation just before the checkpoint. As
the user mostly has to deal with the restart files, e.g. in order to
move them to a proper location, this kind of checkpointing is called
user levelcheckpointing.

For application programs which do not have an integrated (user
level) checkpointing an alternative can be to use a so called
checkpointing library which can be provided by the public domain
(see theCondorproject of the University of Wisconsin for example)
or by some hardware vendors. Re-linking an application with such a
library installs a checkpointing mechanism in the application
without requiring source code changes.

7.2 Kernel Level Checkpointing

Some operating systems provide checkpointing support inside the
operating system kernel. No preparations in the application
programs and no re-linking of the application is necessary in this
case. Kernel level checkpointing is usually applicable for single
processes as well as for complete process hierarchies. I.e., a
hierarchy of interdependent processes can be checkpointed and
restarted at any time. Usually both, a user command and a C-library
interface are available to initiate a checkpoint.

CODINE supports operating system checkpointing if available.
Please refer to theCODINE Release Notes for information on the
currently supported kernel level checkpointing facilities.

Checkpointing Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

238

7.3 Migration of Checkpointing Jobs

Checkpointing jobs are interruptible at any time, since their restart
capability ensures that only few work already done must be
repeated. This ability is used to buildCODINE’s migration and
dynamic load balancing mechanism. If requested, checkpointing
CODINE jobs are aborted on demand and migrated to other
machines in theCODINE pool thus averaging the load in the
cluster in a dynamic fashion. Checkpointing jobs are aborted and
migrated for the following reasons:

❏ The executing machine exceeds a load value configured to force
a migration (migr_load_thresholds - see the
queue_conf manual page in theCODINE Reference
Manual).

❏ The executing queue or the job is suspended, either explicitly by
qmod or qmon or automatically if a suspend threshold for the
queue (see section „Configuring Load and Suspend Thresholds“
on page 85 of theCODINE Installation and Administration
Guide) has been exceeded and if the checkpoint occasion
specification for the job (see section „Submit/Monitor/Delete a
Checkpointing Job“ on page 239) includes the suspension case.

You can identify a job which is about to migrate by thestate m
for migrating in theqstat output. A migrating job moves back to
cod_qmaster and is subsequently dispatched to another suitable
queue if any is available.

7.4 Composing a Checkpointing Job Script

Shell scripts for kernel level checkpointing show no difference from
regular shell scripts.

Shell scripts for user level checkpointing jobs differ from regular
CODINE batch scripts only in their ability to properly handle the
case if they get restarted. The environment variableRESTARTEDis
set for checkpointing jobs which are restarted. It can be used to skip
over sections of the job script which should be executed during the
initial invocation only.

Thus, a transparently checkpointing job script may look similar to
the one given below:

Checkpointing Jobs

239

7.4.1 Example Script File

It is important to note that the job script is restarted from the
beginning if a user level checkpointing job is migrated. The user is
responsible for directing the program flow of the shell-script to the
location where the job was interrupted and thus skipping those lines
in the script which are critical to be executed more than once.

☞ Kernel level checkpointing jobs are interruptible at any
point of time and also the embracing shell script is restarted
exactly from the point where the last checkpoint occurred.
Therefore, theRESTARTED environment variable are of no
relevance for kernel level checkpointing jobs.

7.5 Submit/Monitor/Delete a Checkpointing Job

Submitting a checkpointing job works the same way as for regular
batch scripts except for theqsub -ckpt and-c switches, which
request a checkpointing mechanism and define the occasions at
which checkpoints have to be generated for the job. The-ckpt
option takes one argument which is the name of the checkpointing
environment (see section „Checkpointing Support“ on page 152 in
theCODINE Installation and Administration Guide) to be used.

#!/bin/sh
Force /bin/sh in CODINE
#$ -S /bin/sh

Test if restarted/migrated
if [$RESTARTED = 0]; then

0 = not restarted
Parts to be executed only during the first
start go in here
set_up_grid

fi

Start the checkpointing executable
fem

#End of scriptfile

Checkpointing Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

240

The-c option is not mandatory and also takes one argument. It can
be used to overwrite the definitions of thewhen parameter in the
checkpointing environment configuration (see thecheckpoint
manual page in theCODINE Reference Manual for details). The
argument to the -c option can be one of the following one letter
selection (or any combination thereof) or a time value alternatively:

❏ n
no checkpoint is performed. This has highest precedence

❏ s
A checkpoint is only generated if thecod_execd on the jobs
host is shut down.

❏ m
Generate checkpoint at minimum CPU interval defined in the
corresponding queue configuration (see the
min_cpu_interval parameter in thequeue_conf manual
page).

❏ x
A checkpoint is generated if the job gets suspended.

❏ interval
Generate checkpoint in the given interval but not more
frequently than defined bymin_cpu_interval (see above).
The time value has to be specified as hh:mm:ss (two digit hours,
minutes and seconds separated by colon signs).

The monitoring of checkpointing jobs just differs from regular jobs
by the fact, that these jobs may migrate from time to time (signified
by state m for migrating in the output ofqstat, see above) and,
therefore, are not bound to a single queue. However, the unique job
identification number stays the same as well as the job name.

Deleting checkpointing jobs works just the same way as described
in section “Controlling CODINE Jobs from the Command-line” on
page 256.

7.6 Submit a Checkpointing Job with qmon

Submission of checkpointing jobs via qmon is identical to the
submission of regular batch jobs with the addition of specifying an
appropriate checkpointing environment. As explained in
“Submitting Jobs with qmon (Advanced Example)” on page 200 the
Job Submission dialogue provides an input window for the
checkpointing environment associated with a job. Aside to the input

Checkpointing Jobs

241

window there is an icon button, which opens the selection dialogue
displayed in figure 73 on page 241. You can select a suitable
checkpoint environment from the list of available ones with it.
Please ask your system administrator for information on the
properties of the checkpointing environments installed at your site
or refer to section “Checkpointing Support” on page 152.

7.7 File System Requirements

When a checkpointing library based user level or kernel level
checkpoint is written, a complete image of the virtual memory the
process or job to be checkpointed covers needs to be dumped.
Sufficient disk space must be available for this purpose. If the
checkpointing environment configuration parameterckpt_dir is
set the checkpoint information is dumped to a job private location
underckpt_dir . If ckpt_dir is set to NONE, the directory in
which the checkpointing job was started is used. Please refer to the
manual pagecheckpoint in theCODINE Reference Manual for
detailed information about the checkpointing environment
configuration.

☞ You should start a checkpointing job with theqsub -cwd
script if ckpt_dir is set to NONE.

Figure 73: Checkpoint Object Selection

Monitoring and Controlling CODINE Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

242

An additional requirement concerning the way how the file systems
are organized is caused by the fact, that the checkpointing files and
the restart files must be visible on all machines in order to
successfully migrate and restart jobs. Thus NFS or a similar file
system is required. Ask your cluster administration, if this
requirement is met for your site.

If your site does not run NFS or if it is not desirable to use it for
some reason, you should be able to transfer the restart files
explicitly at the beginning of your shell script (e.g. viarcp or ftp) in
the case of user level checkpointing jobs.

8 Monitoring and Controlling CODINE Jobs

In principle, there are three ways to monitor submitted jobs: with
theCODINE graphical user‘s interfaceqmon, from the
command-line with theqstat command or by electronic mail.

8.1 Monitoring and Controlling Jobs with qmon

TheCODINE graphical user‘s interfaceqmon provides a dialogue
specifically designed for controlling jobs. TheJob Control
dialogue is opened by pushing theJob Control icon button in
theqmon main menu.

The general purpose of this dialogue is to provide the means to
monitor all running, pending and a configurable number of finished
jobs known to the system or parts thereof. The dialogue can also be
used to manipulate jobs, i.e. to change their priority, to suspend,
resume and to cancel them. Three list environments are displayed,
one for the running jobs, another for the pending jobs waiting to be
dispatched to an appropriate resource and the third for recently
finished jobs. You can select between the three list environments via
clicking to the corresponding tab labels at the top of the screen.

In its default form (see figure 74 on page 246) it displays the
columnsJobId , Priority , JobName andQueue for each
running and pending job. The set of information displayed can be
configured with a customization dialogue (see figure 74 on
page 246), which is opened upon pushing theCustomize button
in theJob Control dialogue. With the customization dialogue it
is possible to select further entries of theCODINE job object to be
displayed and to filter the jobs of interest. The example on page 246

Monitoring and Controlling CODINE Jobs

243

selects the additional fieldsMailTo andSubmit Time . TheJob
Control dialogue displayed in figure 74 on page 246 depicts the
enhanced look after the customization has been applied in case of
theFinished Jobs list. The example of the filtering facility in
figure 77 on page 249 selects only those jobs owned byferstl
which run or are suitable for architecturesolaris64 . The
resultingJob Control dialogue showingPending Jobs is
displayed in figure 78 on page 250.

☞ The Save button the customize dialogue displayed on page
page 246, for example, stores the customizations into the file
.qmon_preferences in the user’s home directory and
thus redefines the default appearance of the job control
dialogue.

TheJob Control dialogue in figure 78 on page 250 is also an
example for how array jobs are displayed in qmon.

Jobs can be selected (for later operation) with the following
mouse/key combinations:

❏ Clicking to a job with the left mouse button while the Control
key is pressed starts a selection of multiple jobs.

❏ Clicking to another job with the left mouse button while the
Shift key is pressed selects all jobs in between and including the
job at the selection start and the current job.

❏ Clicking to a job with the left mouse button while the Control
and the Shift key are pressed toggles the selection state of a
single job.

The selected jobs can be suspended, resumed (unsuspended),
deleted, held back (and released), re-prioritized and modified
(Qalter) through the Corresponding buttons at the right side of
the screen.

The actions suspend, unsuspend, delete, hold, modify priority and
modify job may only be applied to a job by the job owner or by
CODINE managers and operators (see “Managers, Operators and
Owners” on page 190). Only running jobs can be
suspended/resumed and only pending jobs can be held back and
modified (in priority as well as in other attributes).

Monitoring and Controlling CODINE Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

244

Suspending a job means the equivalent to sending the signal
SIGSTOP to the process group of the job with the UNIXkill
command. I.e., the job is halted and does no longer consume CPU
time. Unsuspending the job sends the signal SIGCONT thereby
resuming the job (see thekill manual page of your system for more
information on signalling processes).

☞ Suspension, unsuspension and deletion can be forced, i.e.
registered with cod_qmaster without notification of the
cod_execd controlling the job(s), in case the corresponding
cod_execd is unreachable, e.g. due to network problems.
Use theForce flag for this purpose.

If using theHold button on a selected pending job, theSet Hold
sub-dialogue is opened (see figure 74 on page 246). It allows to set
and to reset user, system and operator holds. User holds can be
set/reset by the job owner as well asCODINE operators and
managers. Operator holds can be set/reset by managers and operator
and manager holds can be set/reset by managers only. As long as
any hold is assigned to a job it is not eligible for execution. An
alternate way to set/reset holds are theqalter, qhold andqrls
commands (see the corresponding manual pages inCODINE
Reference Manual).

If the Priority button is pressed another sub-dialogue is opened
(figure 74 on page 246), which allows to enter the new priority of
the selected pending jobs. The priority determines the order of the
jobs in the pending jobs list and the order in which the pending jobs
are displayed by theJob Control dialogue. Users can only set
the priority in the range between 0 and -1024.CODINE operators
and managers can also increase the priority level up to the
maximum of 1023 (see section „Job Priorities“ on page 137 in the
CODINE Installation and Administration Guide for details about
job priorities).

TheQalter button, when pressed for a pending job, opens the
Job Submission screen described in “Submitting CODINE
jobs” on page 193 with all the entries of the dialogue set
corresponding to the attributes of the job as defined during
submission. Those entries, which cannot be changed are set
insensitive. The others may be edited and the changes are registered
with CODINE by pushing theQalter button (a replacement for
theSubmit button) in theJob Submission dialogue.

Monitoring and Controlling CODINE Jobs

245

TheVerify flag in theJob Submission screen has a special
meaning when used in the “qalter” mode. You can check pending
jobs for their consistency and investigate why they have not been
scheduled yet. You just have to select the desired consistency
checking mode for theVerify flag and push theQalter button.
The system will display warnings on inconsistencies depending on
the selected checking mode. Please refer to “Submitting Jobs with
qmon (Advanced Example)” on page 200 and the-w option in the
qalter manual page for further information.

Another method for checking why jobs are still pending is to select
a job and click on the “Why ?” button of theJob Control
dialogue. This will open theObject Browser dialogue and
display a list of reasons which prevented theCODINE scheduler
from dispatching the job in its most recent pass. An example
browser screen displaying such a message is shown in figure 81 on
page 252.

☞ The “Why ?” button only delivers meaningful output if the
scheduler configuration parameterschedd_job_info is
set to true (seesched_conf in the CODINE Reference
Manual).

☞ The displayed scheduler information relates to the last
scheduling interval. It may not be accurate anymore by the
time you investigate for reasons why your job has not been
scheduled.

TheClear Error button can be used to remove an error state
from a selected pending job, which had been started in an earlier
attempt, but failed due to a job dependent problem (e.g., insufficient
permissions to write to the specified job output file).

☞ Error states are displayed using a red font in the pending
jobs list and should only be removed after correcting the
error condition, e.g., viaqalter .

☞ Such error conditions are automatically reported via
electronic mail, if the job requests to send e-mail in cases it
is aborted (e.g. via theqsub -m a option).

To keep the information being displayed up-to-date,qmon uses a
polling scheme to retrieve the status of the jobs fromcod_qmaster.
An update can be forced by pressing theRefresh button.

Monitoring and Controlling CODINE Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

246

Finally, theSubmit button provides a link to theqmon Job
Submission dialogue (see figure 64 on page 200 for example).

Figure 74: Job Control dialogue - standard form

Monitoring and Controlling CODINE Jobs

247

Figure 75: Job Control customization

Monitoring and Controlling CODINE Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

248

Figure 76: Job Control dialogueFinished Jobs - enhanced

Monitoring and Controlling CODINE Jobs

249

Figure 77: Job Control filtering

Monitoring and Controlling CODINE Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

250

Figure 78: Job Control dialogue - after filtering

Monitoring and Controlling CODINE Jobs

251

Figure 79: Job Control holds

Figure 80: Job Control priority definition

Monitoring and Controlling CODINE Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

252

8.2 Additional Information with the qmon Object Browser

Theqmon Object Browser can be used to quickly retrieve
additional information onCODINE jobs without a need to
customize theJob Control dialogue as explained in section
“Monitoring and Controlling Jobs with qmon” on page 242.

TheObject Browser is opened upon pushing theBrowser
icon button in theqmon main menu. The browser displays
information aboutCODINE jobs if theJob button in the browser is
selected and if the mouse pointer is moved over a job‘s line in the
Job Control dialogue (see figure 74 on page 246 for example).

The browser screen in figure 82 on page 253 gives an example of
the information displayed in such a situation.

Figure 81: Browser displaying scheduling information

Monitoring and Controlling CODINE Jobs

253

8.3 Monitoring with qstat

Submitted jobs can also be monitored with theCODINE qstat
command. There are two basic forms of theqstat command
available:

The first form provides an overview on the submitted jobs only (see
table 6 on page 255). The second form includes information on the
currently configured queues in addition (see table 7 on page 255).

Figure 82: Object Browser - job

% qstat

% qstat -f

Monitoring and Controlling CODINE Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

254

In the first form, a header line indicates the meaning of the columns.
The purpose of most of the columns should be self-explanatory. The
state column, however, contains single character codes with the
following meaning:r for running,s for suspended,q for queued
andw for waiting (see theqstat manual page in theCODINE
Reference Manual for a detailed explanation of theqstat output
format).

The second form is divided into two sections, the first displaying
the status of all available queues, the second (entitled with the
- PENDING JOBS - ... separator) shows the status of the
cod_qmaster job spool area. The first line of the queue section
defines the meaning of the columns with respect to the enlisted
queues. The queues are separated by horizontal rules. If jobs run in
a queue they are printed below the associated queue in the same
format as in theqstat command in its first form. The pending jobs
in the second output section are also printed as in qstat‘s first form.

The following columns of the queue description require some
explanation:

❏ qtype
The queue type - one of B(atch), I(nteractive), P(arallel) and
C(heckpointing) or combinations thereof or alternatively
T(ransfer).

❏ used/free
The count of used/free job slots in the queue.

❏ states
The state of the queue - one of u(nknown), a(laram),
s(uspended), d(isabled), E(rror) or combinations thereof.

Again, theqstat manual page contains a more detailed description
of theqstat output format.

Various additional options to theqstat command enhance the
functionality in both versions. The-r option can be used to display
the resource requirements of submitted jobs. Furthermore the
output may be restricted to a certain user, to a specific queue and the
-l option may be used to specify resource requirements as described
in section “Resource Requirement Definition” on page 213 for the
qsub command. If resource requirements are used, only those

Monitoring and Controlling CODINE Jobs

255

queues (and the jobs running in these queues) are displayed which
match the resource requirement specification in theqstat
command-line.

Table 6: qstat example output

job-ID prior name user state submit/start at queue function

231 0 hydra craig r 07/13/96 20:27:15 durin.q MASTER

232 0 compile penny r 07/13/96 20:30:40 durin.q MASTER

230 0 blackhole don r 07/13/96 20:26:10 dwain.q MASTER

233 0 mac elaine r 07/13/96 20:30:40 dwain.q MASTER

234 0 golf shannon r 07/13/96 20:31:44 dwain.q MASTER

236 5 word elaine qw 07/13/96 20:32:07

235 0 andrun penny qw 07/13/96 20:31:43

Table 7: qstat -f example output

queuename qtype used/free load_avg arch states

dq BIP 0/1 99.99 sun4 au

durin.q BIP 2/2 0.36 sun4

231 0 hydra craig r 07/13/96 20:27:15 MASTER

232 0 compile penny r 07/13/96 20:30:40 MASTER

dwain.q BIP 3/3 0.36 sun4

230 0 blackhole don r 07/13/96 20:26:10 MASTER

233 0 mac elaine r 07/13/96 20:30:40 MASTER

234 0 golf shannon r 07/13/96 20:31:44 MASTER

fq BIP 0/3 0.36 sun4

##

- PENDING JOBS - PENDING JOBS - PENDING JOBS - PENDING JOBS - PENDING JOBS -

##

236 5 word elaine qw 07/13/96 20:32:07

235 0 andrun penny qw 07/13/96 20:31:43

Monitoring and Controlling CODINE Jobs

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

256

8.4 Monitoring by Electronic Mail

Theqsub -m switch requests electronic mail to be sent to the user
submitting a job or to the email address(es) specified by the-M flag
if certain events occur (see theqsub manual page for a description
of the flags). An argument to the-m option specifies the events. The
following selections are available:

❏ b
Mail is sent at the beginning of the job.

❏ e
Mail is sent at the end of the job.

❏ a
Mail is sent when the job is aborted (e.g. by aqdel command).

❏ s
Mail is sent when the job is suspended.

❏ n
No mail is sent (the default).

Multiple of these options may be selected with a single-m option in
a comma separated list.

The same mail events can be configured by help of the qmon Job
Submission dialogue, see section „Submitting Jobs with qmon
(Advanced Example)“ on page 200.

8.5 Controlling CODINE Jobs from the Command-line

The section “Monitoring and Controlling Jobs with qmon” on page
242 explains howCODINE jobs can be deleted, suspended and
resumed with theCODINE graphical user‘s interfaceqmon.

From the command-line, theqdel command can be used to cancel
CODINE jobs, regardless whether they are running or spooled. The
qmod command provides the means to suspend and unsuspend
(resume) jobs already running.

For both commands, you will need to know the job identification
number, which is displayed in response to a successfulqsub
command. If you forget the number it can be retrieved viaqstat
(see section “Monitoring with qstat” on page 253).

Included below are several examples for both commands:

Job Dependencies

257

In order to delete, suspend or unsuspend a job you must be either
the owner of the job, aCODINE manager or operator (see
“Managers, Operators and Owners” on page 190).

For both commands the-f force option can be used to register a
status change for the job(s) atcod_qmaster without contacting
cod_execd in casecod_execd is unreachable, e.g. due to network
problems. The-f option is intended for usage by the administrator.
In case ofqdel, however, users can be enabled to force deletion of
their own jobs if the flagENABLE_FORCED_QDEL in the cluster
configurationqmaster_params entry is set (see the
codine_conf manual page in theCODINE Reference Manual for
more information).

9 Job Dependencies

The most convenient way to build a complex task often is to split
the task into sub-tasks. In these cases sub-tasks depend on the
successful completion of other sub-tasks before they can get started.
An example is that a predecessor task produces an output file which
has to be read and processed by a successor task.

CODINE supports interdependent tasks with its job dependency
facility. Jobs can be configured to depend on the successful
completion of one or multiple other jobs. The facility is enforced by
theqsub -hold_jid option. A list of jobs can be specified upon
which the submitted job depends. The list of jobs can also contain
subsets of array jobs. The submitted job will not be eligible for
execution unless all jobs in the dependency list have completed
successfully.

% qdel job_id
% qdel -f job_id1,job_id2
% qmod -s job_id
% qmod -us -f job_id1,job_id2
%qmon -s job_id.task_id_range

Controlling Queues

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

258

10 Controlling Queues

As already stated in section “Queues and Queue Properties” on
page 181, the owners of queues have permission to
suspend/unsuspend or disable/enable queues. This is desirable, if
these users need certain machines from time to time for important
work and if they are affected strongly byCODINE jobs running in
the background.

There are two ways to suspend or enable queues. The first, using the
qmon Queue Control dialogue and the second utilizing the
qmod command.

10.1 Controlling Queues with qmon

Clicking on theQueue Control icon button in theqmon main
menu brings up theQueue Control dialogue. An example screen
is displayed in “Queue Control dialogue” on page 259.

Controlling Queues

259

The purpose of theQueue Control dialogue is to provide a quick
overview on the resources being available and on the activity in the
cluster. It also provides the means to suspend/unsuspend and to
disable/enable queues as well as to configure queues. Each icon
being displayed represents a queue. If the main display area is
empty, no queues are configured. Each queue icon is labelled with
the queue name, the name of the host on which the queue resides
and the number of job slots being occupied. If acod_execd is

Figure 83: Queue Control dialogue

Controlling Queues

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

260

running on the queue host and has already registered with
cod_qmaster a picture on the queue icon indicates the queue host’s
operating system architecture and a color bar at the bottom of the
icon informs about the status of the queue. A legend on the right
side of theQueue Control dialogue displays the meaning of the
colors.

For those queues, the user can retrieve the current attribute, load and
resource consumption information for the queue and implicitly of
the machine which hosts a queue by clicking to the queue icon with
the left mouse button while theShift key on the keyboard is
pressed. This will pop-up an information screen similar to the one
displayed in figure 84 on page 262 (see there for a detailed
description).

Queues are selected by clicking with the left mouse on the button or
into a rectangular area surrounding the queue icon buttons. The
Delete , Suspend /Unsuspend or Disable /Enable buttons
can be used to execute the corresponding operation on the selected
queues. The suspend/unsuspend and disable/enable operation
require notification of the correspondingcod_execd. If this is not
possible (e.g. because the host is down) acod_qmaster internal
status change can be forced if theForce toggle button is switched
on.

If a queue is suspended, the queue is closed for further jobs and the
jobs already executing in the queue are suspended as explained in
section “Monitoring and Controlling Jobs with qmon” on page 242.
The queue and its jobs are resumed as soon as the queue is
unsuspended.

☞ If a job in a suspended queue has been suspended explicitly
in addition, it will not be resumed if the queue is
unsuspended. It needs to be unsuspended explicitly again.

Queues which are disabled are closed, however, the jobs executing
in those queues are allowed to continue. To disable a queue is
commonly used to „drain“ a queue. After the queue is enabled, it is
eligible for job execution again. No action on still executing jobs is
performed.

The suspend/unsuspend and disable/enable operations require
queue owner orCODINE manager or operator permission (see
section „Managers, Operators and Owners“ on page 190).

Controlling Queues

261

The information displayed in theQueue Control dialogue is
update periodically. An update can be forced by pressing the
Refresh button. TheDone button closes the dialogue.

TheCustomize button allows you to select the queues to be
displayed via a filter operation. The sample screen in figure 85 on
page 263 shows the selection of only those queues which run on
hosts belonging to architectureosf4 (i.e Compaq Unix version 4).
TheSave button in the customize dialogue allows you to store
your settings in the file.qmon_preferences in your home
directory for standard reactivation on later invocations ofqmon.

For the purpose of configuring queues a sub-dialogue is opened
when pressing theAdd or Modify button on the right side of the
Queue Control screen (see section „Configuring Queues with
qmon“ on page 79 in theCODINE Installation and
Administration Guide for details).

In the following, a detailed description of the queue attribute screen
displayed below is given:

Controlling Queues

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

262

All attributes attached to the queue (including those being inherited
from the host or cluster) are listed in theAttribute column. The
Slot-Limits/Fixed Attributes column shows values for
those attributes being defined as per queue slot limits or as fixed
complex attributes. TheLoad(scaled)/Consumable column
informs about the reported (and if configured scaled) load
parameters (see section „Load Parameters“ on page 121 in the
CODINE Installation and Administration Guide) and about
available resource capacities based on theCODINE consumable
resources facility (see section „Consumable Resources“ on page
105).

Figure 84: Queue attribute display

Controlling Queues

263

☞ Load reports and consumable capacities may overwrite
each other, if a load attribute is configured as a consumable
resource. The minimum value of both, which is used in the
job dispatching algorithm, is displayed.

☞ The displayed load and consumable values currently do not
take into account load adjustment corrections as described
in section “Execution Hosts” on page 65 of theCODINE
Installation and Administration Guide .

10.2 Controlling Queues with qmod

Section “Controlling CODINE Jobs from the Command-line” on
page 256 explained how theCODINE commandqmod can be used
to suspend/unsuspendCODINE jobs. However, theqmod
command additionally provides the user with the means to
suspend/unsuspend or disable/enable queues.

Figure 85: Queue Control customization

Customizing qmon

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

264

The following commands are examples howqmod is to be used for
this purpose:

The first two commands suspend or unsuspend queues, while the
third and fourth command disable and enable queues. The second
command uses theqmod -f option in addition to force registration
of the status change incod_qmaster in case the corresponding
cod_execd is not reachable, e.g. due to network problems.

☞ Suspending/unsuspending as well as disabling/enabling
queue requires queue owner,CODINE manager or operator
permission (see section „Managers, Operators and Owners“
on page 190).

☞ You can useqmod commands withcrontab or at jobs.

11 Customizing qmon

The look and feel ofqmon is largely defined by a specifically
designed resource file. Reasonable defaults are compiled-in and a
sample resource file is available under
<codine_root>/qmon/Qmon .

The cluster administration may install site specific defaults in
standard locations such as
/usr/lib/X11/app-defaults/Qmon , by includingqmon
specific resource definitions into the standard.Xdefaults or
.Xresources files or by putting a site specificQmon file to a
location referenced by standard search paths such as
XAPPLRESDIR. Please ask your administrator if any of the above
is relevant in your case,

% qmod -s q_name
% qmod -us -f q_name1,q_name2
% qmod -d q_name
% qmod -e q_name1,q_name2,q_name3

Customizing qmon

265

In addition, the user can configure personal preferences by either
copying and modifying theQmonfile into the home directory (or to
another location pointed to by the privateXAPPLRESDIR search
path) or by including the necessary resource definitions into the
user‘s private.Xdefaults or .Xresources files. A private
Qmon resource file may also by installed via thexrdb command
during operation or at start-up of the X11 environment, e.g. in a
.xinitrc resource file.

Please refer to the comment lines in the sampleQmon file for
detailed information on the possible customizations.

Another means of customizingqmon has been explained for the job
and queue control customization dialogues shown in figure 74 on
page 246 and in figure 85 on page 263. In both dialogues, the
Save button can be used to store the filtering and display
definitions configured with the customization dialogues to the file
.qmon_preferences in the user’s home directory. Upon being
restarted,qmon will read this file and reactivate the previously
defined behavior.

Customizing qmon

Q
ui

ck
 S

ta
rt

 G
ui

de Q
uick S

tart G
uide

266

