AI in Computer Games

Who am I?
- Lecturer at Uppsala University, Dept. of information technology
- AI, machine learning and natural computation
- Hobby: Gamer and game AI-analyst since 1980

Goals
- Games are entertainment!
- Important that things behave naturally
 - not necessarily perfect
 - "things" are not always creatures
- Follow (the game's) natural laws
 - and avoid cheating
- Characters should be aware

Game A(I?)
- Academic AI is usually concerned with making rational decisions
 - Searching for the optimal solution
- Game AI is more often about
 - Artificial Life
 - Believable behaviour
 - including realistic physics
 - Game balancing
 - challenging, but not unbeatable opponents

Game categories
- Role Playing Games (RPG, MMORPG)
- First Person (Third Person) Shooters (FPS/TPS)
- Strategy games (RTS, DTS, 4X)
- Sports games
- Simulation games
- Adventure games
- Classic strategy games
- Fighting games
- ...
History -1980

- **1960's**
 - First computer games
 - SpaceWar! (PDP1, for two human players) (1962)
 - Board games (e.g. chess) against the machine
 - 1970's
 - Pong (early arcade game) (1972)
 - Computer controlled opponent in arcade games
 - Space Invaders (1978)
 - Predefined patterns, no awareness
 - "AI" takes 1-2% of CPU

- **1980's**
 - Pac-Man (1980)
 - aware opponents with personality
 - A computer beats a master chess player (1983)
 - First fighting games
 - Adventure games
 - Dungeon, Zork, ...
 - First MORPG (MUD)

- **1990's**
 - FPS and RTS games
 - Games about/with evolution and learning (Creatures, Black&White)
 - Deep Blue beats Kasparov (1997)
 - Graphic cards take the load off the CPU
 - AI takes 10-35% of CPU

- **2000-**
 - Computer games is a big industry
 - Games sell for about 25 billion USD per year
 - Market grows with 16% per year
 - A game project: 2 years, 8-15 million USD
 - Less cheating in AI
 - Characters are more aware
 - Characters collaborate better
 - Focus shift from graphics towards AI
 - Large part of the code is AI code (often made from scratch for each game)

Typical Game AI topics

- Strategical/tactical decisions
 - Against or with you
 - Search for best counter action
 - adaptivity
- Director level AI
- Simulation
 - of natural behaviour
 - for animation (e.g. bird flocks)
- Shortest path problems

Why is Game AI hard?

(what makes them interesting)

- Huge state space
- Huge action space
- Multiple tasks
 - on different levels of abstraction
 - of different types
- Non-deterministic
 - makes planning difficult
 - post-conditions difficult to set
- Often real time
Some methods
- Minimax
 - Logic games, search for best counter action
- Finite State Machines (FSM)
- Behaviour
- A*
 - For shortest path problems
- Particle methods
 - Simulation of flocks, smoke, water, grass,...
- Smart terrain

Minimax (counter actions)

Finite State Machines
Pacman ghost (red)

Reinforcement Learning

Best ≠ shortest
Smart terrain
- Store knowledge in objects instead of in the characters
 - 🍵 drink me! ➔ not thirsty, warm
- Easier to know what is relevant
- Easier to add new objects later
- Attributed to Will Wright (Sims)

Thoughts on learning
- Game characters are short lived
- Learning requires many attempts
 - **Keep it simple!**
- Probabilistic methods (Menace)
- Evolutionary methods
 - genetic algorithms and PSO
- Neural networks
 - in game development, but not in the game

Thoughts on learning

AI in various game types
- Board games
- Role playing games
- Strategy games
- Platform and sports games
- Racing games

Board games
- Discrete time / turn based
- Often deterministic
- AI is in the opponent
- AI goal is non-typical (for games)
 - usually strives for optimality
- Tree search
- Library
- Reinforcement learning

Role Playing and Adventure
- AI in enemies, bosses, party members and other NPCs, ...
- Scripting, FSMs, Messaging
- Role Playing ≠ Combat
 - combat oriented games are simpler to make
- Conversations (grammar machines)
- Quest generators
- Towns
Town behaviour

- Need-based system
 - Needs (e.g. hunger, business, ...)
 - Actions (e.g. eating, trading, ...)
 - "Need pathfinding"
- Problems
 - Finding people
 - Unwanted interaction between NPCs

Strategy games

- AI heavy (on both sides)
- Shortest path problems
- Strategical decisions
- Tactical decisions
- Town building and resource management
 - planning
- Indigenous life
- Reconnaissance (fog-of-war)
- Diplomacy
- Know thy enemy (observe and adapt)

Action games (FPS, TPS)

- Enemies
- Cooperative agents
- Weapons
- Attention
 - requires perception
 - requires a good physics engine
- Pathfinding
- Spatial reasoning
- Anticipation
Platforms and sports

- Platform games
 - Since 1996 (Mario 64) in 3D
 - Camera problems
- Sports games
 - Camera problems (harder)
 - Cooperation
 - Game balance can be difficult
 - Learning

Platforms and sports

- Platform games
 - Since 1996 (Mario 64) in 3D
 - Camera problems
- Sports games
 - Camera problems (harder)
 - Cooperation
 - Game balance can be difficult
 - Learning

Racing games

- Track AI
- Traffic (including pedestrians)
- Physics
- Tuning NPCs and vehicle parameters
 - Genetic algorithms
 - Particle swarm optimization

Racing games

- Track AI
- Traffic (including pedestrians)
- Physics
- Tuning NPCs and vehicle parameters
 - Genetic algorithms
 - Particle swarm optimization

Conclusion

- Making realistic games requires more than good graphics
- Computer controlled characters must behave
 - Naturally
 - Reasonably intelligent, without cheating!
- Graphics has dedicated hardware
 - More processing power available to AI
- In the future
 - Dedicated AI cards?
 - Combined AI/Physics/Graphics cards?
 - Multicore processors
 - Knowledge transfer from games to robotics

Robocup (Aibo league)