1

Introduction

User’s Guide

Introduction

CODINE (Computing in Distributed Networked Environments) is a
load managemeribol for heterogeneous, distributed computing
environment€CODINE provides an effective method for

distributing the batch workload among multiple computational
servers. In doing so, it increases the productivity of all of the
machines and simultaneously increases the number of jobs that can
be completed in a given time period. Also, by increasing the
productivity of the workstations, the need for outside computational
resources is reduced.

CODINE provides the user with the means to submit
computationally demanding task to tB®DINE system for
transparent distribution of the associated workload. In addition to
batch jobs, interactive jobs and parallel jobs can be submitted to
CODINE. Checkpointing programs are also supported.
Checkpointing jobs migrate from workstation to workstation
without user intervention on load demand. Comprehensive tools are
provided for the monitoring and controlling GODINE jobs.

Please refer to theODINE Quick Start Guide for an overview on
the CODINE system, its features and components. CB®INE
Quick Start Guide also contains a quick installation procedure for
a small sampl€ODINE configuration and a glossary of terms
commonly used in thEODINE manual set.

The CODINE User’s Guide gives an introduction for the user to
CODINE. The reader is pointed to t@®DINE Reference

Manual for a detailed discussion of all availal@®©DINE

commands. Readers responsible for the cluster administration are
pointed to theaCODINE Installation and Administration Guide

for a description of th€ODINE cluster management facilities.

CODINE as well as UNIX Commands which can be found in
manual pages or the corresponding reference manuals are typeset in
emphasized font throughout th€ODINE User’s Guide.
Command-line in- and output is printedtéietype font and

newly introduced or defined terms are typeséfailaface font.

177

CODINE User Types and Operations

2 CODINE User Types and Operations

There are four user categorieSdODINE:
O Managers:

Managers have full capabilities to manipul@®DINE. By
default, the superusers of any machine hosting a queue have
manager privileges.

Operators:
The operators can perform the same commands as the manager
with the exception of adding/deleting/modifying queues.

Owners:
The queue owners are allowed to suspend/enable the owned
queues, but have no further management permissions.

Users:

Users have certain access permissions as described in “User
Access Permissions” on page 188 but no cluster or queue
management capabilities. The following table adj@@@3DINE
command capabilities to the different user categories:

Table 4. CODINE Command Capabilities and User Categories

Command| Managey Operator Owner User

gacct Full Full Own jobs only Own jobs only

galter Full Full Own jobs only Own jobs only

gconf Full No modifications | Show configurations | Show configura-

to the system setup and access permis- | tions and access

sions only permissions only

gdel Full Full Own jobs only Own jobs only

ghold Full Full Own jobs only Own jobs only

ghost Full Full Full Full

glogin Full Full Full Full

gmod Full Full Own jobs and owned Own jobs only
gueues only

178

Navigating through the CODINE System

Table 4. CODINE Command Capabilities and User Categories

Command| Manager Operator Owner User
gmon Full No modifications | No configuration No configuration
to the system setup changes changes
grexec Full Full Full Full
gselect Full Full Full Full
gsh Full Full Full Full
gstat Full Full Full Full
gsub Full Full Full Full

3 Navigating through the CODINE System

3.1 Overview on Host Functionality

TheHost Configuration button in thegmon main menu
allows you to retrieve an overview on the functionality which is
associated with the hosts in yoQODINE cluster. However, unless
you do not hav€ ODINE manager privileges, you may not apply
any changes to the presented configuration.

The host configuration dialogues are described iICOBINE
Installation and Administration Guide in section “CODINE
Daemons and Hosts” on page 60.

The subsequent sections provide the commands to retrieve this kind

of information from the command-line.

3.1.1 The Master Host

The location of the master host should be transparent for the user as
the master host may migrate between the current master host and

one of shadow master hosts at any time. The file
<codine_root>/<cell>/common/act_gmaster contains
the name of the current master host for@@DINE cell <cell>

179

Navigating through the CODINE System

3.1.2 Execution Hosts

To display information about the hosts being configured as
execution hosts in your cluster please use the commands

% qconf -sel
% gconf -se hostname
% ghost

The first command displays a list of the names of all hosts being
currently configured as execution hosts. The second command
displays detailed information about the specified execution host.
The third command displays status and load information about the
execution hosts. Please refer to Hwst _conf manual page for

details on the information displayed \gaonf and to theghost

manual page for details on its output and further options.

3.1.3 Administration Hosts

The list of hosts with administrative permission can be displayed
with the command

% qconf -sh

3.1.4 Submit Hosts

The list of submit host can be displayed with the command

180

Navigating through the CODINE System

% qconf -ss

&

3.2 Queues and Queue Properties

In order to be able to optimally utilize tt@ODINE system at your
site, you should become familiar with the queue structure and the
properties of the queues which are configured for GEIDINE
system.

3.2.1 The Queue Control gmon Dialogue

The gmon queue control dialogue displayed and described in
section “Controlling Queues with gmon” on page 258 provides a
quick overview on the installed queues and their current status.

3.2.2 Show Properties with the gmon Object Browser

The gmon object browser can be used in combination with the
queue control dialogue to display the pertinent queue property
information. The object browser is opened upon clicking on the
Browser icon button in thegmon main menu. By selecting the
Queue button and moving the mouse pointer over a queue icon in
the queue control dialogue, queue property information is displayed
in a similar way as described in thgeue_conf manual page

The following figure shows an object browser example display with
a queue property print-out.

181

Navigating through the CODINE System

QMON === Browszer - O] =]

.KCQD'NE Object Browser
B O T o A S A A S o S S S ’ _U]J]B[:t_
Llueue: fangorn o MLI
Host ; fangorn,genias , de

Tupe BATEH stder |
Sequence Mri 0

tmpdir: ftmp
Shell: fhindosh

Job Slots: 4 |
Job Slots Used: 0

Friority: 0] MI
Load Thresholds: np_load_ave = 1.7

Rerun Jobi Falze

Motify Job Interval: 00300 350

Frocessors: UNMDEFIMED

Soft Real Time: IMFIMITY

Hard Real Time: IMFIMITY

Soft Cpu: IMFINITY

Hard Cpu: IMFIMITY

Soft File Size: IMFIMITY

Hard File Size: IMFIMITY

Soft Data Size: IMFIMITY

Haird Data Size: IMFIMITY

Soft Stack Size: IMFIMITY

Haird Stack Size: IMFIMITY

Soft Core Size: THFIMITY

Hard Core Size: THFIMITY

Soft Resident Set Size: THFIMITY

Hard Fesident Set Size: THFIMITY

Ernakle Migration: Fal=ze

Min Cpu Interwval: D05 100

Max Migration Time?: 0

Max Mo Migration Time: Qo2 +00

Migration Load Thresholds: np_load_avg = &.C
Access List:
Mo Access List:

Complex List: |
B b R R R R R i DUJ_'I'E_C'\

Clear

;

Help

Figure 57: Browser queue output

3.2.3 Queue Information from the Command-line

In order to display a list of currently configured queues use the

182

Navigating through the CODINE System

% qconf -sql

command. To display the properties of a particular queue please
execute

9% qconf -sq queue_name

A detailed description of each property can be found in the
queue_conf manual page (see section 5 of @@DINE
Reference Manual). Here is a short introduction to the most
important parameters:

ad

gname:
The queue name as requested.

hostname:
The host of the queue.

processors:
The processors of a multi processor system, to which the queue
has access.

qtype:
The type of job which is allowed to run in this queue. Currently,

this is either batch, interactive, checkpointing, parallel or any
combination thereof or transfer alternatively

slots:
The number of jobs which may be executed concurrently in that
queue.

owner_list:
The owners of the queue as explained in section “Managers,

183

Navigating through the CODINE System

184

Operators and Owners” on page 190

O user_lists:
The user or group identifiers in the user access lists (see “User
Access Permissions” on page 188) enlisted under this parameter
may access the queue.

O xuser_lists
The user or group identifiers in the user access lists (see “User
Access Permissions” on page 188) enlisted under this parameter
maynot access the queue.

0O complex_list
The complexes enlisted under this parameter are associated with
the queue and the attributes contained in these complexes
contribute to the set of requestable attributes for the queue (see
“Requestable Attributes” on page 184).

O complex_ values
Assigns capacities as provided for this queue for certain
complex attributes (see “Requestable Attributes” on page 184).

Requestable Attributes

When submitting £ ODINE job a requirement profile of the job

can be specified. The user can specify attributes or characteristics of
a host or queue which the job requires to run successtCDINE

will map these job requirements onto the host and queue
configurations of th€ ODINE cluster and will, therefore, find the
suitable hosts for a job.

The attributes which can be used to specify the job requirements are
either related to thEODINE cluster (e.g. space required on a
network shared disk), to the hosts (e.g. operating system
architecture), to the queues (e.g. permitted CPU time) or the
attributes are derived from site policies such as the availability of
installed software only on some hosts.

The available attributes include the queue property list (see “Queues
and Queue Properties” on page 181), the list of global and host
related attributes (see “Complex Types” on page 97 oCGO®INE
Installation and Administration Guide) as well as administrator
defined attributes. For convenience, howeverQB®INE
administrator commonly chooses to define only a subset of all
available attributes to be requestable.

&

Y

Navigating through the CODINE System

The attributes being currently requestable are displayed in the
Requested Resources sub-dialogue (see figure 58 on

page 185) to thgmon Submit dialogue (please refer to section
“Submit Batch Jobs” on page 192 for detailed information on how
to submit jobs). They are enlisted in tAgailable Resources

selection list.
[El amMoN
Requested Resources
Parallel Job Request:
Hard Resources Available Resources
b h == solaristd 3b arch _
&0 ard =0 g
M h_wmen == 750N ab calendar Cancel
123 pernaz == 1 O h_cpu e
M h_fsize -
M h_res el
O hort
Hard Reguest Soft Reguest 4 h_umen
Soft Resources B hostrans
123 nastran
23 pernas
3b gnane
M =_fsize
M s_unen
%3 slots
Figure 58: Requested Resources dialogue

To display the list of requestable attributes from the command-line,
you first have to display the list of currently configucedhplexes
with the command

% qgconf -scl

185

Navigating through the CODINE System

A so called complex contains the definition for a set of attributes.
There are three standard complexgebal (for the cluster global
attributes)host (for the host specific attributes agdeue (for

the queue property attributes). Any further complex names printed
if the above command is executed refers to an administrator defined
complex (see “The Complexes Concept” on page 95 in the
CODINE Installation and Administration Guide or the complex
format description in the section 5 of iB®DINE Reference

Manual for more information on complexes).

To display the attributes of a particular complex please execute

% qgconf -sc complex_namfe..]

The output for the queue complex might for example look as shown
in table 5 on page 186.

Table 5: “queue” complex

#name shortcut type value relop requestable consumable default
#

gname o} STRING NONE == YES NO NONE
hostname h HOST unknown == YES NO NONE
tmpdir tmp STRING NONE == NO NO NONE
calendar c STRING NONE == YES NO NONE
priority pr INT 0 >= NO NO 0
seqg_no seq INT 0 == NO NO 0

rerun re INT 0 == NO NO 0

s_rt s_rt TIME 0:0:0 <= NO NO 0:0:0
h_rt h_rt TIME 0:0:0 <= YES NO 0:0:0

186

s_cpu
h_cpu

s_data

h_data

s_stack
h_stack

s_core

h_core

S_rss

h_rss
min_cpu_interval
max_migr_time

max_no_migr

s_cpu
h_cpu
s_data
h_data
s_stack
h_stack
s_core
h_core
S_rss
h_rss
mci
mmt

mnm

Navigating through the CODINE System

Table 5: “queue” complex

TIME

TIME

MEMORY

MEMORY

MEMORY

MEMORY

MEMORY

MEMORY

MEMORY

MEMORY

TIME

TIME

TIME

0:0:0

0:0:.0

0

0

0:0:0

0:0:0

0:0:0

<=

NO

YES

NO

YES

NO

NO

NO

NO

NO

YES

NO

NO

NO

#--- # starts a comment but comments are not saved across edits ---

NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

NO

0:0:0

0:0:.0

0:0:.0

0:0:.0

0:0:.0

The colummame is basically identical to the first column
displayed by theconf -sq command. The queue attributes cover

most of theCODINE queue properties. Thehortcut

column

contains administrator definable abbreviations for the full names in
the first column. Either the full name or the shortcut can be supplied

in the request option of gsub command by the user.

The columrrequestable

tells whether the Corresponding entry
may be used igsub or not. Thus the administrator can, for
example, disallow the cluster’s users to request certain
machines/queues for their jobs directly, simply by setting the entries
gname and/orghostname to be not requestable. Doing this,
implies that feasible user requests can be met in general by multiple
gqueues, which enforces the load balancing capabiliti€QDINE.

The columrrelop defines the relation operation used in order to
compute whether a queue meets a user request or not. The
comparison executed is

User Request relop Queue/Host/...-Property

187

Navigating through the CODINE System

&

If the result of the comparison is false, the user’s job cannot be run
in the considered queue. Let, as an example, the qiche
configured with a soft cpu time limit (see theeue confand the
setrlimit manual pages for a description of user process limits) of
100 seconds while the queg2 is configured to provide 1000
seconds soft cpu time limit.

The columngonsumables anddefault are meaningful for

the administrator to declare so called consumable resources (see
section “Consumable Resources” on page 105 o€tDBINE
Installation and Administration Guide). The user requests
consumables just like any other attribute. T@DINE internal
bookkeeping for the resources is however different.

Now, let a user submit the following request:

% qgsub -l s_cpu=0:5:0 nastran.sh

Thes cpu=0:5:0request (see thgsub manual page for details on
the syntax) asks for a queue which at least grants for 5 minutes of
soft limit cpu time. Therefore, only queues providing at least 5
minutes soft CPU runtime limit are setup properly to run the job.

0 CODINE will only consider workload information in the
scheduling process if more than one queue is able to run a
job.

3.4 User Access Permissions

188

Access to queues and otl@DDINE facilities (e.g. parallel
environment interfaces - see section ,Parallel Jobs" on page 219)
can be restricted for certain users or user groups bEH2INE
administrator.

Navigating through the CODINE System

0 CODINE automatically takes into account the access
restrictions configured by the cluster administration. The
following sections are only important if you want to query
your personal access permission.

For the purpose of restricting access permissions, the administrator
creates and maintains so called access lists (or inAGars). The
ACLs contain arbitrary user and UNIX group names. The ACLs are
then added taccess-alloweder access-denied-listén the queue

or in the parallel environment interface configurations (see
queue_conf or codine_pe in CODINE Reference Manual

section 5, respectively).

User's belonging to ACLs which are enlisted in access-allowed-lists
have permission to access the queue or the parallel environment
interface. User's being members of ACLs in access-denied-lists
may not access the concerning resource.

The Userset Configuration dialogue opened via théser
Configuration icon button in thegmon main menu allows you
to query for the ACLs you have access to vialberset
Configuration dialogue. Please refer to the section “Managing
User Access” on page 126 of t@®DINE Installation and
Administration Guide for details.

From the command-line a list of the currently configured ACLs can
be obtained by the command:

% qconf -sul

The entries in one or multiple access lists are printed with the
command:

189

Navigating through the CODINE System

190

% qconf -su acl_namé...]

The ACLs consist of user account names and UNIX group names
with the UNIX group names being identified by a prefixeg Sign.
This way you can determine to which ACLs your account belongs.

O In case you have permission to switch your primary UNIX
group with the newgrp command, your access permissions
may change.

You can now check for those queues or parallel environment
interfaces to which you have access or to which access is denied for
you. Please query the queue or parallel environment interface
configuration as described in “Queues and Queue Properties” on
page 181 and “Configuring PEs with gmon” on page 158 in the
CODINE Installation and Administration Guide. The
access-allowed-lists are nameskr_lists . The

access-denied-list have the nameaser_lists . If your user
account or primary UNIX group is associated with a
access-allowed-list you are allowed to access the concerning
resource. If you are associated with a access-denied-list you may
not access the queue or parallel environment interface. If both lists
are empty every user with a valid account can access the concerning
resource.

3.5 Managers, Operators and Owners

A list of CODINE managers can be obtained by

Navigating through the CODINE System

% qgconf -sm

and a list of operators by

~p
Q ' % qconf -so
%\/

O The superuser of aCODINE administration host is
considered as manager by default.

The users, which are owners to a certain queue are contained in the
queue configuration database as described in section “Queues and
Queue Properties” on page 181. This database can be retrieved by
executing

% qconf -sq queue_name

The concerning queue configuration entry is cableders .

191

Submit Batch Jobs

4 Submit Batch Jobs

4.1 Shell Scripts

Shell scripts, also called batch jobs, are in principal a sequence of
UNIX command-line instructions assembled in a file. Script files
are made executable by the UNé¥mod command. If scripts are
invoked, a proper command interpreter is started ¢shy.tcsh,

sh, or ksh) and each instruction is interpreted as typed in manually
by the user executing the script. Arbitrary UNIX commands,
applications and other shell scripts can be invoked from within a
shell script.

The appropriate command interpreter is either invoked as
login-shell or not depending whether its nanasf{, tcsh, sh, ksh,

...) is contained in the value list of tlegin_shellsentry of the
CODINE configuration in effect for the particular host and queue
executing the job.

O Note, that the CODINE configuration may be different for
the various hosts and queues configured in your cluster. You
can display the effective configurations via thesconf and
-sq options of theqconf command (refer to theCODINE
Reference Manual for detailed information).

If the command interpreter is invoked as login-shell, the
environment of your job will be exactly the same as if you just have
logged-in and executed the job-script. In case of ussfifor
example,login and cshrc will be executed in addition to the
system default start-up resource files (e.g. something like
/etc/login) while only.cshrc will be executed itsh is not
invoked as login-shell. Refer to the manual page of the command
interpreter of your choice for a description of the difference
between being invoked as login-shell or not.

4.1.1 Example Script File

Below is the listing of a simple shell script, which first compiles the
applicationflow from its Fortran77 source and then executes it.

192

Submit Batch Jobs

#l/bin/csh

This is a sample script file for compiling and
running a sample FORTRAN program under CODINE.

cd TEST

Now we need to compile the program ‘flow.f' and
name the executable ‘flow'.

f77 flow.f -o flow

Once it is compiled, we can run the program.
flow

End of script file.

Your local system user’s guide will provide detailed information
about building and customizing shell scripts (you might also want
to look at thesh, ksh, csh or tcsh manual page). In the following,
the CODINE User’s Guide will emphasize on specialities which
are to be considered in order to prepare batch scrip@3@NE.

In general, all shell scripts that you can execute from your
command prompt by hand can be submitte€@DINE as long as
they do not require a terminal connection (except for the standard
error and output devices, which are automatically redirected) and as
long as they do not need interactive user intervention. Therefore, the
script given above is ready to be submitte@@DINE and will
perform the desired action.

4.2 Submitting CODINE jobs
4.2.1 Submitting jobs with gmon (Simple Example)

The gmon Job Submission dialogue is either invoked from the
gmon main menu or from thgmon job control dialogue. Pressing
theSubmit icon button in thegmon main menu opens the
dialogue as well as pushing tBebmit button in theJob

Control dialogue. The screen for enteri@gneral parameters
looks as follows (see section ,,Submitting Jobs with gmon
(Advanced Example)“ on page 200 for a discussion of the
Advanced parameter screen).

193

Submit Batch Jobs

[E] GMON === Job Submission

Figure 59: Job Submission dialogue

Throughout section 4 “Submit Batch Jobs” we will only deal with
batch jobs. So please make sure that the ddBatdh icon is
displayed on the top of the button column on the right side of the
screen. If arinteractive icon is displayed instead, please click
to the icon to change it back to the Batch icon. Please refer to
section “Submit Interactive Jobs” on page 224 for detailed
information on interactive jobs.

194

Submit Batch Jobs

To submit a job you first have to select its script file. Use the file
icon button on the right side of tdeb Script input window to

open the following file selection box and to select the job‘s script
file.

Select a File

Filter

_HU012ngdEOHexamplestobsf%

Directories Files

le=/jobss, o Hrexec_job,=sh
les/jobs/ .. -| env—tester ,czh
¥/

Jobret_submitter,sh
pminiworm ,sh
zleeper,=h
worker,zh

i I |

|~ L= = [
Pleaze type or select a filename:

Avol2/grds0 /exanples/ jobs Avorker sH

Ok Filter Cancel

Figure 60: Job script selection box

Quitting the file selection dialogue with t&button will transfer
the selected file name to theb Submission dialogue‘siob
Script input window. Now just click to th8ubmit button on

the right side of the Job Submission screen to submit the job to the
CODINE system.

O To getimmediate feedback from the job submission you
either need to have thegmon Job Control dialogue open
(see section ,Monitoring and Controlling Jobs with gmon*
on page 242) or you need thgmon Object Browser
opened with the display messages facility activated (see
section ,Additional Information with the gmon Object
Browser" on page 252).

195

Submit Batch Jobs

196

4.2.2 Submitting jobs with gmon (Extended Example)

The standard form of thinb Submission dialogue (see figure
71 on page 226) provides the means to configure the following
parameters for a job:

O A prefix string which is used for script embedd&dDINE

submit options (please refer to section “Active CODINE
Comments:” on page 207 for detailed information).

The job script to be used. If the associated icon button is pushed,
a file selection box is opened (see figure 60 on page 195)

The task ID range for submitting array jobs (see “Array Jobs” on
page 217).

The name of the job (a default is set after a job script is
selected).

Arguments to the job script.

The job’s initial priority value. Users without manager or
operator permission may only lower their initial priority value.

The time at which the job is to be considered eligible for
execution. If the associated icon button is pushed, a helper
dialogue for entering the correctly formatted time is opened (see
figure 61 on page 197)

A flag indicating whether the job is to be executed in the current
working directory (for identical directory hierarchies between
the submit and the potential execution hosts only).

The command interpreter to be used to execute the job script
(see “How a Command Interpreter Is Selected” on page 205). If
the associated icon button is pushed. a helper dialogue for
entering he command interpreter specifications of the job is
opened (see figure 62 on page 198).

A flag indicating whether the job’s standard output and standard
error output are to be merged together into the standard output
stream.

The standard output redirection to be used (see “Output
Redirection” on page 206). A default is used if nothing is
specified. If the associated icon button is pushed, a helper
dialogue for entering the output redirection alternatives
(“Output redirection box” on page 198).

Submit Batch Jobs

0O The standard error output redirection to be used. Very similar to
the standard output redirection.

O The resource requirements of the job (see “Resource
Requirement Definition” on page 213). If resources are
requested for a job, the icon button changes its color.

O A selection list button defining whether the job can be restarted
after being aborted by a system crash or similar events and
whether the restart behavior depends on the queue or is
demanded by the job.

O A flag indicating whether the job is to be notified by SIGUSR1
or SIGUSR2 signals respectively if it is about to be suspended
or cancelled.

O Aflagindicating that either a user hold or a job dependency is to
be assigned to the job. The job is not eligible for execution as
long as any type of hold is assigned to it (see section
»Monitoring and Controlling CODINE Jobs" on page 242 for
more information concerning holds). The input field attached to
the Hold flag allows restricting the hold to only a specific range
of task of an array job (see “Array Jobs” on page 217).

O A flag forcing the job to be either started immediately if
possible or being rejected. Jobs are not queued, if this flag is
selected.

Enter a String

Enter the submit time in the
following formaty CCCCIDYYIMMODREmmE =21
or leave the current time and press ok

| 200012242353, 59

(4 | Canc:ell Hele |

Figure 61: At time input box

197

Submit Batch Jobs

198

Shell on host .

[x]

Host.

Stdout Path List

Figure 62: Shell selection box

Figure 63: Output redirection box

The buttons at the right side of tdeb Submission screen allow
you to initiate various actions:

O Submit

Submit the job as specified in the dialogue

Edit

Edit the selected script file in an X-terminal either usungr the
editor as defined in tHBEEDITOR environment variable.

Clear
Clear all settings in théob Submission dialogue including
any specified resource requests.

Reload

Reload the specified script file, parse any script embedded
options (see section ,Active CODINE Comments:“ on page
207), parse default settings (see section ,Default Requests* on
page 212) and discard intermediate manual changes to these
settings. This action is the equivalent to a Clear action with
subsequent specifications of the previous script file The option

Submit Batch Jobs

will only show an effect if a script file is already selected.

0O Save Settings
Save the current settings to a file. A file selection box is opened
to select the file. The saved files may either explicitly be loaded
later-on (see below) or may be used as default requests (see
section ,Default Requests” on page 212).

O Load Settings
Load settings previously saved with thave Settings
button (see above). The loaded settings overwrite the current
settings.

O Done
Closes thelob Submission dialogue.

0 Help
Dialogue specific help.

Figure “Job submission example” on page 200 shows the submit
dialogue with most of the parameters set. The job configured in the
example has the script fiflow.sh which has to reside in the
working directory ofgmon. The job is calledFlow and the script

file takes the single argumdrig.data . The job will be started
with priority -111 and is eligible for execution not before midnight
of the 24th of December in the year 2000. The job will be executed
in the submission working directory and will use the command
interpretertcsh. Finally standard output and standard error output
will be merged into the fillow.out which will be created in the
current working directory also.

199

Submit Batch Jobs

B Submit Job

Figure 64: Job submission example

4.2.3 Submitting Jobs with gmon (Advanced Example)

The Advanced submission screen allows definition of the following
additional parameters:

O A parallel environment interface to be used and the range of

processes which is required (see section ,Parallel Jobs" on page
219).

O A set of environment variables which are to be set for the job
before it is executed. If the associated icon button is pushed, a
helper dialogue for the definition of the environment variables to

200

Submit Batch Jobs

be exported is opened (see figure 65 on page 202). Environment
variables can be taken frogmon's runtime environment or
arbitrary environment variable can be defined.

A list of name/value pairs callg€iontext (see figure 66 on
page 203), which can be used to store and communicate job
related information accessible anywhere from within a
CODINE cluster. Context variables can be modified from the
command-line via theac/-dc/-sc options togsub, gsh, glogin

or galter and can be retrieved vigstat -j.

The checkpointing environment to be used in case of a job for
which checkpointing is desirable and suitable (see section
»,Checkpointing Jobs" on page 237).

An account string to be associated with the job. The account
string will be added to the accounting record kept for the job and
can be used for later accounting analysis.

TheVerify flag, which determines the consistency checking
mode for your job. To check for consistency of the job request
CODINE assumes an empty and unloaded cluster and tries to
find at least one queue in which the job could run. Possible
checking modes are:

» Skip - no consistency checking at all.

* Warning - inconsistencies are reported, but the job is still
accepted (may be desired if the cluster configuration is
supposed to change after submission of the job).

» Error -inconsistencies are reported and the job will be
rejected if any are encountered.

e Just verify - The job will not be submitted, but an
extensive report is generated about the suitability of the job
for each host and queue in the cluster.

The events at which the user is notified via electronic mail. The
events start/end/abortion/suspension of job are currently
defined.

A list of electronic mail addresses to which these notification
mails are sent. If the associated icon button is pushed, a helper
dialogue to define the mailing list is opened (see figure 67 on
page 203).

201

Submit Batch Jobs

Environment Variable List

Erwirorment for Job

A list of queue names which are requested to be the mandatory
selection for the execution of the job. THard Queue List

is treated identical to a corresponding resource requirement as
described in “Resource Requirement Definition” on page 213.

A list of queue names which are requested to be a desirable
selection for the execution of the job. TBeft Queue List

is treated identical to a corresponding resource requirement as
described in “Resource Requirement Definition” on page 213.

A list of queue names which are eligible as so catedter

queue for a parallel job. A parallel job is started in the master
gueue. All other queues to which the job spawns parallel tasks
are calleds/ave queues.

An argument list which is forwarded directly to the submission
client of a foreign queuing system, in case the job is executed
under theCODINE QSI (see section ,The CODINE Queuing
System Interface (QSI)“ on page 166 in @@DINE

Installation and Administration Guide). TheTransfer QS
Arguments have no effect if the job executed within the
CODINE system.

An ID-list of jobs which need to be finished successfully before
the job to be submitted can be started. The newly created job
dependson successful completion of those jobs.

Value

202

Figure 65: Job environment definition

Submit Batch Jobs

Context Yanable List l

Figure 66: Job context definition

| Send mail to mail address

me@nyhost , com

Sk
Cancel.
nefother , address -
Reset.
Help

Figure 67: Mail address specification

Consequently, the job defined in figure 68 on page 205 has the
following additional characteristics as compared to the job
definition from section “Submitting jobs with gmon (Extended
Example)” on page 196:

O The job requires the use of the parallel environmmapit. It
needs at least 4 parallel processes to be created and can utilize
up to 16 processes if available.

0O Two environment variables are set and exported for the job.

203

Submit Batch Jobs

204

Two context variables are set.

The account stringLOWIs to be added to the job accounting
record.

The job is to be restarted if it fails in case of a system crash.

Warnings should be printed if inconsistencies between the job
request and the cluster configuration are detected

Mail has to be sent to a list of two e-mail addresses as soon as
the job starts and finishes.

Preferably, the job should be executed in the qbeayey .

Submit Batch Jobs

EJ Submit Job

npi 4-16 =|

CLEAN_SEMAPHORE-FALSE,MODEL_¢]

J0B_STEP=preprocessing, PORT=]]"4‘

Figure 68: Advanced job submission example

4.2.4 Extensions to Regular Shell Scripts

There are some extensions to regular shell scripts, that will

influence the behavior of the script if running unG&DINE
control. The extensions are:

0O How a Command Interpreter Is Selected
The command interpreter to be used to process the job script file
can be specified at submit time (see for example page 198).

205

Submit Batch Jobs

206

However, if nothing is specified, the configuration variable
shell_start_mode determines how the command
interpreter is selected:

» |If shell_start_mode is set taunix_behavior , the
first line of the script file if starting with a ,#!“ sequence is
evaluated to determine the command interpreter. If the first
line has no ,#!“ sequence, the Bourne-Sisélis used by
default.

» For all other settings afhell_start_mode the default
command interpreter as configured with shell
parameter for the queue in which the job is started is used
(see section ,Queues and Queue Properties” on page 181
and thequeue conf manual page).

Output Redirection

Since batch jobs do not have a terminal connection their
standard output and their standard error output has to be
redirected into fileSCODINE allows the user to define the
location of the files to which the output is redirected, but uses
defaults if nothing is specified.

The standard location for the files is in the current working
directory where the jobs execute. The default standard output
file name is<Job_name>.0<Job_id> , the default standard
error output is redirected toJob_name>.e<Job_id>
<Job_name> is either built from the script file name or can be
defined by the user (see for example-+l@ption in thegsub
manual pagekJob_id> is a unique identifier assigned to the
job by CODINE.

In case of array job tasks (see section ,Array Jobs" on page
217), the task identifier is added to these filenames separated by
a dot sign. Hence the resulting standard redirection paths are
<Job_name>.o<Job_id>.<Task id> and
<Job_name>.e<Job_id>.<Task_id>

In case the standard locations are not suitable, the user can
specify output directions witgmon as shown in figure 68 and
figure 63 or with thee and-o qsub options. Standard output

and standard error output can be merged into one file and the
redirections can be specified on a per execution host basis. l.e.,
depending on the host on which the job is executed, the location
of the output redirection files becomes different. To build
custom but unique redirection file paths, pseudo environment

Submit Batch Jobs

variables are available which can be used together with$bé
-e and-o option

+ $HOME home directory on execution machine.
¢ $USER- user ID of job owner.

e $JOB_ID - current job ID.

» $JOB_NAME current job name (see -N option).
* $HOSTNAMEname of the execution host.

* $TASK_ID - array job task index number.

These variables are expanded during runtime of the job into the
actual values and the redirection path is built with them.

See thegsub manual page in section 1 of tB®DINE
Reference Manual for further details.

Active CODINE Comments:

Lines with a leading “#” sign are treated as comments in shell
scripts.CODINE, however, recognizes special comment lines
and uses them in a special way: the rest of such a script line will
be treated as if it were part of the command line argument list of
the CODINE submit commandisub. Thegsub options

supplied within these special comment lines are also interpreted
by thegmon submit dialogue and the corresponding parameters
are preset when a script file is selected.

The special comment lines per default are identified by the ,#$"

prefix string. The prefix string can be redefined with the

gsub -C option.

The described mechanism is called script embedding of submit
arguments. The following example script file makes use of script
embedded command-line options.

207

Submit Batch Jobs

208

#!/bin/csh
#Force csh if not CODINE default shell
#$ -S /bin/csh

This is a sample script file for compiling and

running a sample FORTRAN program under CODINE.
We want CODINE to send mail when the job begins

and when it ends.

#$ -M EmailAddress
#$-m b,e

We want to name the file for the standard output
and standard error.

#$ -o flow.out -j y
Change to the directory where the files are located.
cd TEST

Now we need to compile the program ‘flow.f" and
name the executable ‘flow'.

f77 flow.f -o flow
Once it is compiled, we can run the program.
flow

End of script file.

0O Environment Variables:
When aCODINE job is run, a number of variables are preset
into the job’s environment, as listed below

* ARC: TheCODINE architecture name of the node on which
the job is running. The name is compiled-in into the
cod_execd binary.

» CODINE ROQOT: TheCODINE root directory as set for
cod_execd before start-up or the defadltsr/CODINE .

* CODCELL: TheCODINE cell in which the job executes.

» CODO_HOME: The home directory path of the job owner
on the host from which the job was submitted.

e CODO_HOST: The host from which the job was submitted.

Submit Batch Jobs

CODO_LOGNAME: The login name of the job owner on
the host from which the job was submitted.

CODO_MAIL: The content of the MAIL environment
variable in the context of the job submission command.

COD O_PATH: The content of the PATH environment
variable in the context of the job submission command.

CODO_SHEL: The content of the SHELL environment
variable in the context of the job submission command.

CODO_TZ: The content of the TZ environment variable in
the context of the job submission command.

COD O_WORKDIR: The working directory of the job
submission command.

COD CKPT_ENV: Specifies the checkpointing environment
(as selected with thesub -ckpt option) under which a
checkpointing job executes.

COD_CKPT_DIROnly set for checkpointing jobs. Contains

pathckpt_dir (see theheckpoint manual page) of the
checkpoint interface.

COD STDERR_PATH: the pathname of the file to which the
standard error stream of the job is diverted. Commonly used
for enhancing the output with error messages from prolog,
epilog, parallel environment start/stop or checkpointing
scripts.

COD STDOUT_PATH: the pathname of the file to which the
standard output stream of the job is diverted. Commonly
used for enhancing the output with messages from prolog,
epilog, parallel environment start/stop or checkpointing
scripts.

COD_TASK_ID The task identifier in the array job
represented by this task.

ENVIRONMENT: Always set to BATCH. This variable
indicates, that the script is run in batch mode.

HOME: The user’s home directory path from peesswd
file.

HOSTNAME: The hostname of the node on which the job is
running.

JOB_ID: A unique identifier assigned by tted gmaster
when the job was submitted. The job ID is a decimal integer

209

Submit Batch Jobs

210

in the range to 99999.

JOB_NAME: The job name, built from thgsub script
filename, a period, and the digits of the job ID. This default
may be overwritten bgsub -N.

LAST_HOST: The name of the preceding host in case of
migration of a checkpointing job.

LOGNAME: The user’s login name from timasswd file.
NHOSTS: The number of hosts in use by a parallel job.

NQUEUES: The number of queues allocated for the job
(always 1 for serial jobs)

NSLOTS: The number of queue slots in use by a parallel job.

PATH: A default shell search path of:
lusr/local/bin:/usr/ucb:/bin:/usr/bin

PE The parallel environment under which the job executes
(for parallel jobs only).

PE_HOSTFILE The path of a file containing the definition
of the virtual parallel machine assigned to a parallel job by
CODINE. See the description of ttpe_hostfileparameter

in codine_pe for details on the format of this file. The
environment variable is only available for parallel jobs.

QUEUE: The name of the queue in which the job is running.

REQUEST: The request name of the job, which is either the
job script filename or is explicitly assigned to the job via the
gsub -N option.

RESTARTED: Indicates, whether a checkpointing job has
been restarted. If set (to value 1), the job has been
interrupted at least once and is thus restarted.

SHELL: The user’s login shell from ttmasswd file. Note:
This is not necessarily the shell in use for the job.

TMPDIR: The absolute path to the job’s temporary working
directory.

TMP: The same as TMPDIR; provided for compatibility
with NQS.

TZ: The time zone variable imported froood_execd if set.
USER: The user’s login name from thasswd file.

Submit Batch Jobs

4.2.5 Submitting Jobs from the Command-line

Jobs are submitted @ODINE from the command-line using the
gsub command (see the correspond®@DINE Reference

Manual section). A simple job as described in section “Submitting
jobs with gmon (Simple Example)” on page 193 could be submitted
to CODINE with the command

% qgsub flow.sh

if the script file name ilow.sh

As opposed to this, the submit command which would yield the
equivalent to theymon job submission described in section
“Submitting jobs with gmon (Extended Example)” on page 196
would look as follows:

% qgsub -N Flow -p -111 -a 200012240000.00 -cwd |

-S /bin/tcsh -o flow.out -j y flow.sh big.data

Further command-line options can be added to constitute more
complex requests. The job request from section “Submitting Jobs
with gmon (Advanced Example)” on page 200, for example, would
look as follows:

211

Submit Batch Jobs

% qsub -N Flow -p -111 -a 200012240000.00 -cwd |

-S /bin/tcsh -o flow.out -j y -pe mpi 4-16 |

-v SHARED MEM=TRUE,MODEL_SIZE=LARGE |
-ac JOB_STEP=preprocessing,PORT=1234 |

-A FLOW -w w -r y -m s,e -q big_q|

-M me@myhost.com,me@other.address |

flow.sh big.data

4.2.6 Default Requests

212

The last example in the above section demonstrates that advanced
job requests may become rather complex and unhandy, in particular
if similar requests need to be submitted frequently. To avoid the
cumbersome and error prone task of entering such command-lines,
the user can either embgdub options in the script files (see

“Active CODINE Comments:” on page 207) or can utilize so called
default requests

The cluster administration may setup a default request file for all
CODINE users. The user, on the other hand, can create a private
default request file located in the user's home directory as well as
application specific default request files located in the working
directories.

Default request files simply contain teub options to be applied
by default to theCODINE jobs in a single or multiple lines. The
location of the cluster global default request file is
<codine_root>/<cell>/common/cod_request . The
private general default request file is located under
$HOME/.cod_request , while the application specific default
request files are expected unélewd/.cod_request

If more than one of these files is available, they are merged into one
default request with the following order of precedence:

0 Global default request file.
0 General private default request file.

0O Application specific default request file.

Submit Batch Jobs

O Script embedding and theqgsub command-line has higher
precedence than the default request files. Thus, script
embedding overwrites default request file settings, and the
gsub command-line options my overwrite these settings
again.

O The gsub -clear option can be used at any time in a default
request file, in embedded script commands and in thgsub
command-line to discard any previous settings.

An example private default request file is presented below:

-A

myproject -cwd -M me@myhost.com -m b,e

-ry-jy-S /bin/ksh

4.2.7 Resource

Unless overwritten, for all jobs of the given user the account string
would bemyproject , the jobs would execute in the current
working directory, mail notification would be sent at the beginning
and end of the jobs tme@myhost.com, the jobs are to be
restarted after system crashes, the standard output and standard
error output are to be merged and ###h is to be used as command
interpreter.

Requirement Definition

In the examples so far the submit options used did not express any
requirements for the hosts on which the jobs were to be executed.
CODINE assumes that such jobs can be run on any host. In
practice, however, most jobs require certain prerequisites to be
satisfied on the executing host in order to be able to complete
successfully. Such prerequisites are enough available memaory,
required software to be installed or a certain operating system
architecture. Also, the cluster administration usually imposes
restrictions on the usage of the machines in the cluster. The CPU
time allowed to be consumed by the jobs is often restricted, for
example.

213

Submit Batch Jobs

214

CODINE provides the user with the means to find a suitable host
for the user's job without a concise knowledge of the cluster's
equipment and its utilization policies. All the user has to do is to
specify the requirement of the user's jobs andd&DINE manage
the task of finding a suitable and lightly loaded host.

Resource requirements are specified via the so called requestable
attributes explained in section “Requestable Attributes” on page
184. A very convenient way of specifying the requirements of a job
is provided bygmon. TheRequested Resources dialogue,

which is opened upon pushing tRequested Resources icon
button in thelob Submission dialogue (see for example figure
68 on page 205) only displays those attributes irAtiaglable
Resource selection list which currently are eligible. By
double-clicking to an attribute, the attribute is added toHhaed or

Soft (see belowResources list of the job and (except for
BOOLEANype attributes, which are just set frye “) a helper
dialogue is opened to guide the user in entering a value specification
for the concerning attribute.

The exampldRequested Resources dialogue displayed below

in figure 58 shows a resource profile for a job in which a

solaris4 host with an availablpermas license offering at

least 750 Megabytes of memory is requested. If more than one
queue fulfilling this specification is found, any defined soft resource
requirements are taken into account (none in our example).
However, if no queue satisfying both the hard and the soft
requirements is found, any queue granting the hard requirements is
considered to be suitable.

O Only if more than one queue is suitable for a job, load
criteria determine where to start the job.

Submit Batch Jobs

QMON
Requested Resources

Parallel Job Request:

Hard Resources Available Resources

3b h == larissd 3b arch .

g0 arc =0 &

A h_wmem == F50H ab calendar Cancel

123 permaz == {5 h_cpu Clear
M, h_fzize -
/M h_r== bEkE
O hort

Hard Eeguest Soft Fequest 4 h_vmem

Soft Resouwrces B hostnane

123 mastran

a

23 permas

e}
o

qrame
M = fsize
A/ =_ymen

123 zlots

Figure 69: Requested Resources dialogue

0 The INTEGER attribute permas is introduced via an
administrator extension to the “global” complex, the
STRING attribute arch is imported from the “host”
complex while the MEMORY attribute h_vmemis imported
from the “queue” complex (see section ,Requestable
Attributes” on page 184)

An equivalent resource requirement profile can as well be submitted
from thegsub command-line:

% gsub -l arch=solaris64,h_vmem=750M,permas=1 |
permas.sh

O The implicit -hard switch before the first-/ option has been
skipped.

215

Submit Batch Jobs

The notation/50M for 750 Megabytes is an example for the
CODINE quantity syntax. For those attributes requesting a memory
consumption you can specify either integer decimal, floating point
decimal, integer octal and integer hexadecimal numbers appended
by the so called multipliers:

0O k
multiplies the value by 1000.

O K
multiplies the value by 1024.

g m
multiplies the value by 1000 times 1000.

oM
multiplies the value by 1024 times 1024.

Octal constants are specified by a leading 0 (zero) and digits
ranging from 0 to 7 only. Specifying a hexadecimal constant
requires to prepend the number by Ox and to use digits ranging from
0to9,atofand AtoF. If no multipliers are appended the values are
considered to count as bytes. If using floating point decimals, the
resulting value will be truncated to an integer value.

For those attributes imposing a time limit one can specify the time
values in terms of hours, minutes or seconds and any combination.
The hours, minutes and seconds are specified in decimal digits
separated by colons. A time®5:11 s translated to 11111
seconds. If a specifier for hours, minutes or seconds is 0 it can be
left out if the colon remains. Thus a value of :5: is interpreted as 5
minutes. The form used in tiRequested Resources dialogue
above is an extension, which is only valid witlgimon.

4.3 How CODINE Allocates Resources

216

As shown in the last section, it is important for the user to know,
how CODINE processes resource requests and how resources are
allocated byCODINE. The following provides a schematic view of
CODINE's resource allocation algorithm:

Read in and parse all default request files (see section ,Default
Requests” on page 212). Process the script file for embedded
options (see section ,Active CODINE Comments:“ on page 207).
All script embedding options are read, when the job is submitted
regardless of their position in the script file. Now read and parse all
requests from the command line.

Submit Batch Jobs

As soon as all gsub requests are colledtizald andsoft requests
are processed separately (treed first). The requests are evaluated
Corresponding to the following order of precedence:

» from left to right of the script/default request file
» from top to bottom of the script/default request file
« from left to right of the command line

In other words, the command line can be used to override the
embedded flags.

The resources requestidrd are allocated. If a request is not valid,
the submit is rejected. If one or more requests cannot be met at
submit-time (e.g. a requested queue is busy) the job is spooled and
will be re-scheduled at a later time. If &lard requests can be met,
they are allocated and the job can be run.

The resources requestsaft are checked. The job can run even if
some or all of these requests cannot be met. If multiple queues
(already meeting the hard requests) provide parts of the soft
resources list (overlapping or different pa@€)DINE will select
the queues offering the most soft requests.

The job will be started and will cover the allocated resources.

It is useful to gather some experience on how argument list options
and embedded options loard andsoft requests influence each

other by experimenting with small test scriptfiles executing UNIX
commands likeéhostname or date.

4.4 Array Jobs

Parametrized and repeated execution of the same set of operations
(contained in a job script) is an ideal application forG@&DINE

array job facility. Typical examples for such applications are found

in the Digital Content Creation industries for tasks like rendering.
Computation of an animation is split into frames, in this example,
and the same rendering computation can be performed for each
frame independently.

The array job facility offers a convenient way to submit, monitor
and control such applicationSODINE, on the other hand,

provides an efficient implementation of array jobs, handling the
computations as an array of independent tasks joined into a single
job. The tasks of an array job are referenced through an array index

217

Submit Batch Jobs

3
4

218

number. The indices for all tasks span an index range for the entire
array job which is defined during submission of the array job by a
single gsub command.

An array job can be monitored and controlled (e.g. suspended,
resumed or cancelled) as a total or by individual task or subset of
tasks, in which case the corresponding index numbers are suffixed
to the job ID to reference the tasks. As tasks execute (very much
like regular jobs), they can use the environment variable
$COD_TASK_IDto retrieve their own task index number and to
access input data sets designated for this task identifier.

The following is an example of how to submit an array job from the
command-line:

% qsub -1 h_cpu=0:45:0 -t 2-10:2 render.sh data.in

The -t option defines the task index range. In this casH):2

specifies tha? is the lowest and 0 is the highest index number

while only every second index (th2 part of the specification) is
used. Thus the array job consists of 5 tasks with the task indices 2,
4, 6, 8, and 10. Each task requests a hard CPU time lirmd§ of
minutes (the/ option) and will execute the job scrinder.sh

once being dispatched and startedd@DINE. The tasks can use
$COD_TASK _IDto find out whether they are task 2, 4, 6, 8, or 10
and they can use their index number to find their input data record
in the data filedata.in.

The submission of array jobs from the Gihnon works identically

to how it was described in previous chapters. The only difference is,
that the Job Tasks input window shown in figure 64 on page 200
needs to contain the task range specification with the identical
syntax as for thgsub -t option. Please refer to the gsub manual
page in theCODINE Reference Manual for detailed information

on the array index syntax.

4.5

Parallel Jobs

Submit Batch Jobs

The sections 8 “Monitoring and Controlling CODINE Jobs” and 8.5
“Controlling CODINE Jobs from the Command-line” as well as the
CODINE Reference Manual sections aboujstat, ghold, grls,
gmod, andgdel contain the pertinent information about monitoring
and controllingCODINE jobs in general and array jobs in
particular.

O Array jobs offer full access to all CODINE facilities known
for regular jobs. In particular they can be parallel jobs at
the same time or can have interdependencies with other
jobs.

CODINE provides means to execute parallel jobs using arbitrary
message passing environments such as PVM or MPI (sd&\thk
User's Guideand theMPI User’s Guide for details) or shared
memory parallel programs on multiple slots in single queues or
distributed across multiple queues and (for distributed memory
parallel jobs) across machines. An arbitrary number of different
parallel environment (PE) interfaces may be configured
concurrently at the same time.

The currently configured PE interfaces can be displayed with the
commands:

% qconf -spl

% qconf -sp pe_name

The first command prints a list of the names of the currently
available PE interfaces. The second command displays the
configuration of a particular PE interface. Please refer to the
codine_pe manual page for details on the PE configuration.

219

Submit Batch Jobs

220

Alternatively, the PE configurations can be queried withgtinen
Parallel Environment Configuration dialogue (see
section ,,Configuring PEs with gmon*“ on page 158 in @@DINE
Installation and Administration Guide). The dialogue is opened
upon pushing th€E Config icon button in thegmon main menu.

The example from section “Submitting Jobs with gmon (Advanced
Example)” on page 200 already defines a parallel job requesting the
PE interfacanpi (for message passing interfgde be used with at
least 4 but up to (and preferably) 16 processes. The icon button to
the right of the parallel environment specification window can be
used to pop-up a dialogue box to select the desired parallel
environment from a list of available PEs (see figure 70). The
requested range for the number of parallel tasks initiated by the job
can be added after the PE name in the PE specification window of
the advanced submission screen.

Select an [tem

Fvailakble Parallel Environments

CTe
mei

Select & Parallel Environment

i

ok | cancel| e |

Figure 70: PE selection

The command-line submit command corresponding to the parallel
job specification described above is given in section “Submitting
Jobs from the Command-line” on page 211 and shows how the
gsub -pe option has to be used to formulate an equivalent request.
The gsub manual page in theODINE Reference Manual

provides more detail on thpe syntax.

Itis important to select a suitable PE interface for a parallel job. PE
interfaces may utilize no or different message passing systems, they
may allocate processes on single or multiple hosts, access to the PE

Submit Batch Jobs

may be denied to certain users, only a specific set of queues may be
used by a PE interface and only a certain number of queue slots may
be occupied by a PE interface at any point of time. You should
therefore ask th€ODINE administration for the available PE
interface(s) best suited for your type(s) of parallel jobs.

You can specify resource requirements as explained in section
“Resource Requirement Definition” on page 213 together with your
PE request. This will further reduce the set of eligible queues for the
PE interface to those queues also fitting the resource requirement
definition you specified. If, for example, the command

T~
@ ' % qgsub -pe mpi 1,2,4,8 -| nastran,arch=osf nastran.par
%@,

is submitted, the queues suitable for this job are those which are
associated to the PE interfaggi by the PE configuration and also
satisfy the resource requirement specification specified bgshb

-l option.

O The CODINE PE interface facility is highly configurable. In
particular, the CODINE administration can configure the
PE start-up and stop procedures (see theodine_pe
manual page) to support site specific needs. Thgsub -v
and -V options to export environment variables may be
used to pass information from the user who submits the job
to the PE start-up and stop procedures. Please ask the
CODINE administration if you are required to export
certain environment variables.

4.6 Submitting Jobs to Other Queueing Systems

Some sites do not wish to inst&ODINE on all machines for

which batch access is provided, but instead use other queueing
systems already available on these hosts. Typical examples are
machines which do not belong to the same organization, and thus
cannot be maintained by tODINE administration, or machines

221

Submit Batch Jobs

utilizing a very special queuing system, interfacing specifically
designed accounting facilities and the like (very common for so
calledSupercomputejs

In these case§ODINE offers a general interface to such queueing
systems. Access to the hosting queueing sys@8i6 provided by
the concept ofransfer queues . A transfer queue is defined by
the valueTRANSFERN thetype field of the queue configuration
(see section ,Queues and Queue Properties” on page 181).

Jobs to be forwarded to another QS can be submitted like any other
CODINE job. Resource requirements are requested for the job via
gmon or theqgsub command just like fonormal CODINE jobs. It

is even possible that such a job is processed either within the
CODINE system or passed to a QS, depending on the available and
best suited resources.

Sometimes it is necessary to supply QS special switches with the
job. To perform this, there are two methods available in the
CODINE QS interface:

O Add the options to the script file by usage of special comments
similar to the “#$” comments i@ODINE (of course the QS
must support such special comments).

0O The speciafjsub option-qs_args may be used to pass such
options. Everything behind thegs_args option is considered as
option to the QS until thegs_end option is encountered. A
corresponding input field for such arguments is provided in the
gmon submission dialogue as well (see section ,Submitting
Jobs with gmon (Advanced Example)“ on page 200).

4.7 How CODINE Jobs Are Scheduled

4.7.1 Job Scheduling

Job Priorities

222

Concerning the order of scheduling precedence of different jobs a
first-in-first-out (fifo) rule is applied by default. I.e., pfnding

(not yet scheduled) jobs are inserted in a list, with the first
submitted job being the head of the list, followed by the second
submitted job, and so on. The job submitted first will be attempted
to be scheduled first. If at least one suitable queue is available, the
job will be scheduledCODINE will try to schedule the second job
afterwards no matter whether the first has been dispatched or not.

Submit Batch Jobs

This order of precedence among the pending jobs may be overruled
by the cluster administration viamiority value being assigned to

the jobs. The actual priority value can be displayed by using the
gstat command (the priority value is contained in the last column of
the pending jobs display entitl&] refer to section “Monitoring

with gstat” on page 253 for details). The default priority value
assigned to the jobs at submit time is 0. The priority values are
positive and negative integers and the pending jobs list is sorted
Correspondingly in the order of descending priority values. l.e., by
assigning a relatively high priority value to a job, the job is moved
to the top of the pending jobs list. Jobs with negative priority values
are inserted even after jobs just submitted. If there are several jobs
with the same priority value, the fifo rule is applied within that
priority value category.

Equal-Share-Sche The fifo rule sometimes leads to problems, especially if user’s tend

duling to submit a series of jobs almost at the same time (e.g. via
shell-script issuing one submit after the other). All jobs being
submitted afterwards and being designated to the same group of
queues will have to wait a very long timequal-share-scheduling
avoids this problem by sorting jobs of users already owning a
running job to the end of the precedence list. The sorting is
performed only among jobs within the same priority value category.
Equal-share-scheduling is activated if @®®@DINE scheduler
configuration entryiser_sort(refer to thesched conf manual
page for details) is set TRUE

4.7.2 Queue Selection

If submitted jobs cannot be run, because requested resources like a
queue of a certain group are not available at submit-time, it would
be disadvantageous to immediately dispatch such jobs to a certain
gqueue Corresponding to the load average situation. Imagine, a
suitable queue is busy with a job, that is terribly slowed down by an
infrequently responding I/O device. The machine, hosting this
gqueue, might offer the lowest load average inGRIDINE cluster,
however, the currently executing job might also continue to run for

a very long time.

223

Submit Interactive Jobs

Therefore CODINE does not dispatch jobs requestgeneric

queues if they cannot be started immediately. Such jobs will be
marked as spooled at thed _gmaster, which will try to

re-schedule them from time to time. Thus, such jobs are dispatched
to the next suitable queue, that becomes available.

As opposed to this, jobs which are requested by name to a certain
queue, will go directly to this queue regardless whether they can be
started or they have to be spooled. Therefore, vie@DBINE

queues as computer scier@ch queuess only valid for jobs
requested by name. Jobs submitted wéhericrequests use the
spooling mechanism afod _gmaster for queueing, thus utilizing a
more abstract and flexible queuing concept.

If a job is scheduled and multiple free queues meet its resource
requests, the job is usually dispatched to the queue (among the
suitable) belonging to the least loaded host. By settin@@8&INE
scheduler configuration entqueue_sort_methodo seqgno , the

cluster administration may change this load dependent scheme into
a fixed order algorithm: the queue configuration eséy_nois

used to define a precedence among the queues assigning the highest
priority to the queue with the lowest sequence number.

5 Submit Interactive Jobs

Submitting interactive jobs instead of batch jobs is useful in
situations where your job requires your direct input to influence the
results of the job. This is typically the case for X-windows
applications, which are interactive by definition, or for tasks in
which your interpretation of immediate results is required to steer
the further computation.

Three methods exist @ODINE to create interactive jobs:

O glogin -a telnet like session is started on a host selected by
CODINE.

O grsh - the equivalent of the standard Umsh facility. Either a
command is executed remotely on a host select€zlyINE
or a rlogin session is started on a remote host if no command
was specified for execution.

O gsh/gmon - anxtermis brought up from the machine executing
the job with the display set corresponding to your specification
or the setting of thBISPLAY environment variable. If the

224

Submit Interactive Jobs

DISPLAY variable is not set and if no display destination was
defined specificallyCODINE directs thexterm to the 0.0

screen of the X server on the host from which the interactive job
was submitted.

O To function correctly, all the facilities need proper
configuration of CODINE cluster parameters. The correct
Xxterm execution paths have to be defined for gsh and
interactive queues have to be available for this type of jobs.
Please contact your system administrator whether your
cluster is prepared for interactive job execution.

The default handling of interactive jobs differs from the handling of
batch jobs in that interactive jobs are not queued if they cannot be
executed by the time of submission. This is to indicate immediately,
that not enough appropriate resources are available to dispatch an
interactive job right after it was submitted. The user is notified in
such cases that ti@&ODINE cluster is too busy currently.

This default behavior can be changed with-inew no option to
gsh, qlogin andgrsh. If this option is given, interactive jobs are
queued like batch jobs. Usingow yes, batch jobs submitted with
gsub also can be handled like interactive jobs and are either
dispatched for execution immediately or are rejected.

O Interactive jobs can only be executed in queues of the type
INTERACTIVE (please refer to “Configuring Queues” on
page 79 in theCODINE Installation and Administration
Guide for details).

The subsequent sections outline the usage ajltiggn andqsh
facilities. Thegrsh command is explained in a broader context in
chapter “Transparent Remote Execution” on page 228.

5.1 Submit Interactive Jobs with gmon

The only type of interactive jobs which can be submitted from
gmon are those bringing up atterm on a host selected by

CODINE.
By clicking to the icon on top of the button column at the right side
of theJob Submission dialogue until thénteractive icon

gets displayed, the job submission dialogue is prepared for
submitting interactive jobs (see figure 71 on page 226 and figure

225

Submit Interactive Jobs

72 on page 227). The meaning and the usage of the selection
options in the dialogue is the same as explained for batch jobs in
section “Submitting CODINE jobs” on page 193. The basic
difference is that several input fields are set insensitive because they
do not apply for interactive jobs.

|[E S ubmit Job

Figure 71: Interactive Job Submission dialogueGeneral

226

Submit Interactive Jobs

(5 Submit Job

Figure 72: Interactive Job Submission dialogueAdvanced

5.2 Submitting Interactive Jobs with gsh

Qsh is very similar togsub and supports several of thsub
options as well as the additional switefisplay to direct the
display of thexterm to be invoked (please refer to theh manual
page in theCODINE Reference Manual for details).

The following command will start @term on any available Sun
Solaris 64bit operating system host.

227

Transparent Remote Execution

% gsh -l arch=solaris64

53

Submitting Interactive Jobs with glogin

The glogin command can be used from any terminal or terminal
emulation to initiate an interactive session under the control of
CODINE. The following command will locate a low loaded host
with Star-CD license available and with at least one queue
providing a minimum of 6 hours hard CPU time limit.

% qlogin -l star-cd=1,h_cpu=6:0:0

6

O Depending on the remote login facility configured to be used
by CODINE you may be forced to enter your user name
and/or password at a login prompt.

Transparent Remote Execution

228

CODINE provides a set of closely related facilities supporting
transparent remote execution of certain computational tasks. The
core tool for this functionality is thgrsh command described in
section “Remote Execution with grsh” on page 229. Building on top
of grsh, two high level facilities gtcsh andgmake - allow the
transparent distribution of implicit computational tasks via
CODINE, thereby enhancing the standard Unix facilitirake and
csh. Qtesh is explained in section “Transparent Job Distribution
with gtcsh” on page 230 arginake is described in section

“Parallel Makefile Processing with gmake” on page 233.

Transparent Remote Execution

6.1 Remote Execution with grsh

Qrsh is built around the standargh facility (see the information
provided in<codine_root>/3rd_party for details on the
involvement ofrsh) and can be used for various purposes:

O to provide remote execution of interactive applications via
CODINE comparable to the standard Unix facilish (also
calledremsh for HP-UX).

O to offer interactive login session capabilities G@DINE
similar to the standard Unix facilitogin (note thatglogin is
still required as £ ODINE representation of the Unte/net
facility).

O to allow for the submission of batch jobs which, upon execution,
support terminal I/O (standard/error output and standard input)
and terminal control.

O to offer a means for submitting a standalone program not
embedded in a shell-script.

O to provide a batch job submission client which remains active
while the job is pending or executing and which only finishes if
the job has completed or has been cancelled.

O to allow for theCODINE-controlled remote execution of job
tasks (such as the concurrent tasks of a parallel job) within the
framework of the dispersed resources allocated by parallel jobs
(see section ,Tight Integration of PEs and CODINE" on page
165 of theCODINE Installation and Administration Guide).

By virtue of all these capabilitiegrsh is the major enabling
infrastructure for the implementation of thesh and thegmake
facilities as well as for the so called tight integratioCQDINE
with parallel environments such as MPI or PVM.

6.1.1 Qrsh Usage

The general form of thgrsh command is

229

Transparent Remote Execution

% qrsh [options] program|shell-script [arguments] |

[> stdout_file] [>&2 stderr_file] [< stdin_file]

230

Qrsh understands almost all optionsgsfub and provides only a
few additional ones. These are:

0 -now yes|no
controls whether the job is scheduled immediately and rejected
if no appropriate resources are available, as usually desired for
an interactive job — hence it is the default, or whether the job is
queued like a batch job, if it cannot be started at submission
time.

O -inherit
grsh does not go through tli@ODINE scheduling process to
start a job-task, but it assumes that it is embedded inside the
context of a parallel job which already has allocated suitable
resources on the designated remote execution host. This form of
grsh commonly is used withigmake and within a tight
parallel environment integration. The default is not to inherit
external job resources.

0O -verbose
presents output on the scheduling process. Mainly intended for
debugging purposes and therefore switched off per default.

Transparent Job Distribution with gtcsh

Qtcsh is a fully compatible replacement for the widely known and
used Unix C-Shelldsh) derivativetcsh (gmake is built around

tcsh - see the information provided in

<codine_root>/3rd_party for details on the involvement of
tcsh). It provides a command-shell with the extension of
transparently distributing execution of designated applications to
suitable and lightly loaded hosts W@ DINE. Which applications
are to be executed remotely and which requirements apply for the
selection of an execution host is defined in configuration files called
.qtask

Transparent Remote Execution

Transparent to the user, such applications are submitted for
execution taCODINE via thegrsh facility. Sincegrsh provides
standard output, error output and standard input handling as well as
terminal control connection to the remotely executing application,
there are only three noticeable differences between executing such
an application remotely as opposed to executing it on the same host
as the shell:

O The remote host may be much better suited (more powerful,
lower loaded, required hard/software resources installed) than
the local host, which may not allow execution of the application
at all. This is a desired difference, of course.

O There will be a small delay incurred by the remote startup of the
jobs and by their handling througtfODINE.

O Administrators can restrict the usage of resources through
interactive jobsrsh) and thus throughtcsh. If not enough
suitable resources are available for an application to be started
via thegrsh facility or if all suitable systems are overloaded, the
implicit grsh submission will fail and a corresponding error
message will be returned (“not enough resources ... try later”).

In addition to the “standard” usegtcsh is a suitable platform for
third party code and tool integration. Usigtgsh in its
single-application execution forngtcsh -c appl_name
inside integration environments presents a persistent interface that
almost never has to be changed. All the required application, tool,
integration, site and even user specific configurations are contained
in appropriately definedjtask files. A further advantage is that

this interface can be used from within shell scripts of any type, C
programs and even Java applications.

6.2.1 Qtcsh Usage

Invocation ofgtcsh is exactly the same as ftash. Qtcsh extends
teshin providing support for thegtask file and by offering a set
of specialized shell built-in modes.

The.qtask file is defined as follows: Each line in the file has the
format

231

Transparent Remote Execution

% [!Jlappl_name qgrsh_options

The optional leading exclamation matk’‘defines the precedence
between conflicting definitions in a cluster gloliphsk file and
the personalgtask file of thegtcsh user. If the exclamation
mark is missing in the cluster global file, an eventually conflicting
definition in the user file will overrule. If the exclamation mark is in
the cluster global file, the corresponding definition cannot be
overwritten.

The rest of the line specifies the name of the application which,
when typed on a command line imy&esh, will be submitted to
CODINE for remote execution, and the options to tjrsh facility,
which will be used and which define resource requirements for the
application.

O The application name must appear in the command line
exactly like defined in the.qtask file. If it is prefixed with
an absolute or relative directory specification it is assumed
that a local binary is addressed and no remote execution is
intended.

O Csh aliases, however, are expanded before a comparison
with the application names is performed. The applications
intended for remote execution can also appear anywhere in
a gtcsh command line, in particular before or after
standard 1/O redirections.

Hence, the following examples are valid and meaningful syntax:

.qtask file
netscape -v DISPLAY=myhost:0

grep -1 h=filesurfer

Transparent Remote Execution

Given this.qtask file, the followinggtcsh command lines:

netscape

~/mybin/netscape

C

cat very_big_file | grep pattern | sort [unigq

will implicitly result in

grsh -v DISPLAY=myhost:0 netscape

~/mybin/netscape

C

cat very_big_file | grsh -I h=filesurfer grep pattern [sort [uniq

Qtcsh can operate in different modes influenced by switches where
each of them can be on or off:

O Local or remote execution of commands (remote is default).
0O Immediate or batch remote execution (immediate is default).
O Verbose or non-verbose output (non-verbose is default).

The setting of these modes can be changed using option arguments
of gtcsh at start time or with the shell builtin commadshmode

at runtime. See thgtcsh manual page in th€EODINE Reference
Manual for more information.

6.3 Parallel Makefile Processing with gmake

Qmake is a replacement for the standard Uniake facility. It
extendsnake by its ability to distribute independemiake steps
across a cluster of suitable machin@siake is built around the
popular GNU-make facilitgymake. See the information provided
in <codine_root>/3rd_party for details on the involvement
of gmake.

K

Transparent Remote Execution

234

To ensure that a complex distributeshke process can run to
completion,gmake first allocates the required resources in an
analogous form like a parallel jolpgmake then manages this set of
resources without further interaction with t8©DINE scheduling.

It distributesmake steps as resources are or become available via
the grsh facility with the -inherit option enabled.

Sinceqrsh provides standard output, error output and standard
input handling as well as terminal control connection to the
remotely executingnake step, there are only three noticeable
differences between executingrake procedure locally or using
gmake:

O Provided that the individuahake steps have a certain duration
and that there are enough independeake steps to be
processed, the parallelization of timake process will be sped
up significantly. This is a desired difference, of course.

O With eachmake step to be started up remotely there will be an
implied small overhead caused §§sh and the remote
execution as such.

O To take advantage of theake step distribution offmake, the
user has to specify as a minimum the degree of parallelization,
i.e. the number of concurrently executabiake steps. In
addition, the user can specify the resource characteristics
required by thenake steps, such as available software licenses,
machine architecture, memory or CPU-time requirements.

The most common use in generahad@ke certainly is the
compilation of complex software packages. This may not be the
major application fogmake, however. Program files are often
quite small (as a matter of good programming practice) and hence
compilation of a single program file, which is a singleke step,
often only takes a few seconds. Furthermore, compilation usually
implies a lot of file access (nested include files) which may not be
accelerated if done for multipl@ake steps in parallel, because the
file server can become the bottleneck effectively serializing all the
file access. So a satisfactory speed-up of the compilation process
sometimes cannot be expected.

Other potential applications ginake are more appropriate. An
example is the steering of the interdependencies and the workflow
of complex analysis tasks through make-files. This is common in
some areas, such as EDA, and eaelke step in such

Transparent Remote Execution

environments typically is a simulation or data analysis operation
with non-negligible resource and computation time requirements. A
considerable speed-up can be achieved in such cases.

6.3.1 Qmake Usage

The command-line syntax gimake looks very similar to the one
of grsh:

9% gmake [-pe pe_name pe_range] [further codine options] |

-- [gnu-make-optionsj[target]

C

O The -inherit option is also supported bygmake as
described further down below.

Specific attention has to be paid on the usage ofsheption and
its relation to thegmake -j option. Both options can be used to
express the amount of parallelism to be achieved. The difference is
thatgmake provides no possibility withjto specify something like
a parallel environment to use. Hengejake makes the
assumption, that a default environment for parallel makes is
configured which is callechake. Furthermoregmake’s -j allows

no specification of a range, but only for a single numpsrake

will interpret the number given with as a range of
1-<given_number> . As opposed to thispe permits the
detailed specification of all these parameters. Consequently, the
following command-line examples are identical

% gmake -- -j 10

% gmake -pe make 1-10 --

while the following command-lines cannot be expressed vig the
option:

235

Transparent Remote Execution

% gmake -pe make 5-10,16

% gmake -pe mpi 1-99999

236

Apart from the syntaxgmake supports two modes of invocation:
interactively from the command-line (withouitherit) or within a
batch job (with-inherit). These two modes initiate a different
sequence of actions:

d

interactive — whemmake is invoked on the command-line, the
make process as such is implicitly submittedX®DINE via
grsh taking the resource requirements specified irgthake
command-line into accountODINE then selects a “master
machine” for the execution of the parallel job associated with
the parallelmake job and starts themake procedure there. This
is necessary, because thake process can be architecture
dependent and the required architecure is specified in the
gmake command-line. Thgmake process on the master
machine then delegates execution of individnake steps to
the other hosts which have been allocate€OPINE for the
job and which are passed ¢mnake via the parallel environment
hosts file.

batch — in this casgymake appears inside a batch script with
the -inherit option (if the-inherit option was not present, a new
job would be spawned as described for the first case above).
This results imgmake making use of the resources already
allocated to the job into whiciymake is embedded. It will use
grsh -inherit directly to startmake steps. When callingmake

in batch mode, the specification of resource requiremenyseor
and-j options is ignored.

Also single CPU jobs have to request a parallel environment
(gmake -pe make 1 --). If no parallel execution is required,
call gmake with gmake command-line syntax (without
CODINE options and “--"), it will behave like gmake.

Please refer to thgmake manual page in thEODINE Reference
Manual for further detail orgmake.

Checkpointing Jobs

7 Checkpointing Jobs

7.1 User Level Checkpointing

Lots of application programs, especially those, which normally
consume considerable CPU time, have implemented checkpointing
and restart mechanisms to increase fault tolerance. Status
information and important parts of the processed data are repeatedly
written to one or more files at certain stages of the algorithm. These
files (called restart files) can be processed if the application is
aborted and restarted at a later time and a consistent state can be
reached, comparable to the situation just before the checkpoint. As
the user mostly has to deal with the restart files, e.g. in order to
move them to a proper location, this kind of checkpointing is called
user levelcheckpointing.

For application programs which do not have an integrated (user
level) checkpointing an alternative can be to use a so called
checkpointing librarywhich can be provided by the public domain
(see theCondorproject of the University of Wisconsin for example)
or by some hardware vendors. Re-linking an application with such a
library installs a checkpointing mechanism in the application
without requiring source code changes.

7.2 Kernel Level Checkpointing

Some operating systems provide checkpointing support inside the
operating system kernel. No preparations in the application
programs and no re-linking of the application is necessary in this
case. Kernel level checkpointing is usually applicable for single
processes as well as for complete process hierarchies. l.e., a
hierarchy of interdependent processes can be checkpointed and
restarted at any time. Usually both, a user command and a C-library
interface are available to initiate a checkpoint.

CODINE supports operating system checkpointing if available.
Please refer to the ODINE Release Notes for information on the
currently supported kernel level checkpointing facilities.

237

Checkpointing Jobs

238

7.3

7.4

Migration of Checkpointing Jobs

Checkpointing jobs are interruptible at any time, since their restart
capability ensures that only few work already done must be
repeated. This ability is used to bul@®DINE’s migration and
dynamic load balancing mechanism. If requested, checkpointing
CODINE jobs are aborted on demand and migrated to other
machines in th€ ODINE pool thus averaging the load in the
cluster in a dynamic fashion. Checkpointing jobs are aborted and
migrated for the following reasons:

O The executing machine exceeds a load value configured to force
a migration (nigr_load_thresholds - see the
queue_conf manual page in theODINE Reference
Manual).

O The executing queue or the job is suspended, either explicitly by
gmod or gmon or automatically if a suspend threshold for the
queue (see section ,Configuring Load and Suspend Thresholds*
on page 85 of th€ODINE Installation and Administration
Guide) has been exceeded and if the checkpoint occasion
specification for the job (see section ,Submit/Monitor/Delete a
Checkpointing Job* on page 239) includes the suspension case.

You can identify a job which is about to migrate by skete m

for migrating in thegstat output. A migrating job moves back to
cod_gmaster and is subsequently dispatched to another suitable
queue if any is available.

Composing a Checkpointing Job Script

Shell scripts for kernel level checkpointing show no difference from
regular shell scripts.

Shell scripts for user level checkpointing jobs differ from regular
CODINE batch scripts only in their ability to properly handle the
case if they get restarted. The environment vari&d##&STARTEDs

set for checkpointing jobs which are restarted. It can be used to skip
over sections of the job script which should be executed during the
initial invocation only.

Thus, a transparently checkpointing job script may look similar to
the one given below:

&

7.5

Checkpointing Jobs

7.4.1 Example Script File

Y

#!/bin/sh
Force /bin/sh in CODINE
#$ -S /bin/sh

Test if restarted/migrated
if [$RESTARTED =0]; then

fi

0 = not restarted

Parts to be executed only during the first
start go in here

set_up_grid

Start the checkpointing executable
fem

#End of scriptfile

It is important to note that the job script is restarted from the
beginning if a user level checkpointing job is migrated. The user is
responsible for directing the program flow of the shell-script to the
location where the job was interrupted and thus skipping those lines
in the script which are critical to be executed more than once.

O Kernel level checkpointing jobs are interruptible at any
point of time and also the embracing shell script is restarted
exactly from the point where the last checkpoint occurred.
Therefore, the RESTARTERRNvironment variable are of no
relevance for kernel level checkpointing jobs.

Submit/Monitor/Delete a Checkpointing Job

Submitting a checkpointing job works the same way as for regular
batch scripts except for tlgsub -ckpt and-c switches, which
request a checkpointing mechanism and define the occasions at
which checkpoints have to be generated for the job.-dk

option takes one argument which is the name of the checkpointing
environment (see section ,,Checkpointing Support* on page 152 in
the CODINE Installation and Administration Guide) to be used.

239

Checkpointing Jobs

The -c option is not mandatory and also takes one argument. It can
be used to overwrite the definitions of thieen parameter in the
checkpointing environment configuration (see ¢heckpoint

manual page in theODINE Reference Manual for details). The
argument to the -c option can be one of the following one letter
selection (or any combination thereof) or a time value alternatively:

0 n
no checkpoint is performed. This has highest precedence

g s
A checkpoint is only generated if tlled _execd on the jobs
host is shut down.

g m
Generate checkpoint at minimum CPU interval defined in the
corresponding queue configuration (see the

min_cpu_interval parameter in thgueue_conf manual
page).

0 x
A checkpoint is generated if the job gets suspended.

O interval
Generate checkpoint in the given interval but not more
frequently than defined byin_cpu_interval (see above).

The time value has to be specified as hh:mm:ss (two digit hours,
minutes and seconds separated by colon signs).

The monitoring of checkpointing jobs just differs from regular jobs
by the fact, that these jobs may migrate from time to time (signified
by state m for migrating in the output aofstat, see above) and,
therefore, are not bound to a single queue. However, the unique job
identification number stays the same as well as the job name.

Deleting checkpointing jobs works just the same way as described
in section “Controlling CODINE Jobs from the Command-line” on
page 256.

7.6 Submit a Checkpointing Job with gmon

240

Submission of checkpointing jobs via gmon is identical to the
submission of regular batch jobs with the addition of specifying an
appropriate checkpointing environment. As explained in
“Submitting Jobs with gmon (Advanced Example)” on page 200 the
Job Submission dialogue provides an input window for the
checkpointing environment associated with a job. Aside to the input

Checkpointing Jobs

window there is an icon button, which opens the selection dialogue
displayed in figure 73 on page 241. You can select a suitable
checkpoint environment from the list of available ones with it.
Please ask your system administrator for information on the
properties of the checkpointing environments installed at your site
or refer to section “Checkpointing Support” on page 152.

Select an Item

Ayailable checkpoint objects
| ugerdefined

T
Select a checkpoint object

| epd

Ok | Coneel| Hap |

Figure 73: Checkpoint Object Selection

7.7 File System Requirements

When a checkpointing library based user level or kernel level
checkpoint is written, a complete image of the virtual memory the
process or job to be checkpointed covers needs to be dumped.
Sufficient disk space must be available for this purpose. If the
checkpointing environment configuration parametgat_dir is

set the checkpoint information is dumped to a job private location
underckpt_dir . If ckpt_dir is set to NONE, the directory in
which the checkpointing job was started is used. Please refer to the
manual pageheckpoint in the CODINE Reference Manual for
detailed information about the checkpointing environment
configuration.

O You should start a checkpointing job with theqsub -cwd
script if ckpt_dir is set to NONE.

241

Monitoring and Controlling CODINE Jobs

8

An additional requirement concerning the way how the file systems
are organized is caused by the fact, that the checkpointing files and
the restart files must be visible on all machines in order to
successfully migrate and restart jobs. Thus NFS or a similar file
system is required. Ask your cluster administration, if this
requirement is met for your site.

If your site does not run NFS or if it is not desirable to use it for
some reason, you should be able to transfer the restart files
explicitly at the beginning of your shell script (e.g. vigp or ftp) in
the case of user level checkpointing jobs.

Monitoring and Controlling CODINE Jobs

242

In principle, there are three ways to monitor submitted jobs: with
the CODINE graphical user's interfacgmon, from the
command-line with thgstat command or by electronic mail.

Monitoring and Controlling Jobs with gmon

The CODINE graphical user's interfacgmon provides a dialogue
specifically designed for controlling jobs. Theb Control
dialogue is opened by pushing theb Control icon button in
the gmon main menu.

The general purpose of this dialogue is to provide the means to
monitor all running, pending and a configurable number of finished
jobs known to the system or parts thereof. The dialogue can also be
used to manipulate jobs, i.e. to change their priority, to suspend,
resume and to cancel them. Three list environments are displayed,
one for the running jobs, another for the pending jobs waiting to be
dispatched to an appropriate resource and the third for recently
finished jobs. You can select between the three list environments via
clicking to the corresponding tab labels at the top of the screen.

In its default form (see figure 74 on page 246) it displays the
columnsJobld , Priority , JobName andQueue for each

running and pending job. The set of information displayed can be
configured with a customization dialogue (see figure 74 on

page 246), which is opened upon pushing@hstomize button

in theJob Control dialogue. With the customization dialogue it

is possible to select further entries of @@DINE job object to be
displayed and to filter the jobs of interest. The example on page 246

Monitoring and Controlling CODINE Jobs

selects the additional fielddailTo andSubmit Time . TheJob
Control dialogue displayed in figure 74 on page 246 depicts the
enhanced look after the customization has been applied in case of
theFinished Jobs list. The example of the filtering facility in
figure 77 on page 249 selects only those jobs ownddrbi}

which run or are suitable for architectw@aris64 . The
resultingJob Control dialogue showingending Jobs is
displayed in figure 78 on page 250.

0 The Save button the customize dialogue displayed on page
page 246, for example, stores the customizations into the file
.gmon_preferences in the user's home directory and
thus redefines the default appearance of the job control
dialogue.

TheJob Control dialogue in figure 78 on page 250 is also an
example for how array jobs are displayed in gmon.

Jobs can be selected (for later operation) with the following
mouse/key combinations:

O Clicking to a job with the left mouse button while the Control
key is pressed starts a selection of multiple jobs.

O Clicking to another job with the left mouse button while the
Shift key is pressed selects all jobs in between and including the
job at the selection start and the current job.

O Clicking to a job with the left mouse button while the Control
and the Shift key are pressed toggles the selection state of a
single job.

The selected jobs can be suspended, resumed (unsuspended),
deleted, held back (and released), re-prioritized and modified
(Qalter) through the Corresponding buttons at the right side of
the screen.

The actions suspend, unsuspend, delete, hold, modify priority and
modify job may only be applied to a job by the job owner or by
CODINE managers and operators (see “Managers, Operators and
Owners” on page 190). Only running jobs can be
suspended/resumed and only pending jobs can be held back and
modified (in priority as well as in other attributes).

243

Monitoring and Controlling CODINE Jobs

244

Suspending a job means the equivalent to sending the signal
SIGSTORP to the process group of the job with the UKIX
command. l.e., the job is halted and does no longer consume CPU
time. Unsuspending the job sends the signal SIGCONT thereby
resuming the job (see ti@/ manual page of your system for more
information on signalling processes).

0 Suspension, unsuspension and deletion can be forced, i.e.
registered with cod _gmaster without notification of the
cod_execd controlling the job(s), in case the corresponding
cod_execd is unreachable, e.g. due to network problems.
Use theForce flag for this purpose.

If using theHold button on a selected pending job, 8t Hold
sub-dialogue is opened (see figure 74 on page 246). It allows to set
and to reset user, system and operator holds. User holds can be
set/reset by the job owner as well&3DINE operators and

managers. Operator holds can be set/reset by managers and operator
and manager holds can be set/reset by managers only. As long as
any hold is assigned to a job it is not eligible for execution. An
alternate way to set/reset holds aredh#er, ghold andqgrls

commands (see the corresponding manual page®DINE

Reference Manual).

If the Priority button is pressed another sub-dialogue is opened
(figure 74 on page 246), which allows to enter the new priority of
the selected pending jobs. The priority determines the order of the
jobs in the pending jobs list and the order in which the pending jobs
are displayed by théob Control dialogue. Users can only set

the priority in the range between 0 and -102@DINE operators

and managers can also increase the priority level up to the
maximum of 1023 (see section ,Job Priorities” on page 137 in the
CODINE Installation and Administration Guide for details about

job priorities).

TheQalter button, when pressed for a pending job, opens the

Job Submission screen described in “Submitting CODINE

jobs” on page 193 with all the entries of the dialogue set
corresponding to the attributes of the job as defined during
submission. Those entries, which cannot be changed are set
insensitive. The others may be edited and the changes are registered
with CODINE by pushing th&alter button (a replacement for
theSubmit button) in theJob Submission dialogue.

Monitoring and Controlling CODINE Jobs

TheVerify flag in theJob Submission screen has a special
meaning when used in the “galter” mode. You can check pending
jobs for their consistency and investigate why they have not been
scheduled yet. You just have to select the desired consistency
checking mode for th¥erify flag and push th@alter button.

The system will display warnings on inconsistencies depending on
the selected checking mode. Please refer to “Submitting Jobs with
gmon (Advanced Example)” on page 200 and-theption in the
galter manual page for further information.

Another method for checking why jobs are still pending is to select
a job and click on theWhy 7’ button of theJob Control

dialogue. This will open th®bject Browser dialogue and

display a list of reasons which prevented @@DINE scheduler

from dispatching the job in its most recent pass. An example
browser screen displaying such a message is shown in figure 81 on
page 252.

0 The “Why ?’ button only delivers meaningful output if the
scheduler configuration parameterschedd_job_info is
set to true (seesched _conf in the CODINE Reference
Manual).

O The displayed scheduler information relates to the last
scheduling interval. It may not be accurate anymore by the
time you investigate for reasons why your job has not been
scheduled.

TheClear Error button can be used to remove an error state
from a selected pending job, which had been started in an earlier
attempt, but failed due to a job dependent problem (e.g., insufficient
permissions to write to the specified job output file).

O Error states are displayed using a red font in the pending
jobs list and should only be removed after correcting the
error condition, e.g., viagalter.

O Such error conditions are automatically reported via
electronic mail, if the job requests to send e-mail in cases it
is aborted (e.g. via thegsub -m a option).

To keep the information being displayed up-to-dateon uses a
polling scheme to retrieve the status of the jobs fimod _gmaster.
An update can be forced by pressingRedresh button.

245

Monitoring and Controlling CODINE Jobs

Finally, theSubmit button provides a link to thg/mon Job
Submission dialogue (see figure 64 on page 200 for example).

|[E] QMON === Job Control

s
—
g |
—|
Gean]
G|
—

Figure 74:Job Control dialogue - standard form

246

Monitoring and Controlling CODINE Jobs

ElioB CUSTOMIZE]
Filter Jobs [Select Joh Ficlds

Availlable Fields. Selected Fields
script Al SubmitTime
SubmitTime MailTo
StartTime
ScheduleTime
AccountString
Cell

Cwo
IstderrPaths
Hold _ﬂq
Mergelutput
MailOptions
MailTo
Motify
stdoutPaths
Restart
JobArgs

Figure 75:Job Control customization

247

Monitoring and Controlling CODINE Jobs

== Job Control

s
Lo |
—
B
|—'
B
|—'
B
l -l

Figure 76:Job Control dialogueFinished Jobs - enhanced

248

Monitoring and Controlling CODINE Jobs

IFlJOB CUSTOMIZE

Figure 77:Job Control filtering

249

Monitoring and Controlling CODINE Jobs

[[E] QMON == Job Contral

Kk

e
—
R
S
T
[
o)
=

Figure 78:Job Control dialogue - after filtering

250

Monitoring and Controlling CODINE Jobs

Figure 79:Job Control holds

Figure 80: Job Control priority definition

251

Monitoring and Controlling CODINE Jobs

«CODINE
\

QMON == Browser

[l E3

Object Browser

scheduling info

quELE
quELE
HuELE

"fangorn,q" dropped because it is temporarily not available

"hilbur.q" dropped because it iz overloaded

"duzin.g" dropped because it is dizshled

gueus "gloin,q" dropped because it is disshled

(-1 archenec) cannot run at host "DURIN,genias.de" because it offers only hliarch=sund

(-1 archenec) cannot run st host "ARAGORN.geniss,de" because it offers only hliarc
(-1 arch=nec} cannot run st host "LIS,genias,de" hecause it offers only hltarch=zl:
-1 archenec) cannot run st host "EOWYM.genias,de" becauss it offers only hliarche

' :'.:; _Object__

stdout
uene

Measages

A

Lig

Done

el

8.2

A

Figure 81: Browser displaying scheduling information

Additional Information with the ~ gmon Object Browser

The gmon Object Browser can be used to quickly retrieve
additional information oi€CODINE jobs without a need to
customize thdob Control dialogue as explained in section
“Monitoring and Controlling Jobs with gmon” on page 242.

TheObject Browser is opened upon pushing tBeowser

icon button in thegmon main menu. The browser displays
information abouCODINE jobs if theJob button in the browser is
selected and if the mouse pointer is moved over a job's line in the
Job Control dialogue (see figure 74 on page 246 for example).

The browser screen in figure 82 on page 253 gives an example of
the information displayed in such a situation.

Monitoring and Controlling CODINE Jobs

AMON === Browser !E[
.&CQD'NE Object Browser
.

Hard Resources: h_wmen=10M,nastran=1.h_cpu=3:: -Object
Soft Resources: arch=solarizbd,shared-dizsk=1G T
(R EE TR LR PR PR R PR R pata
RS PSR SR EEPEEE R EEEE B PR P B B

stierr |
Job: 130 _l
Job Hame: star-cd ey
Job Script: ztar,zh Toh
Owrer: ferstl
Priority: 0
Cell: default Messages
Checkpoint Ohbject.:
Hard Resources: h_wmen=10M h_cpu=3:3 il
Soft Resources: arch=zolaristd,. shared-disk=10G e

R R L R P PR SRR PSR B R T
i Dione

S

11

Figure 82: Object Browser - job

8.3 Monitoring with gstat

Submitted jobs can also be monitored with@@DINE gstat
command. There are two basic forms of dséat command
available:

% qstat

% gstat -f

The first form provides an overview on the submitted jobs only (see
table 6 on page 255). The second form includes information on the
currently configured queues in addition (see table 7 on page 255).

AR

Monitoring and Controlling CODINE Jobs

254

In the first form, a header line indicates the meaning of the columns.
The purpose of most of the columns should be self-explanatory. The
state column, however, contains single character codes with the
following meaningr for running,s for suspendedj for queued

andw for waiting (see thgstat manual page in theODINE
Reference Manual for a detailed explanation of tlgstat output
format).

The second form is divided into two sections, the first displaying

the status of all available queues, the second (entitled with the

- PENDING JOBS - ... separator) shows the status of the
cod_gmaster job spool area. The first line of the queue section
defines the meaning of the columns with respect to the enlisted
queues. The queues are separated by horizontal rules. If jobs run in
a queue they are printed below the associated queue in the same
format as in thestat command in its first form. The pending jobs

in the second output section are also printed as in gstat's first form.

The following columns of the queue description require some
explanation:

0 qtype
The queue type - one of B(atch), I(nteractive), P(arallel) and
C(heckpointing) or combinations thereof or alternatively
T(ransfer).

O used/free
The count of used/free job slots in the queue.

O states
The state of the queue - one of u(nknown), a(laram),
s(uspended), d(isabled), E(rror) or combinations thereof.

Again, thegstat manual page contains a more detailed description
of the gstat output format.

Various additional options to thgstat command enhance the
functionality in both versions. The option can be used to display

the resource requirements of submitted jobs. Furthermore the
output may be restricted to a certain user, to a specific queue and the
-/ option may be used to specify resource requirements as described
in section “Resource Requirement Definition” on page 213 for the
gsub command. If resource requirements are used, only those

Monitoring and Controlling CODINE Jobs

queues (and the jobs running in these queues) are displayed which

match the resource requirement specification irgiat

command-line.

Table 6: gstat example output

job-1D prior name user state submit/start at queue function
231 0 hydra craig r 07/13/96 20:27:15 durin.q MASTER
232 0 compile penny r 07/13/96 20:30:40 durin.q MASTER
230 0 blackhole don r 07/13/96 20:26:10 dwain.q MASTER
233 0 mac elaine r 07/13/96 20:30:40 dwain.q MASTER
234 0 golf shannon r 07/13/96 20:31:44 dwain.q MASTER
236 5 word elaine qw 07/13/96 20:32:07
235 0 andrun penny qw 07/13/96 20:31:43
Table 7: gstat -f example output
gueuename qtype used/free load_avg arch states
dq BIP 0/1 99.99 sun4 au
durin.q BIP 2/2 0.36 sun4
231 0 hydra craig r 07/13/96 20:27:15 MASTER
232 0 compile penny r 07/13/96 20:30:40 MASTER
dwain.q BIP 3/3 0.36 sun4
230 0 blackhole don r 07/13/96 20:26:10 MASTER
233 0 mac elaine r 07/13/96 20:30:40 MASTER
234 0 golf shannon r 07/13/96 20:31:44 MASTER
fq BIP 0/3 0.36 sun4

B R R R R R B R R R R R S B R R B R R

- PENDING JOBS - PENDING JOBS - PENDING JOBS - PENDING JOBS - PENDING JOBS -

B R R R R R B R R R R R S B R R B R R

236

235

5

0

word

andrun

elaine

penny

qw

qw

07/13/96

07/13/96

20:32:07

20:31:43

255

Monitoring and Controlling CODINE Jobs

256

8.4

8.5

Monitoring by Electronic Mail

The gsub -m switch requests electronic mail to be sent to the user
submitting a job or to the email address(es) specified by/hiéag

if certain events occur (see theub manual page for a description
of the flags). An argument to the1 option specifies the events. The
following selections are available:

Ob
Mail is sent at the beginning of the job.
0 e
Mail is sent at the end of the job.
0 a
Mail is sent when the job is aborted (e.g. yoe@/ command).
s
Mail is sent when the job is suspended.
0 n
No mail is sent (the default).
Multiple of these options may be selected with a singbeoption in
a comma separated list.

The same mail events can be configured by help of the gmon Job
Submission dialogue, see section ,Submitting Jobs with gmon
(Advanced Example)” on page 200.

Controlling CODINE Jobs from the Command-line

The section “Monitoring and Controlling Jobs with gmon” on page
242 explains holLODINE jobs can be deleted, suspended and
resumed with th€ ODINE graphical user's interfaagmon.

From the command-line, thgde/ command can be used to cancel
CODINE jobs, regardless whether they are running or spooled. The
gmod command provides the means to suspend and unsuspend
(resume) jobs already running.

For both commands, you will need to know the job identification
number, which is displayed in response to a succegsfiti
command. If you forget the number it can be retrievedysiat

(see section “Monitoring with gstat” on page 253).

Included below are several examples for both commands:

Job Dependencies

% qdel job_id

% qdel -fjob_idljob_id2

% gmod -s job_id

% gmod -us -fjob_idLljob_id2
%qgmon -s job_id.task _id_range

In order to delete, suspend or unsuspend a job you must be either
the owner of the job, @ODINE manager or operator (see
“Managers, Operators and Owners” on page 190).

For both commands thé force option can be used to register a
status change for the job(s)atd gmaster without contacting
cod_execdin casecod execdis unreachable, e.g. due to network
problems. Thefoption is intended for usage by the administrator.
In case ofgdel, however, users can be enabled to force deletion of
their own jobs if the flaENABLE_FORCED_QDEHh the cluster
configurationgmaster_params entry is set (see the
codine_confmanual page in thEODINE Reference Manual for
more information).

9 Job Dependencies

The most convenient way to build a complex task often is to split
the task into sub-tasks. In these cases sub-tasks depend on the
successful completion of other sub-tasks before they can get started.
An example is that a predecessor task produces an output file which
has to be read and processed by a successor task.

CODINE supports interdependent tasks with its job dependency
facility. Jobs can be configured to depend on the successful
completion of one or multiple other jobs. The facility is enforced by
thegsub -hold _jid option. A list of jobs can be specified upon
which the submitted job depends. The list of jobs can also contain
subsets of array jobs. The submitted job will not be eligible for
execution unless all jobs in the dependency list have completed
successfully.

257

Controlling Queues

10 Controlling Queues

As already stated in section “Queues and Queue Properties” on
page 181, the owners of queues have permission to
suspend/unsuspend or disable/enable queues. This is desirable, if
these users need certain machines from time to time for important
work and if they are affected strongly 6YDDINE jobs running in

the background.

There are two ways to suspend or enable queues. The first, using the
gmon Queue Control dialogue and the second utilizing the
gmod command.

10.1 Controlling Queues with gmon
Clicking on theQueue Control icon button in thegmon main

menu brings up th®ueue Control dialogue. An example screen
is displayed in “Queue Control dialogue” on page 259.

258

Controlling Queues

D MON == Queue [;onlrol

Figure 83: Queue Control dialogue

The purpose of th®ueue Control dialogue is to provide a quick
overview on the resources being available and on the activity in the
cluster. It also provides the means to suspend/unsuspend and to
disable/enable queues as well as to configure queues. Each icon
being displayed represents a queue. If the main display area is
empty, no queues are configured. Each queue icon is labelled with
the queue name, the name of the host on which the queue resides
and the number of job slots being occupied.dbd_execd is

259

Controlling Queues

260

running on the queue host and has already registered with
cod_gmastera picture on the queue icon indicates the queue host’s
operating system architecture and a color bar at the bottom of the
icon informs about the status of the queue. A legend on the right
side of theQueue Control dialogue displays the meaning of the
colors.

For those queues, the user can retrieve the current attribute, load and
resource consumption information for the queue and implicitly of
the machine which hosts a queue by clicking to the queue icon with
the left mouse button while ttghift key on the keyboard is
pressed. This will pop-up an information screen similar to the one
displayed in figure 84 on page 262 (see there for a detailed
description).

Queues are selected by clicking with the left mouse on the button or
into a rectangular area surrounding the queue icon buttons. The
Delete , Suspend /Unsuspend orDisable /Enable buttons

can be used to execute the corresponding operation on the selected
gqueues. The suspend/unsuspend and disable/enable operation
require notification of the correspondingd _execd. If this is not
possible (e.g. because the host is dowe)d gmaster internal

status change can be forced if therce toggle button is switched

on.

If a queue is suspended, the queue is closed for further jobs and the
jobs already executing in the queue are suspended as explained in
section “Monitoring and Controlling Jobs with gmon” on page 242.
The queue and its jobs are resumed as soon as the queue is
unsuspended.

O If ajobin a suspended queue has been suspended explicitly
in addition, it will not be resumed if the queue is
unsuspended. It needs to be unsuspended explicitly again.

Queues which are disabled are closed, however, the jobs executing
in those queues are allowed to continue. To disable a queue is
commonly used to ,drain” a queue. After the queue is enabled, it is
eligible for job execution again. No action on still executing jobs is
performed.

The suspend/unsuspend and disable/enable operations require
gqueue owner o€EODINE manager or operator permission (see
section ,Managers, Operators and Owners" on page 190).

Controlling Queues

The information displayed in tf@ueue Control dialogue is
update periodically. An update can be forced by pressing the
Refresh button. TheDone button closes the dialogue.

TheCustomize button allows you to select the queues to be
displayed via a filter operation. The sample screen in figure 85 on
page 263 shows the selection of only those queues which run on
hosts belonging to architectuosf4 (i.e Compaq Unix version 4).
TheSave button in the customize dialogue allows you to store
your settings in the filggmon_preferences in your home
directory for standard reactivation on later invocationgrobn.

For the purpose of configuring queues a sub-dialogue is opened
when pressing thadd or Modify button on the right side of the
Queue Control screen (see section ,Configuring Queues with
gmon“ on page 79 in theODINE Installation and

Administration Guide for details).

In the following, a detailed description of the queue attribute screen
displayed below is given:

261

Controlling Queues

BAlhihules for queue bilbur.q
Attribure Slot-Limits/Fired Attabutes Load{scaled)/Consumable
verlog 10,000 iy
scratch disk 0.000
trala TRUE
arch solaris none
b il il
load_awg 0188
load_short 0191
load_medivm 0188
load long 0195
np_load_ avg 0188
np_load_short 0191
np_load medinm 0188
np_load_long 0195
merm free 420000
mem_total 95.000M
swrap_free 164.000M1
swrap_total 164.000k1
virmal free 206.000n1
virmal_total 260,000
mem nsed 54.000M]
&]
o

Figure 84: Queue attribute display

All attributes attached to the queue (including those being inherited
from the host or cluster) are listed in tAdtribute column. The
Slot-Limits/Fixed Attributes column shows values for
those attributes being defined as per queue slot limits or as fixed
complex attributes. Thieoad(scaled)/Consumable column
informs about the reported (and if configured scaled) load
parameters (see section ,Load Parameters” on page 121 in the
CODINE Installation and Administration Guide) and about
available resource capacities based orCOG®INE consumable
resources facility (see section ,Consumable Resources” on page
105).

262

Controlling Queues

0 Load reports and consumable capacities may overwrite
each other, if a load attribute is configured as a consumable
resource. The minimum value of both, which is used in the
job dispatching algorithm, is displayed.

O The displayed load and consumable values currently do not
take into account load adjustment corrections as described
in section “Execution Hosts” on page 65 of th€ ODINE
Installation and Administration Guide

ElQUEUE CUSTOMIZE

Filter Queues

Filter Resmurces Availahle Resources
2b arch == ostd 4] 3b arch
3b calendar

123 fafree
1

L1

23 fstat
feused
b _core
hocpu
h_data

b fsize

2 3 3 D3 3

b rss

T I !

Figure 85: Queue Control customization

10.2 Controlling Queues with gmod

Section “Controlling CODINE Jobs from the Command-line” on
page 256 explained how ti@&ODINE commandgmod can be used
to suspend/unsuspe@DDINE jobs. However, thgmod
command additionally provides the user with the means to
suspend/unsuspend or disable/enable queues.

263

Customizing gmon

The following commands are examples hgmod is to be used for
this purpose:

% gmod -s q_name

% gmod -us -fg_namel,q_name2

% gmod -d g_name

% gmod -e g_namel,q_name2,q_name3

The first two commands suspend or unsuspend queues, while the
third and fourth command disable and enable queues. The second
command uses thggnod -f option in addition to force registration

of the status change aod_gmaster in case the corresponding
cod_execd is not reachable, e.g. due to network problems.

0 Suspending/unsuspending as well as disabling/enabling
gueue requires queue ownelCODINE manager or operator
permission (see section ,Managers, Operators and Owners*
on page 190).

O You can usegmod commands withcrontab or at jobs.

11 Customizing gmon

264

The look and feel ofmon is largely defined by a specifically
designed resource file. Reasonable defaults are compiled-in and a
sample resource file is available under
<codine_root>/gmon/Qmon

The cluster administration may install site specific defaults in
standard locations such as

lusr/lib/X11/app-defaults/Qmon , by includinggmon
specific resource definitions into the standXidkefaults or
Xresources files or by putting a site specifigmonfile to a
location referenced by standard search paths such as
XAPPLRESDIR Please ask your administrator if any of the above
is relevant in your case,

Customizing gmon

In addition, the user can configure personal preferences by either
copying and modifying th&monfile into the home directory (or to
another location pointed to by the privd@PPLRESDIRsearch
path) or by including the necessary resource definitions into the
user's privateXdefaults or .Xresources files. A private
Qmonresource file may also by installed via #rdb command
during operation or at start-up of the X11 environment, e.g. in a
.Xinitrc resource file.

Please refer to the comment lines in the sai@ph@nfile for
detailed information on the possible customizations.

Another means of customizinggmon has been explained for the job
and queue control customization dialogues shown in figure 74 on
page 246 and in figure 85 on page 263. In both dialogues, the
Save button can be used to store the filtering and display
definitions configured with the customization dialogues to the file
.gmon_preferences in the user’s home directory. Upon being
restartedgmon will read this file and reactivate the previously
defined behavior.

265

Customizing gmon

266

