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1. Show consistency and stability. Then, the Lax-Richtmyer theorem yields that the scheme is convergent.
Taylor expand the operator D, D_
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which yields when inserted into the equation above that the scheme is consistent.

That gives

Moreover, we have that

The solution can be split into u(z,t) = up(z,t) + up(z), where up(x,t) is the solution to the problem
with homogeneous right hand side and u,(z) is a time independent particular solution, i.e. a solution to
—Aug, = f(z) and does not affect stability. Investigate the stability for the homogeneous problem with the
Fourier method. Ansatz u} = g"e™? and using that
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Inserting and factorizing gives
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Therefore, the method is consistent and stable and thus convergent under the given condition.

2. We have variable coefficients, but a(z) is Lipschitz continuous. Freeze a(x) = a constant. Divide the problem
into two quarter plane problems, 0 < z < oc and —oo < # < 1. Set f(z,t) = h(x) = g(t) = 0 and investigate
each quarter plane problem for itself.

Check first the basic condition, i.e. that the leapfrog scheme without boundary conditions is stable. Fourier
analysis yields that
laA| < 1

That should be valid for all values which a can have in the interval. The maximum for a = 72 gives
k/h < 1/m?* as stability condition. Start now with the GKSO-analysis.
Step 1: Resolvent equation
Ansatz v} = 2";
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Step 2. Characteristic equation
Ansatz v; = K* ' ' ' »
= 2%k = K+ adz (kT — )

(2% = 1)k = arz(k* — 1)

Step 3. Determinant condition
The characteristic equation yields that its roots satisfy

Kike=—1 = |k1]| <1, |2 >1or k]| =]k =1

Check £ = e (Fourier ansatz) = |z| < 1 because of the basic assumption of stability for periodic boundary
conditions. Thus, for |z| > 1 we have |k1]| < 1 and |k2| > 1. We can write the solution as 9; = o1K] + o232,
but |ka| > 1 and v} € 15(0,00) = o9 = 0 constraint. Look for a solution in the form ©; = o/ where |x| < 1.
Insert the ansatz v = 2ok’ into the boundary condition.
For the right boundary condition, we get

"okl =0

which does not give any non-trivial solutions and therefore does not affect stability.
The left boundary condition yields

2"o(1+aX) = aX2"Tok + 2"
(z—1-adXz(k—1))o =0
We look for non-trivial solutions with o # 0, i.e.

z—1—aXz(k—1)=0

Step 4. Solve the equations

{ (22 = 1)k = aXz(k® — 1)
z—1—aXz(k—1)=0
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Step 5. Check the solution

Is the solution obtained in the limit |z| — 14 ? The characteristic equation yields that k1 = 1 and ky = =1

or k1 = —1 and k2 = 1. Only the first case is a solution (as o2 = 0). We know that |k;| < 1 and |k2| > 1

for |z| > 1. Make the ansatz z =1+ 0 and kK = 1 + ¢ with 6 > 0 and check the sign of €. Insert the ansatz
into the characteristic equation and neglect higher order terms,

(1462 -1)(1+e)=ar1+6)((1+e)*-1)
=
20 &~ a)2e

Thus, € > 0 and it is k2 which satisfies the equations. We have no solution for |z| > 1 or when |z| — 1.

Step 6. Conclusions
The leapfrog scheme is stable with the proposed boundary condition, if k/h < 1/x%.



3. The operator Dy D_(I — %D+D_) is five points wide. Boundary conditions are needed in all points, which
are one point away from the boundary. Taylor expand u(z,y) normal to the boundary.

For the boundary x = h;, we obtain

B2 B3
u(hi,y) = u(0,y) + h1u, (0,y) + %um(O,y) + glum(O,y) + O(hY)

Use that u(z,y) = g(z,y) on the boundary. As boundary condition, we get then

B2 B3
u(hi,y) = 9(0,y) + h1g.(0,y) + Elgm(O,y) + glgm(O,y)

In the same way, we get for the other boundaries the boundary conditions

h? h3

u(l—hi,y) = g(1,y) —hg.(1,y) + 7lgm(1=y) - glgm(l,y)
h2 h3

u(:v, h2) = g(a:,O) + hQQy(iE,O) + %gyy(az,O) + égyyy(ajﬂo)
h3 h3

U(iL“,l - h2) = g(a:, 1) - hQQy(ﬂfa 1) + fgyy(ﬂ:, 1) - fgyyy(l", 1)

4. Ansatz u = U + v where U is a solution to the differential equation and v a small perturbation. Study
how the small perturbation affects the solution. I.e. check the stability for v. Insert u = U + v into the
equation and neglect higher order terms in v (i.e. linearize the equation). Express the differential equation
as u; + f'(u)u, = 0 and exploit that U is a solution. That yields

v+ f1(U)ve = —f"(U)Uyv

Strang’s theorem states that if u is sufficiently smooth and the difference method D is stable for the linearized
equation, then D also converges for the nonlinear equation.
Desirable properties of a numerical scheme for nonlinear conservation laws:

a) Conservative form: A scheme for the conservation law u; + f(u), = 0 is in conservative form, if it can
be written as o .
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where h?+1/2 = h(uj_,,...,u},). For consistency, we require (as h — 0, k — 0) that h(u,...,u) = f(u).
The conservative form guarantees that possible shocks are computed with the correct shock speed.
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b) Entropy satisfying: Gives the physically correct solution, breaks up an expansion shock into an expan-
sion wave.

¢) TVD: A scheme is called total variation diminishing (TVD), if
Do loftt o < D) i
J J
Prevents growth of total variation in the solution, namely through high wave number oscillations.

5. The error can be expressed as a linear combination of the eigenvectors of A. On level [, we have the wave
numbers
’UL =2l sin(urx) pw=1, ...,my

and on level [ — 1
vifl =/ 2h_1sin(urz) pw=1, ..., nj_1

where n; = 2n;_1 + 1 and by = hy_1/2.
Thus, the wave numbers > n; ;1 +1 =

”’2"'1 are only represented on the fine grid.

Apply the restriction operator to the eigenvectors and study what happens componentwise
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For p > ”’TH, express p =mn; — k+ 1 where k =1, ... ,n;—y. That gives
sin((ng — k + D)mwhy_13) = sin((2(m—1 + 1) — k)why_1i) = sin(27i — knhj_1i) = —sin(kwh;_11)

and we get
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I.e. the wave number u = n; — k + 1 on the fine grid is superimposed as wave number k on the coarse grid

and damped by the factor % cosQ(‘“TTh’). The same analysis for the direct injection yields

[Rol], = /2l sin(urhi2i) = /2h sin(umhy i) =
w=n—k+1=2(n—1 +1) — k]
1
= /2hysin(2wi — knhj_11) = 7 [”i_l]i

Again, the wave number yu = n; — k + 1 on the fine grid is superimposed as wave number k on the coarse
grid and damped by the factor 1/v/2 (less damping than for full weighting).



