
AD1 – Algorithms and Data Structures I
(course 1DL210)

Assignment 3: Quadtrees

Due by 23:59:59 on Friday 9 May, 2008

Rectangles and Quadtrees

While binary search trees typically work on one-dimensional key spaces, quadtrees
let us search on two-dimensional key spaces, and extensions to higher-dimensional
spaces are obvious. These kinds of trees are very useful in many graphics appli-
cations and computer-aided design tools, say for the design of VLSI (very large-
scale integration) circuits. Instead of having at most two children, quadtree
nodes have at most four children.

Let us first briefly discuss how we will use these trees. We are given a possibly
very large collection of rectangles, represented as follows:

type rectangle = {
top : int, (* y coordinate of the upper edge *)
left : int, (* x coordinate of the left edge *)
bottom : int, (* y coordinate of the bottom edge *)
right : int (* x coordinate of the right edge *)

}

Contrary to convention in Cartesian geometry, the coordinate system in this
representation is such that as one goes toward the right and bottom, the x and
y coordinates increase, that is, for any rectangle r, we have r.top < r.bottom
and r.left < r.right. Note that we thus do not consider degenerate rectangles,
such as points or line segments.

A point (x, y) on this plane is said to be inside a rectangle r if r.left ≤ x <
r.right and r.top ≤ y < r.bottom, that is the points on the right and bottom
boundaries of a rectangle are not inside it.

A quadtree enables us to find very quickly all rectangles inside which a given
point is. One can obviously also do this by keeping all the rectangles in a list,
but when there are millions of rectangles (for instance, when designing a VLSI
circuit), this will be very inefficient.

Quadtrees can organise such two-dimensional information in the following
way:

• Assume that a quadtree covers a fixed rectangular region of the plane,
itself represented by a rectangle, called the extent.

• The centre point of the quadtree extent has as x coordinate

(extent.left + extent.right) / 2

1



Figure 1: Storage of rectangles in a quadtree

and as y coordinate

(extent.top + extent.bottom) / 2

where / represents integer division.

• This centre point defines four smaller rectangles, called quadrants, at its
top left, top right, bottom left, and bottom right. This can be extended
recursively to smaller quadrants within a quadrant, until a minimum rect-
angle size is reached. See Figure 1 for an example of how a quadtree stores
rectangles.

2



Representing Rectangle Collections as Quadtrees

The quadTree datatype has the following definition:

datatype quadTree = EmptyQuadTree | Qt of {
extent : rectangle,
vertical : rectangle list,
horizontal : rectangle list,
topLeft : quadTree,
topRight : quadTree,
bottomLeft : quadTree,
bottomRight : quadTree

}

The extent rectangle defines the region covered by the quadtree, while vertical
is the list of rectangles inside which some point of the vertical centre line
x = (extent.left + extent.right) / 2 is, and horizontal is the list of rect-
angles inside which some point of the horizontal centre line y = (extent.top +
extent.bottom) / 2 is. If both centre lines have some point inside a given rect-
angle, then it is inserted only into the vertical list. For example, in Figure 1,
rectangles 1 to 3 are on the vertical list for the root extent, while rectangles 4
and 5 are on its horizontal list.

If none of the two centre lines has a point inside a given rectangle, then it is
inserted either into the topLeft subtree, which covers the extent with

top = extent.top

left = extent.left

bottom = (extent.top + extent.bottom) / 2
right = (extent.left + extent.right) / 2

or into one of the other three subtrees, called topRight, bottomLeft, and
bottomRight, whose extents are defined similarly. Note that the areas of these
quadrants need not be the same. Also note that none of the two centre lines
has a point inside any of the quadrants, because the points on their right and
bottom boundaries are not inside these quadrants.

Example 1 If the extent has top=0, left=0, bottom=4, and right=5, then:

• The topLeft quadrant has top=0, left=0, bottom=2, and right=2.

• The topRight quadrant has top=0, left=3, bottom=2, and right=5.

• The bottomLeft quadrant has top=3, left=0, bottom=4, and right=2.

• The bottomRight quadrant has top=3, left=3, bottom=4, and right=5.

A given rectangle is thus recursively inserted into either the vertical list or
the horizontal list associated with the subtree of the quadrant whose centre
lines have a point inside it.

3



To search for the rectangles inside which a given point (x, y) is, first collect
the rectangles on the vertical and horizontal lists of the root node inside
which (x, y) is. Then continue search recursively in the subtree covering the
quadrant, if any, inside which the point is; no additional search is needed if
(x, y) is on a centre line of the root extent. For example, for the given point
(x, y) in Figure 1, one searches in the vertical and horizontal lists of the
root extent and then only in the subtree covering the bottom-right quadrant.

Work To Be Done

Implement the following functions:

• insert(q,r) returns the quadtree q with rectangle r inserted;

• query(q,x,y) returns the list of rectangles of quadtree q inside which the
point (x,y) is, where x and y are integers.

Give, in comments within the program, your explicit reasoning establishing the
average-case and worst-case runtime complexities of these functions.

Grading

Your solution is graded in the following way:

• If your program was submitted before the deadline turns hard, loads un-
der Moscow ML version 2.01, and is a serious attempt at implementing
and commenting (under at least the coding convention) all the requested
functions, then you get 30 points (before any penalty deductions for being
late compared to the soft deadline); otherwise, you get 0 points.

• Your program is run on t orthogonal tests, checking also boundary condi-
tions, but no error conditions. Each test is a sequence of rectangle inser-
tions into the initially empty quadtree, followed by a sequence of queries
inside which rectangles of the resulting quadtree a given point is. For each
fully correct test result, you get 50/t points. We reserve the right to run
these tests automatically, so be careful with names and argument orders.

• Your program is graded on style and comments (including specifications,
representation conventions and invariants, and recursion variants), pro-
vided it does not fail on all the tests we perform. This covers 10 points.

• Your complexity analysis is graded for correctness of results and explicit-
ness of reasoning. This covers 10 points.

Have fun!

4


