AD1 — Algorithms and Data Structures I
(course 1DL210)

Assignment 2: Flexible Arrays

Due by 23:59:59 on Friday 25 April, 2008

Flexible Arrays

The array (http://www.itu.dk/people/sestoft/mosmllib/Array.html) is a
very useful data structure, as one can access or update any element in constant
time, provided its index is known. For example, if one has an array a of type
int array then one can use the expressions

Array.sub(a,997)
Array.update(a,3,1i)

in order to access the value of element a[997] and update the value of element
a[3] to the value of i, respectively. However, arrays require that the memory
needed to store all the elements is allocated contiguously and at once, as well as
(for static arrays) that the maximum array size is known in advance. A rather
important consequence thereof is that if for some reason one uses only a few
elements in a large array, then one wastes a lot of memory. For example, assume
one declares an array of a million elements, but for some reason only the values
at the indices 3 and 997 are used in a given run; the declaration

val a = Array.array(1000000,0)

then allocates contiguous memory for a zero-based array a of a million integers
and initialises them all to the default value zero, but only a very tiny percentage
of these are used, which is very wasteful.

This is where the concept of flexible array comes in. A flexible array is
like a normal zero-based array as far as how one uses it is concerned: one
can access and update the element at a given index as easily as in a normal
array. Functionally, there is thus no difference, but computationally there are
differences in resource consumption. The first difference is that if one needs an
array of a million elements, say, but really needs to use only a small number
thereof, then the flexible array requires a much smaller amount of memory. This
flexibility comes at a price though: the second difference is that the access to
an element of known index is not constant-time any more.

Representing Flexible Arrays

The maximum size of a flexible array is not fixed in advance and can be arbitrary.
One can represent a flexible array essentially as a list of chunks. Each chunk



has a small fixed-size zero-based normal array of the same type of objects as
the flexible array, plus the starting index within the flexible array of the chunk.
The polymorphic flexArray abstract datatype has the following definition:

abstype ’a flexArray = Flex of {

chunkSize : int,

defaultVal : ’a,

chunks : ’a chunk list ref
} with ... end

where chunkSize is the size of chunks and defaultVal is the default value for
chunk elements when creating a new chunk. The polymorphic chunk type has
the following definition:

type ’a chunk = {
beginsAt : int,
elements : ’a array

}

For example, a flexible array a with two chunks of 10 elements and with only
the elements at indices 3 and 997 being used can be depicted as follows (careful,
the default value is not shown):

N —

10

990
991

992 >‘_
994

995
996

so |

998
999 Y,

FlexibleArray

O oo~ OO0 B WMN = O

o

Chunks \\

Note that we have only allocated memory for 20 elements of the flexible array
although it seems to have 1,000 elements. If we need to store a value at index 6,




then we first go to the initial chunk (which holds the elements at indices 0 to 9)
and then store that value at index 6 in that chunk. If we need to update the
value at index 997, then we first find the chunk ¢ where c.beginsAt < 997 <
c.beginsAt + a.chunkSize and then store the new value at index 7 in that
chunk. In this case, we have such a chunk, namely the last one. If, on the other
hand, we need to store a value at index 556, then we first create a new chunk,
link it in after the first chunk, and then store that value at index 6 in that new
chunk. Chunks in the list must be ordered increasingly by their beginsAt fields.

Work To Be Done

Implement the following functions:

e array(c,d) returns the empty flexible array of chunk size ¢ and default
value d; raises exception Size if ¢ < 0;

e sub(a,i) returns al[i]; raises exception Subscript if i < 0 or i >
c.beginsAt + a.chunkSize, where c is the last chunk of a;

e update(a,i,x) destructively replaces a[i] by x and returns (); raises
exception Subscript if i < 0.

Give, in comments within the program, your explicit reasoning establishing the
average-case and worst-case runtime complexities of your functions.

Grading

Your solution is graded in the following way:

e If your program was submitted before the deadline turns hard, loads un-
der Moscow ML version 2.01, and is a serious attempt at implementing
and commenting (under at least the coding convention) all the requested
functions, then you get 30 points (before any penalty deductions for being
late compared to the soft deadline); otherwise, you get 0 points.

e Your program is run on ¢ orthogonal tests, checking also boundary condi-
tions and error conditions. Each test is a flexible-array creation followed
by a sequence of element accesses and updates. For each fully correct
test result, you get 50/t points. We reserve the right to run these tests
automatically, so be careful with names and argument orders.

e Your program is graded on style and comments (including specifications,
representation conventions and invariants, and recursion variants), pro-
vided it does not fail on all the tests we perform. This covers 10 points.

e Your complexity analysis is graded for correctness of results and explicit-
ness of reasoning. This covers 10 points.

Have fun!



