AD1 — Algorithms and Data Structures I
(course 1DL210)

Assignment 4: Data Compression

Due by 23:59:59 on Friday 16 May, 2008

Introduction

The purpose of data compression is to take an input file A and, within a reason-
able amount of time, transform it into an output file B in such a way that B is
smaller than A and that it is possible to reconstruct A from B. A program that
converts A into B is called a compressor, and one that undoes this operation is
called a decompressor. Programs such as gzip perform this function. Compres-
sion enables us to store data more efficiently on storage devices or transmit data
faster using communication facilities, since fewer bits are needed to represent
the actual data.

A compressor cannot guarantee that B will always be smaller than A. In-
deed, if this were possible, then what would happen if one just kept compressing
the output of the compressor?! Any compressor that succeeds in compressing
some files must thus also actually fail to compress some other files. Nevertheless,
compressors tend to work pretty well on the kinds of files (especially those gen-
erated by computer novices using Micro$oft Office) that are typically found on
computers, and they are widely used in practice, especially for pictures, movies,
and sounds.

The Ziv-Lempel Algorithm

We here consider a version of the Ziv-Lempel data compression algorithm, which
is the basis for most popular compression programs, such as WinZip, zip, and
gzip. You may find this algorithm a little difficult to understand at first, but
your program could be quite short.

It is an example of an adaptive data compression algorithm: the code used
to represent a particular sequence of bytes in the input file may be different for
distinct input files, and may even be different if the same sequence appears in
more than one place in the input file.

Compressor

The Ziv-Lempel compressor maps strings of input characters to numeric codes.
To begin with, each character of the set of characters, called the alphabet, that
may occur in the text file is assigned a code. For example, suppose the input
file starts with the string:

aaabbbbbbaabaaba

This string is composed of the characters a and b. Assuming the alphabet is just
{a, b}, initially a is assigned the code 0 and b the code 1. The mapping between
character strings and their codes is kept in a dictionary. Each dictionary entry
has two fields: a code and a string. The character string represented by the
field code is stored in the field string. The initial dictionary for our example is
given by the first two columns below:

code 0|1 2 3 4 5 6 7
string | a | b | aa | aab | bb | bbb | bbba | aaba

Beginning with the dictionary initialised as above, the Ziv-Lempel compressor
repeatedly finds the longest prefix p of the unprocessed part of the input file
that is in the dictionary and outputs its code. Furthermore, if there is a next
character ¢ in the input file, then pc (denoting the string p followed by the
character c) is assigned the next available code and inserted into the dictionary.
This strategy is called the Ziv-Lempel rule.

Example 1 Consider the example string aaabbbbbbaabaaba above. The
longest prefix of the input that is in the initial dictionary is a. Its code 0 is
output and the string aa (for p = a and ¢ = a) is assigned the code 2 and entered
into the dictionary. Now, aa is the longest prefix of the remaining string that
is in the dictionary. Its code 2 is output and the string aab (for p = aa and
¢ = b) is assigned the code 3 and entered into the dictionary. Even though
aab has the code 3 assigned to it, the code 2 for aa is actually output! The
suffix b will be a prefix of the string corresponding to the next output code. The
reason for not outputting 3 is that the dictionary is not part of the compressed
file. Instead, the dictionary has to be reconstructed during decompression using
the compressed file. This reconstruction is possible only if we adhere strictly
to the Ziv-Lempel rule: see the next subsection. Following the output of the
code 2, the code 1 for b is output and bb is assigned the code 4 and entered
into the dictionary. Then, the code 4 for bb is output and bbb is entered into
the dictionary with code 5. Next, the code 5 is output and bbba is entered
into the dictionary with code 6. Then, the code 3 is output for aab and aaba
is entered into the dictionary with code 7. Finally, the code 7 is output for
the entire remaining string aaba. The example string is thus encoded as the
sequence 0214537 of codes, and the final dictionary is as given above.

Uncompressor

For decompression, we read the codes one at a time and replace them by the
strings they denote. The dictionary can be dynamically reconstructed as follows.
The codes assigned for single-character strings are entered as (code, string) pairs
into the dictionary at the initialisation (just as for compression). This time,
however, the dictionary is searched for an entry with a given code (rather than
with a given string). The first code in the compressed file necessarily corresponds
to a single character and so may be replaced by that character, which is already
in the dictionary. For all other codes = in the compressed file, we have two cases
to consider:

1. If the code z is already in the dictionary, then the corresponding string,
denoted by string(x), is extracted from the dictionary and output. Fur-
thermore, we know that for the code ¢ that precedes x in the compressed
file the compressor created a new code for the string string(q) followed
by the first character of string(z), denoted by fe(x). So we also enter the
pair (next code, string(q)fc(x)) into the dictionary.

2. If the code x is not yet in the dictionary, then the uncompressed text
segment corresponding to the compressed file segment gz has the form
string(q) string(q)fe(q), where ¢ is the code that precedes z in the com-
pressed file. Indeed, during compression, the string string(q)fc(q) was
assigned the new code z in the dictionary and the code x was output.
So we output string(q)fc(q) and enter the pair (z, string(q)fe(q)) into the
dictionary.

Example 2 Consider the example string aaabbbbbbaabaaba, which was com-
pressed in Example 1 into the code sequence 0214537. The dictionary is ini-
tialised with the pairs (0,a) and (1,b). The first code is 0, so its string a is
output. The next code, 2, is still undefined. Since the previous code 0 has
string(0) = a and fc(0) = a, we have string(2) = string(0)fc(0) = aa, so aa
is output and (2,aa) is entered into the dictionary. The next code, 1, trig-
gers output b and (3, string(2)fc(1)) = (3,aab) is entered into the dictionary.
The next code, 4, is not yet in the dictionary. The preceding code is 1, so
string(4) = string(1)fc(1) = bb. The pair (4, bb) is entered into the dictionary
and bb is output. Similarly for the next code, 5, where (5, bbb) is entered
into the dictionary and bbb is output. The next code is 3, which is already in
the dictionary, so string(3) = aab is output and the pair (6, string(5)fc(3)) =
(6, bbba) is entered into the dictionary. Finally, when the code 7 is read, the
pair (7, string(3)fc(3)) = (7,aaba) is entered into the dictionary and aaba is
output. The original example string has thus been reconstructed, and the final
dictionary is again as given on the previous page.

Implementing the Ziv-Lempel Algorithm

The data structure to be used by the compressor is a hash table storing integer
codes for string keys. New codes are entered into the hash table for given strings,
and the hash table is queried with strings for the corresponding codes, if any.
For this assignment, we limit ourselves to the codes 0 through 4095. The ASCII
codes 0 through 255 will be used for single-character strings, even though the
character with ASCII code 0 will never be encountered in the input file. So the
first new code that the compressor actually assigns will be 256. If more than
4096 codes are needed, then do not generate new codes but use the available
ones; this may give less compression, but otherwise is not a problem.

The decompressor can actually be simpler. Since we just query on integer
codes, rather than on strings, use an array of 4096 strings and initialise it for
the first 256 single-character strings. For instance, array position 65 (which
corresponds to ASCII symbol A) must contain the string “A”. Starting with
position 256, new strings are dynamically entered into this array.

Work To Be Done

Implement the following functions:

e compress compresses a file, given as a list of characters. You may use
a suitable hash-table implementation of the Moscow ML Library (see
http://www.itu.dk/people/sestoft/mosmllib/). To avoid a number
of problems, make this function return the sequence of codes as a list of
integers. Actual compression would involve rather advanced SML details,
such as binary input/output, bit packing, etc, which are really beyond the
scope of this assignment. There may thus not be any actual compression
here in terms of bytes consumed.

e decompress decompresses a list of integer codes into a list of characters.
You may use a suitable array implementation of the Moscow ML Library.

Give, in comments within the program, your explicit reasoning establishing the
worst-case runtime complexities of these functions.

If both functions are correct, then decompress(compress cs) = cs for any
character list cs.

Example 3 The character list is
[a,a,a,b,b,b,b,b,b,a,a,b,a,a,b,a]
if and only if the code list is
(97,256, 98, 258, 259, 257, 261]

once we adjust the codes of Examples 1 and 2 as discussed on top of this page.

Grading

Your solution is graded in the following way:

e If your program was submitted before the deadline turns hard, loads un-
der Moscow ML version 2.01, and is a serious attempt at implementing
and commenting (under at least the coding convention) all the requested
functions, then you get 30 points (before any penalty deductions for being
late compared to the soft deadline); otherwise, you get 0 points.

e We will run three tests on your programs:

— We will decompress with your decompress function a code list ob-
tained with our compress function. If our input and your output are
identical, then you get 20 points.

— We will decompress with our decompress function two code lists ob-
tained with your compress function. For each identical input/output
pair, you get 15 points.

We reserve the right to run these tests automatically, so be careful with
names and argument orders.

e Your program is graded on style and comments (including specifications,
representation conventions and invariants, and recursion variants), pro-
vided it does not fail on all the tests we perform. This covers 10 points.

e Your complexity analysis is graded for correctness of results and explicit-
ness of reasoning. This covers 10 points.

Have fun!

