Learning from nature

Olle Gällmo
Uppsala University
Department of Information Technology

Natural computation

- Using computers to model/simulate natural phenomena
 - to learn more about these phenomena
 - to learn new ways to solve computational problems
 - to learn how to build computational devices from biological material

What is learning?

- The ability to improve over time, based on experience
- Why?
 - Solutions to problems are not always programmable!
- Examples
 - Handwritten character recognition
 - Adaptive control of production processes
 - Game programs that adjust parameters and/or strategies over time
 - Learning to walk by trial-and-error

Three forms of learning

<table>
<thead>
<tr>
<th>Supervised</th>
<th>Reinforcement</th>
<th>Unsupervised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Environment</td>
<td>Output</td>
</tr>
<tr>
<td>Target</td>
<td>State</td>
<td>Action</td>
</tr>
<tr>
<td>Feedback</td>
<td>Reward</td>
<td></td>
</tr>
<tr>
<td>Learning</td>
<td>Agent</td>
<td></td>
</tr>
<tr>
<td>System</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Techniques (examples)

- Artificial neural networks (ANNs)
 - Inspired by biological nervous systems
 - E.g. Multilayer perceptrons, Self-Organizing Maps
- Reinforcement learning (RL)
 - Inspired by psychology, ethology and behaviourism
 - E.g. Menace, Q-Learning, TD(λ)
- Evolutionary Computing (EC)
 - Inspired by genetics, natural selection and evolution
 - E.g. Genetic algorithms, Genetic Programming
- Swarm intelligence
 - Inspired by social animals (bird flocks, ants, etc.)
 - E.g. Particle Swarm Optimization, Ant Colony Optimization, Cellular automata

Computers and humans
Artificial neural networks
- Begun in the 1940’s
- Many simple processing elements (called neurons), operating in parallel and communicating through weighted connections
- Based on very simplistic models of biological neurons and synaptic connections
- Used both for industrial applications and as a model to study biological systems

An artificial neuron
\[y = f(S) \]
\[S = \sum_{i} w_i x_i - \theta = \sum_{i} w_i x_i \]
\[f(S) = \text{any non-linear, saturating function, e.g. a step function or a sigmoid:} \]
\[f(S) = \frac{1}{1+e^{-S}} \]

Multilayer perceptrons
Inputs
\[x_1 \]
\[x_2 \]
\[\vdots \]
\[x_n \]
Outputs
\[y \]
Can approximate any function to any degree of accuracy, given a sufficiently rich internal structure (number of nodes and layers)
Most common training algorithm: Backpropagation

Back propagation
Input
\[\text{Error function} \]
Output (y)
Desired output (d)
The contribution to the error \(E \) from a particular weight \(w_{ji} \) is
\[\frac{\partial E}{\partial w_{ji}} = \eta \frac{\partial E}{\partial y} \frac{\partial y}{\partial S} \frac{\partial S}{\partial w_{ji}} \]
The weight should be moved in proportion to that contribution, but in the other direction:
\[\Delta w_{ji} = -\eta \frac{\partial E}{\partial w_{ji}} \]
Error function and activation function must both be differentiable.

Artificial neural networks ...
- store information in the weights, not in the nodes
- are trained, by adjusting the weights, not programmed
- can generalize to previously unseen data
- are adaptive
- are concurrent
 - well suited for parallel simulation and/or hardware implementation
- are fault tolerant

Reinforcement learning
- Reward: an evaluation of the environmental state (only indirectly an evaluation of the agent’s actions)
- Goal: To make decisions (find actions) that maximise the long term reward received by the agent.
- The agent must be allowed to explore, i.e. sometimes do actions that at the time seem sub-optimal.
- Learning by trial-and-error
MENACE
(D. Michie 1961)

Typical RL problems
- Games
- Autonomous robots
- Control of unstable systems (e.g., learning to ride a bicycle)
- Sequential optimization problems, for example:
 - Controlling the elevators in an office building
 - Resource allocation in computer networks

Evolutionary computing
- Used for learning problems where the task is to maximize some measure of success
- Essentially the same family of problems as in reinforcement learning, but the methods are different
- Methods inspired by genetics, natural selection and evolution
- However, the “evolution” is controlled, so it’s more like breeding

Genotypes
- A solution to the problem is encoded by the individual’s genotype (genome, artificial chromosome)
 - In genetic algorithms, a string (e.g., bit string)
 - In genetic programming, a computer program
 - In evolutionary programming, a representation of a state machine
 - ...
GP example: function approximation

- Task: Given a training set, discover the function $f(x) = x + x^2 + x^3 + x^4$, for $x \in [-1,1]$
- A neural network would do a numerical approximation
- GP is combinatorial – it should be able to find the exact function (if given the necessary building blocks)

Implementation

- Create a population of random expressions, $y(x)$, using the functions $+, -, \ast, \div, \sin, \cos, \exp$ and \log, and the terminals 1 and x
- Many lures (\exp in particular)
- Fitness: 0 if illegal expression, else $1/(d+1)$, where $d = |f(x) - y(x)|$
- This way, fitness stays in $[0,1)$

Test run (100 individuals)

Found functions

Swarm Intelligence

- Bird flocks and fish schools move in a coordinated way, but there is no coordinator (leader)
 - So, what decides the behaviour of a leader-less flock?
- Ants and termites quickly find the shortest path between the nest and a food source
 - ... and solve many other advanced problems as well
 - keeping cattle, building (ventilated) housing, coordinated heavy transports, tactical warfare, cleaning house, etc.
 - A single ant is essentially a blind, memory-less, random walker!
- Distributed systems without central control
- Useful not only to simulate but also to solve optimization problems

Bird flocks and fish schools

- Local interaction
- No leader
- Simple local rules – a weighted combination of several goals
 - match velocity of your neighbours
 - avoid collisions with your neighbours
 - avoid getting too far from your neighbours
 - or strive for centre of the flock (fish)
- Sufficient to make very realistic simulations of fish schools and bird flocks
- used in movies and computer graphics
- To simulate an insect swarm, remove the match-velocity rule

Stampede in “Lion King”
Particle Swarm Optimization

- Originally intended to simulate bird flocks and to model social interaction
- but stands on its own as an optimization tool
- A population of particles
 - Population size, typically 10-50 (smaller than in EC)
 - A particle, \(i \), has a position, \(x_i \), and a velocity, \(v_i \)
 - Both vectors in \(n \)-dimensional space
- Each particle’s position, \(x_i \), represents one solution to the problem
- Each particle remembers the best position it has found, so far, \(p_i \)

The flying particle

- The particles “fly” through \(n \)-dimensional space, in search for the best solution
 \[x_i(t) = x_i(t-1) + v_i(t) \]
- The velocities, \(v_i \), depend on previous experience of this particle and that of its neighbours
 \[v_i(t) = v_i(t-1) + U(0,\phi_1) \times (p_i - x_i(t-1)) + U(0,\phi_2) \times (p_u - x_u(t-1)) \]
 - Cognitive component
 - Social component

Simulation in 2D

Lbest with \(\phi_1 = 1.8, \phi_2 = 2.3 \)

- Nhood: the 2 immediate neighbours
- \(V_{\text{max}} = \text{range} / 25 \)

What about the ants?

- How do they find the shortest route?
 - They don’t (not the individual ants, that is)
 - The colony does!
- Ant colonies are much more intelligent than ants
 - Ant colonies adapt, ants don’t (much)
 - Ants have almost no memory and can not build cognitive maps. Ant colonies can (and do)
 - Mammals build cognitive maps in their brains
 - Ant colonies build them in their environment, through pheromone trails
- Ants are better thought of as cells in a greater organism – the colony
 - Also without leader – the queen is not a controller

Ants find shortest paths

Ant path

An obstacle appears

At first, the ants select at random

After a while, pheromones become more concentrated on the shortest route

Stigmergy

Indirect communication and coordination, by local modification and sensing of the environment
Ant Colony Optimization

- Family of combinatorial optimization algorithms, based on ant behaviour
- Common benchmark: the Travelling Salesman Problem (TSP)
- Common 'real' applications
 - Scheduling and
 - Network routing (AntNet)
- Members: ACS, Ant-Q, MMAS, ASrank, ...
 - most of which are extensions to Dorigo’s Ant System (AS)

Ant System for TSP

Each ant (i)
- is placed in a randomly selected city
- remembers the partial solution found so far (initially, the start city only)
- moves stochastically from city (i) to city (j), by some transition probability
 \[p_{ij}^k(i) \]
 which depends on
 - pheromone intensity, \(\tau_{ij} \)
 - local information, \(\eta_{ij} \) (distance)
 - whether \(j \) is feasible (not already visited)

Ant System TSP Demo

- 20 cities (19!/2 = 6.1*10^16 possible tours)
- 20 ants (one in each city)
- \(\alpha = \beta = 1 \)
- Evaporation rate, \(\rho = 0.9 \)

Cellular automata

- Massively parallel system of identical communicating state machines (cells)
- A cell’s state (e.g. on/off) is a function of the states of it communicates with (its neighbours)
 - The neighbourhood is usually topological
- Used to model/animate fluids (Find Nemo), gases, bacterial growth, swaying grass (Shreck?), social interaction, epidemics, in ecological simulations etc.

Conway's Game of Life

- World: a 2D grid. Each square represents a cell
- States: Living or dead
- Neighbourhood: The eight surrounding cells
- Initialize with a random number of living cells
- State transition rules:
 - A living cell with <2 living neighbours dies (loneliness)
 - A living cell with >3 living neighbours dies (overcrowded)
 - A dead cell with exactly 3 living neighbours comes alive
 - All other cells keep their current state

Life demo
Upcoming events

- Lecture on symbolic learning
 - May 12, 10.15 in room 2247
- Ant simulation assignment in NetLogo
- Lecture on AI in computer games
 - May 26, 13.15 in room 1211