Outline

1 Probability

2 Sorting

3 Second assignment
Outline

1. Probability
2. Sorting
3. Second assignment
Review of probability theory

- A *sample space* S is the set of all possible outcomes.
- An *event* A is a subset $A \subseteq S$
- A random variable is often denoted X
- The *expected value* $E[X]$ of a random variable X is defined as
 \[E[X] = \sum_{x} x \cdot \Pr\{X = x\} \]
- Note that $E[\cdot]$ is a linear operator, i.e.
 \[E \left[\sum_{i=1}^{n} (a_i \cdot X_i) \right] = \sum_{i=1}^{n} (a_i \cdot E[X_i]) \]
Exercise: Bleaching

You have a function, Biased-Random, that returns 1 with probability \(p \) and 0 with probability \(1 - p \). Sadly you do not know \(p \). Design a function Unbiased-Random that returns 1 with probability \(\frac{1}{2} \) and 0 with probability \(\frac{1}{2} \).

Unbiased-Random

1. while true
2. do
3. \(x \leftarrow \text{Biased-Random} \)
4. \(y \leftarrow \text{Biased-Random} \)
5. if \(x \neq y \)
6. then return \(x \)
Exercise: Bleaching (cont.)

- Why does this work?
- Because Unbiased-Random only returns when \(x = 0 \) and \(y = 1 \) or vice versa. Since
 \[
 \Pr\{x = 0 \land y = 1\} = (1 - p)p = p(1 - p) = \Pr\{x = 1 \land y = 0\}
 \]
 and there are no other outcomes, Unbiased-Random is fair.

- Note that this relies on that the calls to Biased-Random are independent.
Definition

- An *indicator random variable* $I\{A\}$ of an event A is defined as

$$I\{A\} = \begin{cases} 1 & \text{if } A \text{ occurs} \\ 0 & \text{if } A \text{ does not occur} \end{cases}$$

- By the definition of expected value we have for any indicator random variable X_A

$$E[X_A] = E[I\{A\}]$$

$$= 1 \cdot \Pr\{A\} + 0 \cdot \Pr\{S \setminus A\}$$

$$= 1 \cdot \Pr\{A\} + 0 \cdot \Pr\{S \setminus A\}$$

$$= \Pr\{A\}$$
Example: Rolling a six-sided die

- $S = \{1, 2, 3, 4, 5, 6\}$
- $A = \{6\}$
- $X_H = I\{\text{Roll is 6}\} = \begin{cases} 1 & \text{if roll is 6} \\ 0 & \text{if roll is not 6} \end{cases}$

$$E[X_H] = E[I\{\text{Roll is 6}\}] = 1 \cdot \Pr\{\text{Roll is 6}\} + 0 \cdot \Pr\{\text{Roll is not 6}\} = 1 \cdot (1/6) + 0 \cdot (5/6) = 1/6$$
The Hiring Problem: You have n candidates for the assistant job. You want to always keep the best person for the job.

Hire-Assistant(n)

1. $best \leftarrow 0$
2. for $i \leftarrow 1$ to n
3. do
 - interview candidate i
4. if candidate i is better than candidate $best$
5. $then$
 - $best \leftarrow i$
6. $end do$
7. $hire$ candidate i
To evaluate the expected number of candidates that get hired, use indicator random variables:

- $X_i = I\{\text{candidate } i \text{ is hired}\} =$

 $= \begin{cases}
 1 & \text{if candidate } i \text{ is hired} \\
 0 & \text{if candidate } i \text{ is not hired}
 \end{cases}$

- $X = [\text{the number of candidates hired}] = \sum_{i=1}^{n} X_i$
- $E[X_i] = ?$
\[E[X_i] = 1/i \]

\[
E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} \frac{1}{i} = \lg n + O(1)
\]
Examples:

- What is the probability of hiring exactly once?

- The first person is always hired. Therefore, the answer is
 \[\Pr\{\text{The first person is the best}\} = \frac{1}{n} \]

- What is the probability of hiring all \(n \) persons?

- The persons must come in reverse order, competencewise, giving
 \[\Pr\{\text{Hire all } n \text{ persons}\} \]
 \[= \Pr\{\text{Reversely ordered competencewise}\} \]
 \[= \Pr\{1\text{st person worst}\} \cdots \Pr\{n\text{th person best}\} \]
 \[= \prod_{i=1}^{n} \frac{1}{i} \]
 \[= \frac{1}{n!} \]
Outline

1 Probability

2 Sorting

3 Second assignment
Heapsort

- We know the “bubbling” behaviour of Max-Heapify is used for maintaining the heap property in $\Theta(lg \, n)$ in the worst case.

- We know that Build-Max-Heap produces a max-heap by repeated calls to Max-Heapify, and that is $\Theta(n)$ in the worst case.

- We know the Heapsort algorithm basics: create a heap, take care of the biggest (smallest) element, Max-Heapify the rest of the elements.

- We know Heapsort is $O(n \lg n)$.
Heapsort Pseudocode:

Heapsort(A)

1. Build-Max-Heap(A)
2. for $i \leftarrow \text{length}[A]$ downto 2
4. $\text{heap-size}[A] \leftarrow \text{heap-size}[A] - 1$
5. Max-Heapify($A, 1$)
Why is Heapsort $\Theta(n \lg n)$ in the worst case?

- Line 1 takes $\Theta(n)$.
- Line 2 to 5 is basically $n-1$ calls to Max-Heapify.
- The problemsize decreases by 1 for each call to Max-Heapify, so it takes $c \cdot \sum_{i=2}^{n} \lg(i)$ time.
- This gives overall time of $\Theta(n) + c \cdot \sum_{i=2}^{n} \lg(i)$
Lemma:
\[\lg(n!) = \Theta(n \lg(n)) \]

Proof:
Exercise (Hint: use Stirlings approximation)
\[
c \cdot \sum_{i=2}^{n} \log(i) = c \log(\prod_{i=2}^{n} i) = c \cdot \log(n!)
= \Theta(n \log(n))
\]

This gives that Heapsort is \(\Theta(n) + \Theta(n \log(n)) = \Theta(n \log(n))\), and in particular, we have established the lower bound to be \(\Omega(n \log(n))\).
Exercise: Shotgun sort
Shotgun sort can be defined as follows:

\[
\text{ShotgunSort}(A)
\]
1. while \(A \) is unsorted
2. do randomly rearrange the elements of \(A \)
3. return \(A \)

Exercise:

- What are the best, worst and average case runtimes of shotgun sort? Assume that randomly rearranging \(A \) takes \(\Theta(n) \), where \(n \) is the number of elements in \(A \)
- Can you think of an even worse way to sort?
Outline

1. Probability
2. Sorting
3. Second assignment
Assignment 2 Implement Heapsort, the version based on Max-Heapify.