If we use Best First search with $f(n)=g(n)+h(n)$, where
$\mathrm{g}(\mathrm{n})$ is the cost from the start to n , and $\mathrm{h}(\mathrm{n})$ is an estimated cost to get from n to goal we call it "Algoritm A".

We will look at four different sets av estimation of $h(n)$.
a) Optimistic, but not monotone
b) Not optimistic (and therefore not monotone)
c) All estimates equal to zero (monotone, and therefore optimistic)
d) All estimatimates are perfect (monotone, and therefore optimistic)

We will use the following problem graph

The distances in the picture are the real distances between the nodes.

a) Optimistic, but not monotone

The estimated remaining distances to the goal, G are:

From A	16 (Irrelevant)	From D	2
From B	4	From E	1
From C	16	From F	4

Open
A16
B14 C20
D18 C20
C20 E23 F24
E11 B12 F24
B12 F24 G24
D16 F24 G24
F22 G24
G22

A16
A16 B14
A16 B14 D18
A16 C20 D18
A16 C20 E11
A16 B12 C20 E11
A16 B12 C20 D16 E11
A16 B12 C20 D16 E11F2

The estimations are optimistic, so we know that the found path is the best.
The heuristic function, h, is not monotone, however. $h(C)=16, h(B)=4$, and $\operatorname{cost}(C, B)=4$, so $|h(C)-h(B)|>\operatorname{cost}(C, B)$. Therefore we had the first occurence of node B, which was later replaced by a better B.

b) Not optimistic (and therefore not monotone)

If we replace the estimated distance from F to G with 8 we get:

From A	16 (Irrelevant)	From D	2
From B	4	From E	1
From C	16	From F	8

(2)

A16
B14 C20
D18 C20
C20 E23 F28
E11 B12 F28
B12 G24 F28
D16 G24 F28
G24 F26

Closed

A16
A16 B14
A16 B14 D18
A16 C20 D18
A16 C20 E11
A16 B12 C20 E11
A16 B12 C20 D16 E11

Now we have G24 as the current state, so we stop the search. We have found a solution according to method A , but this is not the best one. The big estimate of F hid the best solution.
c) All estimates equal to zero (monotone, and therefore optimistic)

From A 0
From B 0
From C 0

From D 0
From E 0
From F 0

Open
Closed

A0
C4 B10
A0
B8 E1
A0 C4
E10 D14
D14 G24
A0 C4
A0 C4 B8
F18 G24
G22
A0 C4 B8 D14
A0 C4 B8 D14 F18
This is a kind of breadth first search. We will find the best path, but it might take time. When we find a node, it is via the best path.

d) All estimatimates are perfect (monotone, and therefore optimistic)

The real distances are

From A	22 (Irrelevant)	From D	8
From B	14	From E	14
From C	18	From F	4

D (4)
14+8

22

Open
A22
C22 B24
B22 E24
D22 E24
F22 E24
G22 E24

Closed

A22
A22 C24
A22 C24 B22
A22 C24 B22 D22
A22 C24 B22 D22 F22

Now we have G22 as the current state, so we stop the search. We have found the best path in shortest possible time. All nodes we visit have the same f-value.
All h -values are greater than the corresponding h -value in c) (which are all zero), so d) is more informed than c).

