
Heaps

(Version of 4th March 2010)
(Based on original slides by J. Pearson and code by Ch. Okasaki)

• A min-heap(resp.max-heap) is a data structure with fast extraction of
the smallest (resp. largest) item (inO(lg n) time at worst), as well as
fast insertion (also inO(lg n) time at worst), at the expense of slow
search (in onlyO(n) time at worst).

• For simplicity, we discussinteger min-heaps, without satellite data.
Exercise: Re-implement heaps of items of anyordereddata structure.

• Heaps are frequently used in software. A particular structure is the
priority queue, where items are added to a pool and assigned a priority.
The item with the lowest (resp. highest) priority gets extracted first. In
a real-time system, this extraction must be implemented efficiently.

c© Pierre Flener, IT Department, Uppsala University, Sweden AD1 – Heaps – Page 1



Binary Heaps and Binomial Trees

Definition: A binary heap(Williams, 1964) is a completely filled binary
tree, except possibly at the lowest level, which is filled from the left, so that
the key of each non-root node is at least the key of its parent (heap property).

Definition: A binomial treeis recursively defined as follows:

• A binomial tree of rank0 (denoted byB0) has a single node.

• A binomial tree of rankk (denoted byBk) is formed by linking
together two binomial trees of rankk − 1, making one of them the
leftmost child of the other one.

Note that binomial trees arenotbinary trees.

Proposition: A binomial tree of rankk has heightk (in number of edges),
has2k nodes in total, and has

(

k

i

)

nodes at depthi (hence its name!).
Its root has degreek and its children have degreesk − 1, k − 2, . . . , 0.

c© Pierre Flener, IT Department, Uppsala University, Sweden AD1 – Heaps – Page 2



Representation of Binomial Trees and Heaps

We represent binomial trees bylabelledtrees, such that:

datatype binoTree = Node of int * int * binoTree list

REPRESENTATION CONVENTION: the first integer, k, is the rank

of the tree; the second integer is the key at its root.

REPRESENTATION INVARIANT: the list has k sub-trees, ordered

by decreasing ranks k-1, k-2, ..., 1, 0.

Definition: A binomial heap(Vuillemin, 1978) is a list of binomial trees,
such that:

type binoHeap = binoTree list

REPRESENTATION INVARIANT: in each binomial tree, the key

of each non-root node is at least the key of its parent

(heap property) (hence the root of each tree contains

its minimum key); the trees have increasing ranks.

c© Pierre Flener, IT Department, Uppsala University, Sweden AD1 – Heaps – Page 3



Consequences of the Properties

Reminder of some properties:

• A binomial tree of rank (or degree)k contains2k nodes.

• In a heap, no two binomial trees have the same rank (or degree).

Consider binary arithmetic:

2210 = 101102 = 1 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 0 · 20 = 16 + 4 + 2

A binomial heap of 22 items is built from one binomial tree of rank 4, one

binomial tree of rank 2, and one binomial tree of rank 1.

A binomial heap ofn items has at most⌊lg n⌋ + 1 binomial trees,

hence its minimum item can be found inO(lg n) time at worst.

c© Pierre Flener, IT Department, Uppsala University, Sweden AD1 – Heaps – Page 4



Linking Two Binomial Trees

When constructing binomial heaps, we often have to link two binomial trees
of thesamerankr (this is a pre-condition!)
in order to form a new binomial tree of rankr + 1 that satisfies the heap
property (this is a post-condition!):

fun link(t1 as Node(r1,x1,c1) , t2 as Node(r2,x2,c2)) =

if x1 < x2 then

Node(r1+1,x1,t2::c1)

else

Node(r1+1,x2,t1::c2)

This takesΘ(1) time, no matter what the sizes of the given trees are.

c© Pierre Flener, IT Department, Uppsala University, Sweden AD1 – Heaps – Page 5



Inserting a Tree or Item into a Binomial Heap

Inserting abinomial treeof rankr into a binomial heap ofn items, whose
binomial trees have ranksr′ ≥ r (pre!), takesO(lg n) time at worst,
maintaining the list of binomial trees ordered by increasing ranks:

fun rank (Node(r,x,c)) = r

fun insTree(t, []) = [t]

| insTree(t, ts as t’::ts’) =

if rank t’ > rank t then t::ts

else if rank t’ < rank t then t’::insTree(t,ts’)

else insTree(link(t,t’),ts’)

Inserting anitem into a bino. heap ofn items takesO(lg n) time at worst:

fun insert(x,ts) = insTree(Node(0,x,[]),ts)

c© Pierre Flener, IT Department, Uppsala University, Sweden AD1 – Heaps – Page 6



Merging Two Binomial Heaps

Merging two bino. heaps with a total ofn items takesO(lg n) time at worst:

fun merge(ts1,[]) = ts1

| merge([],ts2) = ts2

| merge(ts1 as t1::ts1’ , ts2 as t2::ts2’) =

if rank t1 < rank t2 then

t1::merge(ts1’,ts2)

else if rank t2 < rank t1 then

t2::merge(ts1,ts2’)

else

insTree(link(t1,t2) , merge(ts1’,ts2’))

If this operation is not needed, then binary heaps perform better.

c© Pierre Flener, IT Department, Uppsala University, Sweden AD1 – Heaps – Page 7



Finding / Deleting the Minimum of a Binomial Heap

Finding or deleting the minimum item of a binomial heap withn > 0 items
takesO(lg n) time at worst:

fun root (Node(r,x,c)) = x

fun removeMinTree [t] = (t,[])

| removeMinTree (t::ts) =

let val (t’,ts’) = removeMinTree ts

in if root t < root t’ then (t,ts) else (t’,t::ts’) end

fun findMin ts =

let val (t,_) = removeMinTree ts

in root t end

fun deleteMin ts =

let val (Node(_,_,ts1),ts2) = removeMinTree ts

in merge(rev ts1, ts2) end

Exercise: Implement the extraction of the minimum key.

c© Pierre Flener, IT Department, Uppsala University, Sweden AD1 – Heaps – Page 8


