Artificial Intelligence: Course Recap

What you need to know for the exam
Search

• What are:
 – State Spaces
 – Search Trees
 – Graph based versus Tree based searches

• Basic search strategies:
 – How do they work?
 – When might they fail?

• What are, and how do they relate to a basic Greedy Hill Climb:
 – Greedy Hill Climb with Restarts
 – Simulated Annealing
 – Local Beam (See notes for the natural language lecture)
 – Stochastic Local Beam (See notes for the natural language lecture)

• Be ready to implement:
 – A* search
 – Basic Dynamic Programming algorithms for path finding
Natural Computation

• Be ready to explain:
 – What natural computation is
 – The major forms of learning
 – Neural networks, and what their parameters do
 – Population methods, and their relative merits to other approaches
 – Terminology

• Be prepared to give an examples of application that would be appropriate for natural computation methods, and to explain why.
Logic/Planning

• What are, and when are they used/why are they useful:
 – Definite Clauses
 – Conjunctive Normal Form
 – Planning Domain Definition Language
 – Situational Calculus
 – Database Semantics

• Be ready to execute:
 – Forward and Backward Chaining, using AND-OR graphs
 – Partial orderings of actions
 – Calculations of earliest and latest start times on partial orders of actions.
 – Planning graphs
Probability Theory

• Be prepared to define/use any basic notions from discrete probability theory:
 – Random Variables
 – Probability Functions
 – Bayes Theorem
 – Chain Rule of Probability
 – Independence
 – Conditional Independence
 – Proir and Posterior distributions
 – Expected Value and Expected Utility
 – Etc...
Probabilistic Models I

• What are, and, if appropriate, how are they related to basic notions in probability theory?
 – Markov Models
 – Hidden Markov Models
 – Bayesian Networks
 – Dynamic Bayesian Networks
 – The dynamics/transition and observation/sensor elements of a state model
 – Influence Diagrams/Decision theoretic Bayesian networks
 – Markov Random Fields *(See notes for the natural language lecture)*
 – The Naive Bayes Classifier *(See notes for the natural language lecture)*

• Regarding Bayesian networks, what are:
 – The Markov Blanket of a node?
 – The Markov condition?
 – Markov Equivalence?
Probabilistic Models II

• Be ready to execute:
 – Hidden or visible Markov Models to model particular systems.
 – Dynamic Programming algorithms to estimate state probabilities and most probable paths for (possibly hidden) Markov models.
 – Parameter learning for Bayesian networks using Dirichlet distributions

• Be able to explain:
 – Missing Data algorithms for Bayesian network parameter learning:
 • Expectation Maximization
 • Gibbs Sampler
 – The Gibbs Sampler algorithm for estimating probabilities in a Markov Random Field

• Be ready to discuss:
 – The basic idea behind Bayesian network structural learning
AI and Games

• Be prepared to discuss
 – Common features of AI in games.
 – How the goals of AI differ in gaming as opposed to academia and/or industry.
 – Common methods.
 • Pay particular attention to Minimax searches and their use. (Read the book for more depth on this.)
AI and Natural Language

• By prepared to explain:
 – The basic process of statistical based machine translation.
 – The basics of how (Hidden) Markov models might be applied to speech or text recognition.
Who to talk to

Mike:
Search, Logic/Planning, Probability Theory, Probabilistic Models, AI and Natural Language
Office 1320
mikeashcroft@inatas.com

Olle:
Natural Computation, AI and Computer Games
Office 1256
olle.gallmo@it.uu.se

Roland:
Course and Exam Administration
Office 1356
Roland.Bol@it.uu.se