Solution Suggestion to the Examination in Analysis of Numerical Methods, 2001-10-12

1. Show consistency and stability. Then, the Lax-Richtmyer theorem yields that the scheme is convergent. Taylor expand the operator $D_{+} D_{-}$

$$
D_{+} D_{-} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{h^{2}}{12} \frac{\partial^{4} u}{\partial x^{4}}+O\left(h^{4}\right)=\left(1+\frac{h^{2}}{12} \frac{\partial^{2}}{\partial x^{2}}\right) \frac{\partial^{2} u}{\partial x^{2}}+O\left(h^{4}\right)=\left(1+\frac{h^{2}}{12} D_{+} D_{-}\right) \frac{\partial^{2} u}{\partial x^{2}}+O\left(h^{4}\right)
$$

That gives

$$
\left(1+\frac{h^{2}}{12} D_{+} D_{-}\right) \cdot\left(\frac{u_{j}^{n+1}-u_{j}^{n}}{k}-\lambda \frac{\partial^{2} u}{\partial x^{2}}-f_{j}\right)=O\left(h^{4}\right)
$$

Moreover, we have that

$$
\frac{u_{j}^{n+1}-u_{j}^{n}}{k}=u_{t}+O(k)
$$

which yields when inserted into the equation above that the scheme is consistent.
The solution can be split into $u(x, t)=u_{h}(x, t)+u_{p}(x)$, where $u_{h}(x, t)$ is the solution to the problem with homogeneous right hand side and $u_{p}(x)$ is a time independent particular solution, i.e. a solution to $-\lambda u_{x x}=f(x)$ and does not affect stability. Investigate the stability for the homogeneous problem with the Fourier method. Ansatz $u_{j}^{n}=g^{n} e^{i \omega x}$ and using that

$$
D_{+} D_{-} e^{i \omega x}=-\frac{4}{h^{2}} \sin ^{2}\left(\frac{\omega h}{2}\right) e^{i \omega x}
$$

Inserting and factorizing gives

$$
\begin{gathered}
\left(1-\frac{4 h^{2}}{12 h^{2}} \sin ^{2}\left(\frac{\omega h}{2}\right)\right)\left(\frac{g-1}{k}\right)+\frac{4 \lambda}{h^{2}} \sin ^{2}\left(\frac{\omega h}{2}\right)=0 \\
\Rightarrow \\
g=1-\frac{4 \frac{\lambda k}{h^{2}} \sin ^{2}\left(\frac{\omega h}{2}\right)}{1-\frac{1}{3} \sin ^{2}\left(\frac{\omega h}{2}\right)}
\end{gathered}
$$

For stability we require $|g| \leq 1$. We have

$$
1 \geq 1-\frac{4 \frac{\lambda k}{h^{2}} \sin ^{2}\left(\frac{\omega h}{2}\right)}{1-\frac{1}{3} \sin ^{2}\left(\frac{\omega h}{2}\right)} \geq 1-6 \frac{\lambda k}{h^{2}} \geq-1 \quad \text { for } \quad \frac{\lambda k}{h^{2}} \leq \frac{1}{3}
$$

Therefore, the method is consistent and stable and thus convergent under the given condition.
2. We have variable coefficients, but $a(x)$ is Lipschitz continuous. Freeze $a(x)=a$ constant. Divide the problem into two quarter plane problems, $0 \leq x<\infty$ and $-\infty<x \leq 1$. Set $f(x, t)=h(x)=g(t)=0$ and investigate each quarter plane problem for itself.
Check first the basic condition, i.e. that the leapfrog scheme without boundary conditions is stable. Fourier analysis yields that

$$
|a \lambda|<1
$$

That should be valid for all values which a can have in the interval. The maximum for $a=\pi^{2}$ gives $k / h<1 / \pi^{2}$ as stability condition. Start now with the GKSO-analysis.

Step 1: Resolvent equation
Ansatz $v_{i}^{n}=z^{n} \tilde{v}_{i}$

$$
\Rightarrow z^{n+1} \tilde{v}_{i}=z^{n-1} \tilde{v}_{i}+a \lambda z^{n}\left(\tilde{v}_{i+1}-\tilde{v}_{i-1}\right)
$$

$$
z^{2} \tilde{v}_{i}=\tilde{v}_{i}+a \lambda z\left(\tilde{v}_{i+1}-\tilde{v}_{i-1}\right)
$$

Step 2. Characteristic equation
Ansatz $\tilde{v}_{i}=\kappa^{i}$

$$
\begin{gathered}
\Rightarrow z^{2} \kappa^{i}=\kappa^{i}+a \lambda z\left(\kappa^{i+1}-\kappa^{i-1}\right) \\
\left(z^{2}-1\right) \kappa=a \lambda z\left(\kappa^{2}-1\right) \\
\kappa^{2}-\frac{z^{2}-1}{a \lambda z} \kappa-1=0
\end{gathered}
$$

Step 3. Determinant condition

The characteristic equation yields that its roots satisfy

$$
\kappa_{1} \cdot \kappa_{2}=-1 \quad \Rightarrow \quad\left|\kappa_{1}\right|<1,\left|\kappa_{2}\right|>1 \text { or }\left|\kappa_{1}\right|=\left|\kappa_{2}\right|=1
$$

Check $\kappa=e^{i \theta}$ (Fourier ansatz) $\Rightarrow|z| \leq 1$ because of the basic assumption of stability for periodic boundary conditions. Thus, for $|z|>1$ we have $\left|\kappa_{1}\right|<1$ and $\left|\kappa_{2}\right|>1$. We can write the solution as $\tilde{v}_{j}=\sigma_{1} \kappa_{1}^{j}+\sigma_{2} \kappa_{2}^{j}$, but $\left|\kappa_{2}\right|>1$ and $v_{j}^{n} \in l_{2}(0, \infty) \Rightarrow \sigma_{2}=0$ constraint. Look for a solution in the form $\tilde{v}_{j}=\sigma \kappa^{j}$ where $|\kappa|<1$. Insert the ansatz $v_{j}^{n}=z^{n} \sigma \kappa^{j}$ into the boundary condition.
For the right boundary condition, we get

$$
z^{n} \sigma \kappa^{j}=0
$$

which does not give any non-trivial solutions and therefore does not affect stability.
The left boundary condition yields

$$
\begin{gathered}
z^{n+1} \sigma(1+a \lambda)=a \lambda z^{n+1} \sigma \kappa+z^{n} \sigma \\
(z-1-a \lambda z(\kappa-1)) \sigma=0
\end{gathered}
$$

We look for non-trivial solutions with $\sigma \neq 0$, i.e.

$$
z-1-a \lambda z(\kappa-1)=0
$$

Step 4. Solve the equations

$$
\left\{\begin{array}{c}
\left(z^{2}-1\right) \kappa=a \lambda z\left(\kappa^{2}-1\right) \\
z-1-a \lambda z(\kappa-1)=0 \\
\Rightarrow \\
\kappa=1, z=1
\end{array}\right.
$$

Step 5. Check the solution
Is the solution obtained in the limit $|z| \rightarrow 1_{+}$? The characteristic equation yields that $\kappa_{1}=1$ and $\kappa_{2}=-1$ or $\kappa_{1}=-1$ and $\kappa_{2}=1$. Only the first case is a solution (as $\sigma_{2}=0$). We know that $\left|\kappa_{1}\right|<1$ and $\left|\kappa_{2}\right|>1$ for $|z|>1$. Make the ansatz $z=1+\delta$ and $\kappa=1+\varepsilon$ with $\delta>0$ and check the sign of ε. Insert the ansatz into the characteristic equation and neglect higher order terms,

$$
\begin{aligned}
\left((1+\delta)^{2}-1\right)(1+\varepsilon) & =a \lambda(1+\delta)\left((1+\varepsilon)^{2}-1\right) \\
& \Rightarrow
\end{aligned}
$$

$$
2 \delta \approx a \lambda 2 \varepsilon
$$

Thus, $\varepsilon>0$ and it is κ_{2} which satisfies the equations. We have no solution for $|z|>1$ or when $|z| \rightarrow 1_{+}$.
Step 6. Conclusions
The leapfrog scheme is stable with the proposed boundary condition, if $k / h<1 / \pi^{2}$.
3. The operator $D_{+} D_{-}\left(I-\frac{h^{2}}{12} D_{+} D_{-}\right)$is five points wide. Boundary conditions are needed in all points, which are one point away from the boundary. Taylor expand $u(x, y)$ normal to the boundary.

For the boundary $x=h_{1}$, we obtain

$$
u\left(h_{1}, y\right)=u(0, y)+h_{1} u_{x}(0, y)+\frac{h_{1}^{2}}{2} u_{x x}(0, y)+\frac{h_{1}^{3}}{6} u_{x x x}(0, y)+O\left(h_{1}^{4}\right)
$$

Use that $u(x, y)=g(x, y)$ on the boundary. As boundary condition, we get then

$$
u\left(h_{1}, y\right)=g(0, y)+h_{1} g_{x}(0, y)+\frac{h_{1}^{2}}{2} g_{x x}(0, y)+\frac{h_{1}^{3}}{6} g_{x x x}(0, y)
$$

In the same way, we get for the other boundaries the boundary conditions

$$
\begin{aligned}
u\left(1-h_{1}, y\right) & =g(1, y)-h_{1} g_{x}(1, y)+\frac{h_{1}^{2}}{2} g_{x x}(1, y)-\frac{h_{1}^{3}}{6} g_{x x x}(1, y) \\
u\left(x, h_{2}\right) & =g(x, 0)+h_{2} g_{y}(x, 0)+\frac{h_{2}^{2}}{2} g_{y y}(x, 0)+\frac{h_{2}^{3}}{6} g_{y y y}(x, 0) \\
u\left(x, 1-h_{2}\right) & =g(x, 1)-h_{2} g_{y}(x, 1)+\frac{h_{2}^{2}}{2} g_{y y}(x, 1)-\frac{h_{2}^{3}}{6} g_{y y y}(x, 1)
\end{aligned}
$$

4. Ansatz $u=U+v$ where U is a solution to the differential equation and v a small perturbation. Study how the small perturbation affects the solution. I.e. check the stability for v. Insert $u=U+v$ into the equation and neglect higher order terms in v (i.e. linearize the equation). Express the differential equation as $u_{t}+f^{\prime}(u) u_{x}=0$ and exploit that U is a solution. That yields

$$
v_{t}+f^{\prime}(U) v_{x}=-f^{\prime \prime}(U) U_{x} v
$$

Strang's theorem states that if u is sufficiently smooth and the difference method D is stable for the linearized equation, then D also converges for the nonlinear equation.
Desirable properties of a numerical scheme for nonlinear conservation laws:
a) Conservative form: A scheme for the conservation law $u_{t}+f(u)_{x}=0$ is in conservative form, if it can be written as

$$
\frac{u_{j}^{n+1}-u_{j}^{n}}{k}+\frac{h_{j+1 / 2}^{n}-h_{j-1 / 2}^{n}}{h}=0
$$

where $h_{j+1 / 2}^{n}=h\left(u_{j-q}^{n}, \ldots, u_{j+p}^{n}\right)$. For consistency, we require (as $\left.h \rightarrow 0, k \rightarrow 0\right)$ that $h(u, \ldots, u)=f(u)$. The conservative form guarantees that possible shocks are computed with the correct shock speed.
b) Entropy satisfying: Gives the physically correct solution, breaks up an expansion shock into an expansion wave.
c) TVD: A scheme is called total variation diminishing (TVD), if

$$
\sum_{j}\left|v_{j}^{n+1}-v_{j-1}^{n+1}\right| \leq \sum_{j}\left|v_{j}^{n}-v_{j-1}^{n}\right|
$$

Prevents growth of total variation in the solution, namely through high wave number oscillations.
5. The error can be expressed as a linear combination of the eigenvectors of A. On level l, we have the wave numbers

$$
v_{\mu}^{l}=\sqrt{2 h_{l}} \sin (\mu \pi x) \quad \mu=1, \ldots, n_{l}
$$

and on level $l-1$

$$
v_{\mu}^{l-1}=\sqrt{2 h_{l-1}} \sin (\mu \pi x) \quad \mu=1, \ldots, n_{l-1}
$$

where $n_{l}=2 n_{l-1}+1$ and $h_{l}=h_{l-1} / 2$.
Thus, the wave numbers $\geq n_{l-1}+1=\frac{n_{l}+1}{2}$ are only represented on the fine grid.
Apply the restriction operator to the eigenvectors and study what happens componentwise

$$
\left[R v_{\mu}^{l}\right]_{i}=\frac{\sqrt{2 h_{l}}}{4}\left(\sin \left(\mu \pi h_{l}(2 i-1)\right)+2 \sin \left(\mu \pi h_{l} 2 i\right)+\sin \left(\mu \pi h_{l}(2 i+1)\right)\right)=\ldots=
$$

$$
=\frac{\sqrt{2 h_{l}}}{4} 2\left(\cos \left(\mu \pi h_{l}\right)+1\right) \sin \left(\mu \pi h_{l} 2 i\right)=\sqrt{2 h_{l}} \cos ^{2}\left(\frac{\mu \pi h_{l}}{2}\right) \sin \left(\mu \pi h_{l-1} i\right)
$$

For $\mu \geq \frac{n_{l}+1}{2}$, express $\mu=n_{l}-k+1$ where $k=1, \ldots, n_{l-1}$. That gives

$$
\sin \left(\left(n_{l}-k+1\right) \pi h_{l-1} i\right)=\sin \left(\left(2\left(n_{l-1}+1\right)-k\right) \pi h_{l-1} i\right)=\sin \left(2 \pi i-k \pi h_{l-1} i\right)=-\sin \left(k \pi h_{l-1} i\right)
$$

and we get

$$
\left[R v_{\mu}^{l}\right]_{i}=-\frac{1}{\sqrt{2}} \cos ^{2}\left(\frac{\mu \pi h_{l}}{2}\right)\left[v_{k}^{l-1}\right]_{i}
$$

I.e. the wave number $\mu=n_{l}-k+1$ on the fine grid is superimposed as wave number k on the coarse grid and damped by the factor $\frac{1}{\sqrt{2}} \cos ^{2}\left(\frac{\mu \pi h_{l}}{2}\right)$. The same analysis for the direct injection yields

$$
\begin{gathered}
{\left[R v_{\mu}^{l}\right]_{i}=\sqrt{2 h_{l}} \sin \left(\mu \pi h_{l} 2 i\right)=\sqrt{2 h_{l}} \sin \left(\mu \pi h_{l-1} i\right)=} \\
{\left[\mu=n_{l}-k+1=2\left(n_{l-1}+1\right)-k\right]} \\
=\sqrt{2 h_{l}} \sin \left(2 \pi i-k \pi h_{l-1} i\right)=-\frac{1}{\sqrt{2}}\left[v_{k}^{l-1}\right]_{i}
\end{gathered}
$$

Again, the wave number $\mu=n_{l}-k+1$ on the fine grid is superimposed as wave number k on the coarse grid and damped by the factor $1 / \sqrt{2}$ (less damping than for full weighting).

