Hidden Markov Models

Andrew W. Moore
Professor
School of Computer Science
Carnegie Mellon University

www.cs.cmu.edu/~awm
awm@cs.cmu.edu
412-268-7599
A Markov System

Has N states, called s_1, s_2 .. s_N

There are discrete timesteps, $t=0$, $t=1$, ...

$N = 3$

$t=0$
A Markov System

Has N states, called $s_1, s_2 \ldots s_N$

There are discrete timesteps, $t=0, t=1, \ldots$

On the t’th timestep the system is in exactly one of the available states. Call it q_t

Note: $q_t \in \{s_1, s_2 \ldots s_N\}$

$N = 3$
$t=0$
$q_t = q_0 = s_3$
A Markov System

Has N states, called s_1, s_2, \ldots, s_N

There are discrete timesteps, $t=0, t=1, \ldots$

On the t'th timestep the system is in exactly one of the available states. Call it q_t

Note: $q_t \in \{s_1, s_2, \ldots, s_N\}$

Between each timestep, the next state is chosen randomly.

$N = 3$
$t=1$
$q_t = q_1 = s_2$
A Markov System

Has N states, called $s_1, s_2 \ldots s_N$

There are discrete timesteps, $t=0, t=1, \ldots$

On the t'th timestep the system is in exactly one of the available states. Call it q_t

Note: $q_t \in \{s_1, s_2 \ldots s_N\}$

Between each timestep, the next state is chosen randomly.

The current state determines the probability distribution for the next state.
A Markov System

Has N states, called s_1, s_2 .. s_N

There are discrete timesteps, $t=0$, $t=1$, ...

On the t’th timestep the system is in exactly one of the available states. Call it q_t

Note: $q_t \in \{s_1, s_2 .. s_N\}$

Between each timestep, the next state is chosen randomly.

The current state determines the probability distribution for the next state.

Often notated with arcs between states

$N = 3$

t=1

$q_t = q_1 = s_2$

P($q_{t+1} = s_1 | q_t = s_2$) = 1/2
P($q_{t+1} = s_2 | q_t = s_2$) = 1/2
P($q_{t+1} = s_3 | q_t = s_2$) = 0

P($q_{t+1} = s_1 | q_t = s_1$) = 0
P($q_{t+1} = s_2 | q_t = s_1$) = 0
P($q_{t+1} = s_3 | q_t = s_1$) = 1

P($q_{t+1} = s_1 | q_t = s_3$) = 1/3
P($q_{t+1} = s_2 | q_t = s_3$) = 2/3
P($q_{t+1} = s_3 | q_t = s_3$) = 0
What is $P(q_t = s)$? Slow, stupid answer

Step 1: Work out how to compute $P(Q)$ for any path Q

$= q_1 q_2 q_3 \ldots q_t$

Given we know the start state q_1 (i.e. $P(q_1) = 1$)

$P(q_1 q_2 \ldots q_t) = P(q_1 q_2 \ldots q_{t-1}) P(q_t | q_1 q_2 \ldots q_{t-1})$

$= P(q_1 q_2 \ldots q_{t-1}) P(q_t | q_{t-1})$ \hspace{1cm} **WHY?**

$= P(q_2 | q_1) P(q_3 | q_2) \ldots P(q_t | q_{t-1})$

Step 2: Use this knowledge to get $P(q_t = s)$

$$P(q_t = s) = \sum_{Q \in \text{Paths of length } t \text{ that end in } s} P(Q)$$

Computation is exponential in t
What is $P(q_t = s)$? Clever answer

- For each state s_i, define

 \[p_t(i) = \text{Prob. state is } s_i \text{ at time } t \]

 \[= P(q_t = s_i) \]

- Easy to do inductive definition

\[\forall i \quad p_0(i) = \]

\[\forall j \quad p_{t+1}(j) = P(q_{t+1} = s_j) = \]
What is $P(q_t = s)$? Clever answer

• For each state s_i, define
 \[p_t(i) = \text{Prob. state is } s_i \text{ at time } t \]
 \[= P(q_t = s_i) \]

• Easy to do inductive definition
 \[\forall i \quad p_0(i) = \begin{cases}
 1 & \text{if } s_i \text{ is the start state} \\
 0 & \text{otherwise}
\end{cases} \]

 \[\forall j \quad p_{t+1}(j) = P(q_{t+1} = s_j) = \]
What is $P(q_t = s)$? Clever answer

- For each state s_i, define

 $p_t(i) = \text{Prob. state is } s_i \text{ at time } t$

 $= P(q_t = s_i)$

- Easy to do inductive definition

 $\forall i \quad p_0(i) = \begin{cases}
 1 & \text{if } s_i \text{ is the start state} \\
 0 & \text{otherwise}
 \end{cases}$

 $\forall j \quad p_{t+1}(j) = P(q_{t+1} = s_j) =
 \sum_{i=1}^{N} P(q_{t+1} = s_j \land q_t = s_i) =$
What is $P(q_t = s)$? Clever answer

- For each state s_i, define

 $$p_t(i) = \text{Prob. state is } s_i \text{ at time } t$$

 $$= P(q_t = s_i)$$

- Easy to do inductive definition

 $$\forall i \quad p_0(i) = \begin{cases}
 1 & \text{if } s_i \text{ is the start state} \\
 0 & \text{otherwise}
 \end{cases}$$

 $$\forall j \quad p_{t+1}(j) = P(q_{t+1} = s_j) =$$

 $$\sum_{i=1}^{N} P(q_{t+1} = s_j \wedge q_t = s_i) =$$

 $$\sum_{i=1}^{N} P(q_{t+1} = s_j \mid q_t = s_i) P(q_t = s_i) = \sum_{i=1}^{N} a_{ij} p_t(i)$$

 Remember,

 $$a_{ij} = P(q_{t+1} = s_j \mid q_t = s_i)$$
What is $P(q_t = s)$? Clever answer

- For each state s_i, define

 $p_t(i) = \text{Prob. state is } s_i \text{ at time } t$

 $= P(q_t = s_i)$

- Easy to do inductive definition

 $\forall i \quad p_0(i) = \begin{cases}
 1 & \text{if } s_i \text{ is the start state} \\
 0 & \text{otherwise}
 \end{cases}$

 $\forall j \quad p_{t+1}(j) = P(q_{t+1} = s_j) =$

 $\sum_{i=1}^{N} P(q_{t+1} = s_j \land q_t = s_i) =$

 $\sum_{i=1}^{N} P(q_{t+1} = s_j \mid q_t = s_i) P(q_t = s_i) = \sum_{i=1}^{N} a_{ij} p_t(i)$

- Computation is simple.
- Just fill in this table in this order:

<table>
<thead>
<tr>
<th>t</th>
<th>$p_t(1)$</th>
<th>$p_t(2)$</th>
<th>\ldots</th>
<th>$p_t(N)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>\ldots</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{final}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What is $P(q_t = s)$? Clever answer

- For each state s_i, define $p_t(i) = \text{Prob. state is } s_i \text{ at time } t = P(q_t = s_i)$
- Easy to do inductive definition

\[
\forall i \quad p_0(i) = \begin{cases}
1 & \text{if } s_i \text{ is the start state} \\
0 & \text{otherwise}
\end{cases}
\]

\[
\forall j \quad p_{t+1}(j) = P(q_{t+1} = s_j) =
\sum_{i=1}^{N} P(q_{t+1} = s_j \land q_t = s_i) =
\sum_{i=1}^{N} P(q_{t+1} = s_j \mid q_t = s_i) P(q_t = s_i) =
\sum_{i=1}^{N} a_{ij} p_t(i)
\]

- Cost of computing $P_t(i)$ for all states S_i is now $O(t N^2)$
- The stupid way was $O(N^t)$
- This was a simple example
- It was meant to warm you up to this trick, called *Dynamic Programming*, because HMMs do many tricks like this.
Hidden State

- The previous example tried to estimate $P(q_t = s_i)$ unconditionally (using no observed evidence).
- Suppose we can observe something that’s affected by the true state.
- Example: **Proximity sensors**. (tell us the contents of the 8 adjacent squares)

True state q_t

What the robot sees: Observation O_t
Noisy Hidden State

- Example: **Noisy Proximity sensors.** (unreliably tell us the contents of the 8 adjacent squares)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>R_0</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

True state q_t

<table>
<thead>
<tr>
<th>W</th>
<th>W</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\mathbb{R}</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Uncorrupted Observation

<table>
<thead>
<tr>
<th>W</th>
<th>W</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{R}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>

What the robot sees: Observation O_t
Noisy Hidden State

- Example: **Noisy Proximity sensors.** (unreliably tell us the contents of the 8 adjacent squares)

True state q_t

O_t is noisily determined depending on the current state.

Assume that O_t is conditionally independent of $\{q_{t-1}, q_{t-2}, \ldots q_1, q_0, O_{t-1}, O_{t-2}, \ldots O_1, O_0\}$ given q_t.

In other words:

$P(O_t = X | q_t = s_i) =$

$P(O_t = X | q_t = s_i, any \ earlier \ history) =$
Hidden Markov Models

Our robot with noisy sensors is a good example of an HMM

• **Question 1: State Estimation**

 What is $P(q_T=S_i \mid O_1O_2\ldots O_T)$?

 It will turn out that a new cute D.P. trick will get this for us.

• **Question 2: Most Probable Path**

 Given $O_1O_2\ldots O_T$, what is the most probable path that I took?

 And what is that probability?

 Yet another famous D.P. trick, the VITERBI algorithm, gets this.

• **Question 3: Learning HMMs:**

 Given $O_1O_2\ldots O_T$, what is the maximum likelihood HMM that could have produced this string of observations?

 Very very useful. Uses the E.M. Algorithm
Basic Operations in HMMs

For an observation sequence \(O = O_1 \ldots O_T \), the three basic HMM operations are:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Algorithm</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation:</td>
<td>Forward-Backward</td>
<td>(O(TN^2))</td>
</tr>
<tr>
<td>Calculating (P(q_t=S_i \mid O_1O_2\ldots O_t))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inference:</td>
<td>Viterbi Decoding</td>
<td>(O(TN^2))</td>
</tr>
<tr>
<td>Computing (Q^* = \text{argmax}_Q P(Q \mid O))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning:</td>
<td>Baum-Welch (EM)</td>
<td>(O(TN^2))</td>
</tr>
<tr>
<td>Computing (\lambda^* = \text{argmax}_\lambda P(O \mid \lambda))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(T = \# \text{ timesteps, } N = \# \text{ states} \)
HMM Notation
(from Rabiner’s Survey)

The states are labeled S_1, S_2, \ldots, S_N.

For a particular trial:

Let T be the number of observations
${\mathbf{T}}$ is also the number of states passed through
$O = O_1 O_2 \ldots O_T$ is the sequence of observations
$Q = q_1 q_2 \ldots q_T$ is the notation for a path of states

$\lambda = \langle N, M, \{\pi_i\}, \{a_{ij}\}, \{b_i(j)\} \rangle$ is the specification of an HMM
HMM Formal Definition

An HMM, λ, is a 5-tuple consisting of

- N the number of states
- M the number of possible observations
- $\{\pi_1, \pi_2, \ldots, \pi_N\}$ The starting state probabilities
 \[P(q_0 = S_i) = \pi_i \]

- The state transition probabilities
 \[P(q_{t+1} = S_j | q_t = S_i) = a_{ij} \]

- The observation probabilities
 \[P(O_t = k | q_t = S_i) = b_i(k) \]
Here’s an HMM

Start randomly in state 1 or 2
Choose one of the output symbols in each state at random.

N = 3
M = 3

\(\pi_1 = 1/2 \) \(\pi_2 = 1/2 \) \(\pi_3 = 0 \)

\(a_{11} = 0 \) \(a_{12} = 1/3 \) \(a_{13} = 2/3 \)
\(a_{12} = 1/3 \) \(a_{22} = 0 \) \(a_{13} = 2/3 \)
\(a_{13} = 1/3 \) \(a_{32} = 1/3 \) \(a_{13} = 1/3 \)

\(b_1 (X) = 1/2 \) \(b_1 (Y) = 1/2 \) \(b_1 (Z) = 0 \)
\(b_2 (X) = 0 \) \(b_2 (Y) = 1/2 \) \(b_2 (Z) = 1/2 \)
\(b_3 (X) = 1/2 \) \(b_3 (Y) = 0 \) \(b_3 (Z) = 1/2 \)

Caution: this slide contains errors
Here’s an HMM

Start randomly in state 1 or 2
Choose one of the output symbols in each state at random.
Let’s generate a sequence of observations:

\(N = 3 \)
\(M = 3 \)
\(\pi_1 = \frac{1}{2} \)
\(\pi_2 = \frac{1}{2} \)
\(\pi_3 = 0 \)

\(a_{11} = 0 \)
\(a_{12} = \frac{1}{3} \)
\(a_{13} = \frac{1}{3} \)
\(a_{21} = \frac{2}{3} \)
\(a_{22} = 0 \)
\(a_{23} = \frac{2}{3} \)
\(a_{31} = \frac{1}{3} \)
\(a_{32} = \frac{1}{3} \)
\(a_{33} = \frac{1}{3} \)

\(b_1 (X) = \frac{1}{2} \)
\(b_1 (Y) = \frac{1}{2} \)
\(b_1 (Z) = 0 \)
\(b_2 (X) = 0 \)
\(b_2 (Y) = \frac{1}{2} \)
\(b_2 (Z) = \frac{1}{2} \)
\(b_3 (X) = \frac{1}{2} \)
\(b_3 (Y) = 0 \)
\(b_3 (Z) = \frac{1}{2} \)

\[q_0 = _ \quad O_0 = _ \]
\[q_1 = _ \quad O_1 = _ \]
\[q_2 = _ \quad O_2 = _ \]
Here’s an HMM

Start randomly in state 1 or 2

Choose one of the output symbols in each state at random.

Let’s generate a sequence of observations:

50-50 choice between X and Y

N = 3
M = 3
\(\pi_1 = \frac{1}{2} \) \(\pi_2 = \frac{1}{2} \) \(\pi_3 = 0 \)

\(a_{11} = 0 \) \(a_{12} = \frac{1}{3} \) \(a_{13} = \frac{2}{3} \)
\(a_{12} = \frac{1}{3} \) \(a_{22} = 0 \) \(a_{13} = \frac{2}{3} \)
\(a_{13} = \frac{1}{3} \) \(a_{32} = \frac{1}{3} \) \(a_{13} = \frac{1}{3} \)

\(b_1 (X) = \frac{1}{2} \) \(b_1 (Y) = \frac{1}{2} \) \(b_1 (Z) = 0 \)
\(b_2 (X) = 0 \) \(b_2 (Y) = \frac{1}{2} \) \(b_2 (Z) = \frac{1}{2} \)
\(b_3 (X) = \frac{1}{2} \) \(b_3 (Y) = 0 \) \(b_3 (Z) = \frac{1}{2} \)
Here’s an HMM

Start randomly in state 1 or 2
Choose one of the output symbols in each state at random.
Let’s generate a sequence of observations:

\[N = 3 \]
\[M = 3 \]
\[\pi_1 = \frac{1}{2} \quad \pi_2 = \frac{1}{2} \quad \pi_3 = 0 \]

\[a_{11} = 0 \quad a_{12} = \frac{1}{3} \quad a_{13} = \frac{2}{3} \]
\[a_{12} = \frac{1}{3} \quad a_{22} = 0 \quad a_{13} = \frac{2}{3} \]
\[a_{13} = \frac{1}{3} \quad a_{32} = \frac{1}{3} \quad a_{13} = \frac{1}{3} \]

\[b_1 (X) = \frac{1}{2} \quad b_1 (Y) = \frac{1}{2} \quad b_1 (Z) = 0 \]
\[b_2 (X) = 0 \quad b_2 (Y) = \frac{1}{2} \quad b_2 (Z) = \frac{1}{2} \]
\[b_3 (X) = \frac{1}{2} \quad b_3 (Y) = 0 \quad b_3 (Z) = \frac{1}{2} \]
Here’s an HMM

Start randomly in state 1 or 2
Choose one of the output symbols in each state at random.

Let’s generate a sequence of observations:

50-50 choice between Z and X

N = 3
M = 3
π₁ = ½
π₂ = ½
π₃ = 0

a₁₁ = 0
a₁₂ = ½
a₁₃ = ½

a₁₂ = ½
a₂₂ = 0
a₃₂ = ½

a₁₃ = ½
a₁₃ = ½
a₁₃ = ½

b₁ (X) = ½
b₁ (Y) = ½
b₁ (Z) = 0

b₂ (X) = 0
b₂ (Y) = ½
b₂ (Z) = ½

b₃ (X) = ½
b₃ (Y) = 0
b₃ (Z) = ½

q₀ = S₁	O₀ = X
q₁ = S₃	O₁ =
q₂ =	O₂ =
Here’s an HMM

Start randomly in state 1 or 2
Choose one of the output symbols in each state at random.
Let’s generate a sequence of observations:

Each of the three next states is equally likely

\[q_0 = S_1 \quad O_0 = X \]
\[q_1 = S_3 \quad O_1 = X \]

\[q_2 = _ _ _ \quad O_2 = _ _ _ \]

N = 3
M = 3
\(\pi_1 = \frac{1}{2} \quad \pi_2 = \frac{1}{2} \quad \pi_3 = 0 \)

\(a_{11} = 0 \quad a_{12} = \frac{1}{3} \quad a_{13} = \frac{2}{3} \)
\(a_{12} = \frac{1}{3} \quad a_{22} = 0 \quad a_{13} = \frac{2}{3} \)
\(a_{13} = \frac{1}{3} \quad a_{32} = \frac{1}{3} \quad a_{13} = \frac{1}{3} \)

\(b_1 (X) = \frac{1}{2} \quad b_1 (Y) = \frac{1}{2} \quad b_1 (Z) = 0 \)
\(b_2 (X) = 0 \quad b_2 (Y) = \frac{1}{2} \quad b_2 (Z) = \frac{1}{2} \)
\(b_3 (X) = \frac{1}{2} \quad b_3 (Y) = 0 \quad b_3 (Z) = \frac{1}{2} \)
Here’s an HMM

Start randomly in state 1 or 2

Choose one of the output symbols in each state at random.

Let’s generate a sequence of observations:

N = 3
M = 3
π₁ = ½
π₂ = ½
π₃ = 0

a₁₁ = 0
a₁₂ = ¼
a₁₃ = ¼

a₁₂ = ¾
a₂₂ = 0
a₂₃ = ¼

a₁₃ = ¾
a₃₂ = ¼
a₃₃ = ¾

b₁ (X) = ½
b₁ (Y) = ½
b₁ (Z) = 0

b₂ (X) = 0
b₂ (Y) = ½
b₂ (Z) = ½

b₃ (X) = ½
b₃ (Y) = 0
b₃ (Z) = ½

50-50 choice between Z and X

<table>
<thead>
<tr>
<th>q₀</th>
<th>S₁</th>
<th>O₀</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>q₁</td>
<td>S₃</td>
<td>O₁</td>
<td>X</td>
</tr>
<tr>
<td>q₂</td>
<td>S₃</td>
<td>O₂</td>
<td></td>
</tr>
</tbody>
</table>
Here’s an HMM

Start randomly in state 1 or 2

Choose one of the output symbols in each state at random.

Let’s generate a sequence of observations:

\(N = 3 \)
\(M = 3 \)
\(\pi_1 = \frac{1}{2} \)
\(\pi_2 = \frac{1}{2} \)
\(\pi_3 = 0 \)

\(a_{11} = 0 \)
\(a_{12} = \frac{1}{3} \)
\(a_{13} = \frac{1}{3} \)
\(a_{21} = \frac{1}{3} \)
\(a_{22} = 0 \)
\(a_{23} = \frac{1}{3} \)
\(a_{31} = \frac{1}{3} \)
\(a_{32} = \frac{1}{3} \)
\(a_{33} = 0 \)

\(b_1 (X) = \frac{1}{2} \)
\(b_1 (Y) = \frac{1}{2} \)
\(b_1 (Z) = 0 \)
\(b_2 (X) = 0 \)
\(b_2 (Y) = \frac{1}{2} \)
\(b_2 (Z) = \frac{1}{2} \)
\(b_3 (X) = \frac{1}{2} \)
\(b_3 (Y) = 0 \)
\(b_3 (Z) = \frac{1}{2} \)

\(q_0 \)		\(q_1 \)		\(q_2 \)	
\(S_1 \)	\(O_0 = X \)	\(S_3 \)	\(O_1 = X \)	\(S_3 \)	\(O_2 = Z \)
State Estimation

Start randomly in state 1 or 2

Choose one of the output symbols in each state at random.

Let’s generate a sequence of observations:

This is what the observer has to work with...

	\(q_0\)		\(O_0\)		\(q_1\)		\(O_1\)		\(q_2\)		\(O_2\)	
		\(\text{?}\)		\(X\)		\(\text{?}\)		\(X\)		\(\text{?}\)		\(Z\)

\(N = 3\)
\(M = 3\)
\(\pi_1 = \frac{1}{2}\) \(\pi_2 = \frac{1}{2}\) \(\pi_3 = 0\)

\(a_{11} = 0\)
\(a_{12} = \frac{1}{3}\)
\(a_{13} = \frac{1}{3}\)
\(a_{22} = 0\)
\(a_{32} = \frac{1}{3}\)
\(a_{13} = \frac{1}{3}\)

\(b_1 (X) = \frac{1}{2}\)
\(b_2 (X) = 0\)
\(b_3 (X) = \frac{1}{2}\)
\(b_1 (Y) = \frac{1}{2}\)
\(b_2 (Y) = \frac{1}{2}\)
\(b_3 (Y) = 0\)
\(b_1 (Z) = 0\)
\(b_2 (Z) = \frac{1}{2}\)
\(b_3 (Z) = \frac{1}{2}\)
Prob. of a series of observations

What is \(P(O) = P(O_1, O_2, O_3) = P(O_1 = X \land O_2 = X \land O_3 = Z) \)?

Slow, stupid way:

\[
P(O) = \sum_{Q \in \text{Paths of length 3}} P(O \land Q) \\
= \sum_{Q \in \text{Paths of length 3}} P(O | Q) P(Q)
\]

How do we compute \(P(Q) \) for an arbitrary path \(Q \)?

How do we compute \(P(O|Q) \) for an arbitrary path \(Q \)?
Prob. of a series of observations

What is \(P(O) = P(O_1 \, O_2 \, O_3) = P(O_1 = X \, O_2 = X \, O_3 = Z) \)?

Slow, stupid way:

\[
P(O) = \sum_{Q \in \text{Paths of length 3}} P(O \cap Q)
= \sum_{Q \in \text{Paths of length 3}} P(O|Q)P(Q)
\]

How do we compute \(P(Q) \) for an arbitrary path \(Q \)?

How do we compute \(P(O|Q) \) for an arbitrary path \(Q \)?

\[
P(Q) = P(q_1, q_2, q_3)
= P(q_1) \, P(q_2, q_3|q_1) \quad \text{(chain rule)}
= P(q_1) \, P(q_2|q_1) \, P(q_3|q_2, q_1) \quad \text{(chain)}
= P(q_1) \, P(q_2|q_1) \, P(q_3|q_2) \quad \text{(why?)}
\]

Example in the case \(Q = S_1 \, S_3 \, S_3 \): \(P(O) = P(O_1 = X \, O_2 = X \, O_3 = Z) \):

\[
\frac{1}{2} * \frac{2}{3} * \frac{1}{3} = \frac{1}{9}
\]
Prob. of a series of observations

What is $P(O) = P(O_1 O_2 O_3) = P(O_1 = X \land O_2 = X \land O_3 = Z)$?

Slow, stupid way:

$$P(O) = \sum_{Q \in \text{Paths of length 3}} P(O \land Q)$$

$$= \sum_{Q \in \text{Paths of length 3}} P(O|Q)P(Q)$$

How do we compute $P(Q)$ for an arbitrary path Q?

How do we compute $P(O|Q)$ for an arbitrary path Q?

Example in the case $Q = S_1 S_3 S_3$:

$$P(O|Q) = P(O_1 \land q_1)P(O_2 \land q_2)P(O_3 \land q_3)$$

$$= P(O_1|q_1)P(O_2|q_2)P(O_3|q_3)$$

$$= P(X|S_1)P(X|S_3)P(Z|S_3)$$

$$= 1/2 \times 1/2 \times 1/2 = 1/8$$
Prob. of a series of observations

What is \(P(O) = P(O_1, O_2, O_3) = P(O_1 = X \land O_2 = X \land O_3 = Z) \)?

Slow, stupid way:

\[
P(O) = \sum_{Q \in \text{Paths of length } 3} P(O \land Q)
= \sum_{Q \in \text{Paths of length } 3} P(O|Q)P(Q)
\]

How do we compute \(P(Q) \) for an arbitrary path \(Q \)?

How do we compute \(P(O|Q) \) for an arbitrary path \(Q \)?

A sequence of 20 observations would need \(3^{20} = 3.5 \) billion \(P(O|Q) \) computations

So let’s be smarter…
The Prob. of a given series of observations, non-exponential-cost-style

Given observations $O_1 \ O_2 \ ... \ O_T$

Define

$$\alpha_t(i) = P(O_1 \ O_2 \ ... \ O_t \ \land \ q_t = S_i \ | \ \lambda) \quad \text{where } 1 \leq t \leq T$$

$\alpha_t(i) =$ Probability that, in a random trial,

- We’d have seen the first t observations
- We’d have ended up in S_i as the t’th state visited.

In our example, what is $\alpha_2(3)$?
$\alpha_t(i)$: easy to define recursively

$\alpha_t(i) = P(O_1 \ O_2 \ldots \ O_T \land q_t = S_i \mid \lambda)$ \hspace{1em} ($\alpha_t(i)$ can be defined stupidly by considering all paths length “t”. How?)

$$\alpha_1(i) = P(O_1 \land q_1 = S_i)$$
$$= P(q_1 = S_i)P(O_1 \mid q_1 = S_i)$$
$$= \text{what?}$$

$$\alpha_{t+1}(j) = P(O_1O_2\ldots O_tO_{t+1} \land q_{t+1} = S_j)$$
$$= \text{what?}$$
\(\alpha_t(i) \): easy to define recursively

\[\alpha_t(i) = P(O_1 O_2 \ldots O_T \land q_t = S_i \mid \lambda) \]

(\(\alpha_t(i) \) can be defined stupidly by considering all paths length “\(t \). How?)

\[\alpha_1(i) = P(O_1 \land q_1 = S_i) \]
\[= P(q_1 = S_i) P(O_1 \mid q_1 = S_i) \]
\[= \text{what?} \]

\[\alpha_{t+1}(j) = P(O_1 O_2 \ldots O_t O_{t+1} \land q_{t+1} = S_j) \]
\[= \sum_{i=1}^{N} P(O_1 O_2 \ldots O_t \land q_t = S_i \land O_{t+1} \land q_{t+1} = S_j) \]
\[= \sum_{i=1}^{N} P(O_{t+1}, q_{t+1} = S_j \mid O_1 O_2 \ldots O_t \land q_t = S_i) P(O_1 O_2 \ldots O_t \land q_t = S_i) \]
\[= \sum_{i} P(O_{t+1}, q_{t+1} = S_j \mid q_t = S_i) \alpha_t(i) \]
\[= \sum_{i} P(q_{t+1} = S_j \mid q_t = S_i) P(O_{t+1} \mid q_{t+1} = S_j) \alpha_t(i) \]
\[= \sum_{i} a_{ij} b_{j}(O_{t+1}) \alpha_t(i) \]
in our example

\[\alpha_i (i) = P(O_1 O_2 \ldots O_t \land q_t = S_i | \lambda) \]

\[\alpha_1 (i) = b_i (O_1) \pi_i \]

\[\alpha_{t+1} (j) = \sum_i a_{ij} b_j (O_{t+1}) \alpha_t (i) \]

WE SAW \(O_1 O_2 O_3 = X X Z \)

\[\alpha_1 (1) = \frac{1}{4} \quad \alpha_1 (2) = 0 \quad \alpha_1 (3) = 0 \]

\[\alpha_2 (1) = 0 \quad \alpha_2 (2) = 0 \quad \alpha_2 (3) = \frac{1}{12} \]

\[\alpha_3 (1) = 0 \quad \alpha_3 (2) = \frac{1}{72} \quad \alpha_3 (3) = \frac{1}{72} \]
Easy Question

We can cheaply compute

$$\alpha_t(i) = P(O_1 O_2 \ldots O_t \land q_t = S_i)$$

(How) can we cheaply compute

$$P(O_1 O_2 \ldots O_t)$$

(How) can we cheaply compute

$$P(q_t = S_i | O_1 O_2 \ldots O_t)$$
Easy Question

We can cheaply compute

\[\alpha_t(i) = P(O_1 O_2 \ldots O_t \land q_t = S_i) \]

(How) can we cheaply compute

\[P(O_1 O_2 \ldots O_t) ? \]

\[\sum_{i=1}^{N} \alpha_t(i) \]

(How) can we cheaply compute

\[P(q_t = S_i | O_1 O_2 \ldots O_t) \]

\[\frac{\alpha_t(i)}{\sum_{j=1}^{N} \alpha_t(j)} \]
Most probable path given observations

What's most probable path given $O_1O_2...O_T$, i.e.

What is $\underset{Q}{\text{argmax}} \ P(Q|O_1O_2...O_T)$?

Slow, stupid answer:

$$\underset{Q}{\text{argmax}} \ P(Q|O_1O_2...O_T)$$

$$= \underset{Q}{\text{argmax}} \ \frac{P(O_1O_2...O_T|Q)P(Q)}{P(O_1O_2...O_T)}$$

$$= \underset{Q}{\text{argmax}} \ P(O_1O_2...O_T|Q)P(Q)$$
Efficient MPP computation

We’re going to compute the following variables:

$$\delta_t(i) = \max_{q_1 q_2 \ldots q_{t-1}} P(q_1 q_2 \ldots q_t = S_i \land O_1 \ldots O_t)$$

= The Probability of the path of Length t-1 with the maximum chance of doing all these things:

...OCCURING

and

...ENDING UP IN STATE S_i

and

...PRODUCING OUTPUT $O_1 \ldots O_t$

DEFINE: $mpp_t(i) = \text{that path}$

So: $\delta_t(i) = \text{Prob}(mpp_t(i))$
The Viterbi Algorithm

\[
\delta_t(i) = q_1 q_2 \cdots q_{t-1} P(q_1 q_2 \cdots q_{t-1} \land q_t = S_i \land O_1 O_2 \cdots O_t)
\]

\[
\arg\max mpp_t(i) = q_1 q_2 \cdots q_{t-1} P(q_1 q_2 \cdots q_{t-1} \land q_t = S_i \land O_1 O_2 \cdots O_t)
\]

\[
\max \delta_1(i) = \text{one choice } P(q_1 = S_i \land O_1)
\]

\[
= P(q_1 = S_i)P(O_1|q_1 = S_i)
\]

\[
= \pi_i b_i(O_1)
\]

Now, suppose we have all the \(\delta_t(i)\)'s and \(mpp_t(i)\)'s for all \(i\).

HOW TO GET \(\delta_{t+1}(j)\) and \(mpp_{t+1}(j)\)?

\(mpp_t(1)\) → \(S_1\) with \(\text{Prob} = \delta_t(1)\)

\(mpp_t(2)\) → \(S_2\) with \(\text{Prob} = \delta_t(2)\)

\(\vdots\)

\(mpp_t(N)\) → \(S_N\) with \(\text{Prob} = \delta_t(N)\)

\(q_t\) → \(S_j\) with \(\text{Prob} = \delta_t(N)\)
The most probable path with last two states S_i, S_j is the most probable path to S_i, followed by transition $S_i \rightarrow S_j$.
The Viterbi Algorithm

The most probable path with last two states S_i, S_j is the most probable path to S_j, followed by transition $S_i \rightarrow S_j$.

What is the prob of that path?

$$\delta_t(i) \times P(S_i \rightarrow S_j \land O_{t+1} | \lambda)$$

$$= \delta_t(i) \ a_{ij} \ b_j (O_{t+1})$$

SO The most probable path to S_j has S_{i^*} as its penultimate state where $i^* = \text{argmax}_i \delta_t(i) \ a_{ij} \ b_j (O_{t+1})$.
The Viterbi Algorithm

What is the prob of that path?
\[\delta_t(i) \times P(S_i \rightarrow S_j \wedge O_{t+1}) \]
\[= \delta_t(i) a_{ij} b_j(O_{t+1}) \]
SO The most probable is
\[S_i^* \] as its penultimate state
where \(i^* = \text{argmax} \delta_t(i) a_{ij} b_j(O_{t+1}) \)

Summary:
\[\delta_{t+1}(j) = \delta_t(i^*) a_{ij} b_j(O_{t+1}) \]
\[\text{mpp}_{t+1}(j) = \text{mpp}_{t+1}(i^*)S_{i^*} \] with \(i^* \) defined to the left
What’s Viterbi used for?

Classic Example

Speech recognition:

Signal → words

HMM → observable is signal

→ Hidden state is part of word formation

What is the most probable word given this signal?

UTTERLY GROSS SIMPLIFICATION

In practice: many levels of inference; not one big jump.