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 ComputingSolutions to the Examination in Analysis of Numeri
alMethods2003-10-081. a) Taylor expansion of the exa
t solution u(x; t) around (xj; tn+1) is easier than around (xj ; tn),whi
h is also possible, of 
ourse.u(xj ; tn) = u� kut + k2=2utt +O(k3)u(xj�1; tn+1) = u� hux + h2=2uxx � h3=6uxxx +O(k4)Inserting u = u(xj; tn+1) for vn+1j into the left hand side of the FDMPk;hvn+1j = vn+1j � vnjk + avn+1j+1 � vn+1j�12h � bvn+1j = 0 (1)and using the PDE ut + aux � bu = 0 yields the trun
ation errorPk;hu = ut � k=2utt +O(k2) + a(ux + h2=6uxxx +O(h4))� bu= �k=2utt +O(k2) + a(h2=6uxxx +O(h4))= O(k) +O(h2)Thus, the FDM is �rst order a

urate in time and se
ond order a

urate in spa
e, i.e. theFDM is 
onsistent.We perform the von Neumann stability analysis by inserting the ansatzvnj = gnei!xjinto the FDM (1). We get��1 + �a2 (ei!h � e�i!h)� kb� g � 1� gnk ei!xj = 0 : (2)After dividing and using ei!h � e�i!h = 2isin(!h), we obtain the ampli�
ation fa
torg = 11� kb+ i�asin(!h) :We note that jgj2 = 1(1� kb)2 + (�asin(!h))2 � 1be
ause the denominator is larger equal 1 as b � 0 for all k > 0. Thus, the FDM is un
on-ditionally stable.The Lax-Ri
htmyer equivalen
e theorem states that for a 
onsistent FDM stability and 
on-vergen
e are equivalent. We have shown that the FDM (1) is 
onsistent and un
onditionallystable. Thus, it is 
onvergent. 1



b) In the limit k �!1, we getjgj = 1p(1� kb)2 + (�asin(!h))2 �! � 1 if b = 0 and !h = 0 or �0 otherwise;Thus, all wave numbers !, ex
ept for the lowest and largest for b = 0, are optimally dampedfor k �! 1. For k =1 the time di�eren
e in FDM (1) disappears and we get the dire
tmethod for the steady state problem, i.e. the steady state solution is obtained in one step.2. We perform the GKS analysis. The stability of FDM (1) for periodi
 boundary 
onditions wasshown in task 1.1. Resolvent equationInserting the ansatz vnj = zn~vj into the FDM (1) for b � 0 yields�(z � 1)~vj + z�a2 (~vj+1 � ~vj�1)� znk = 0 :For z 6= 0, we get the resolvent equation(z � 1)~vj + z�a2 (~vj+1 � ~vj�1) = 0 : (3)2. Chara
teristi
 equationInserting the ansatz ~vj = �j into the resolvent equation (3), we obtain(z � 1)�j + z�a2 (�j+1 � �j�1) = 0 :Dividing by z �a2 �j�1 and ordering, we get the 
hara
teristi
 equation�2 + z � 1z 2�a�� 1 = 0 (4)3. Determinant 
onditionThe general solution of the resolvent equation (3) is~vj = � �1�j1 + �2�j2 if �1 6= �2�1�j + �2j�j�1 if �1 = �2 = �where �1 and �2 are the two roots of the 
hara
teristi
 equation (4). The 
oeÆ
ients �1 and�2 are determined su
h that the boundary 
ondition vn+10 = 2vn+11 �vn+12 and vn 2 l2(0;1)are satis�ed for the right half plane problem. (Similar reasoning is used for the left halfplane problem with the boundary 
ondition vn+1N = 0, 
f. below.) Be
ause of the form ofthe 
hara
teristi
 equation (4), the produ
t of its roots satis�es the relation�1�2 = �1 :Thus, either j�1j < 1 and j�2j > 1 or j�1j = j�2j = 1. In either 
ase, we have to set �2 = 0to se
ure vn 2 l2(0;1). Now, we 
he
k j�1j = 1. Inserting � = ei� into the 
hara
teristi
equation (4), we get for z the same result as for the ampli�
ation fa
tor g in the von2



Neumann stability analysis (
f. task 1), i.e. jzj � 1.Thus, there 
an only be solutions with jzj > 1 for j�1j < 1 and j�2j > 1, and the solutionmust be of the form vnj = zn�1�j1 :(Inserting the solution into the boundary 
ondition vn+1N = 0 yields zn+1�1�N1 = 0. Thus,�1 = 0 for �1 6= 0, and 
onsequently vnj = 0. Therefore, the left half plane problem isstable.)Inserting the solution into the boundary 
ondition vn+10 = 2vn+11 � vn+12 , we getzn+1�1 = zn+1�1(2�1 � �21) :For �1 6= 0, we obtain �21 � 2�1 + 1 = 0 :Therefore, the determinant 
ondition is �1 = 1 : (5)4. Solve equationsWe solve the 
hara
teristi
 equation (4) and the determinant 
ondition (5) by inserting� = 1 into (4). We get z�1z 2�a = 0, i.e. z = 1. Thus, the solution is�1 = 1 ; z = 1 : (6)5. Che
k solutionsIf � = 1 and z = 1 were a solution in the limit � �! 1� and z �! 1+, the s
heme wouldbe unstable. To 
he
k that 
ase, we assume that z = 1 + Æ with Æ > 0 and � = 1 + �. Weinsert z and � into the 
hara
teristi
 equation (4) and 
he
k the sign of � as Æ �! 0. If� < 0, the s
heme is unstable.Inserting z and � into (4), yields(1 + �)2 + 1 + Æ � 11 + Æ 2�a(1 + �)� 1 = 0Using 11+Æ = 1� Æ +O(Æ2) and negle
ting the quadrati
 and higher order terms, we get� = � 1�aÆ :Thus, � > 0, be
ause Æ > 0 and a < 0. As � > 0, the s
heme is stable, be
ause then � = �2.But sin
e �2 = 0, there is no 
riti
al solution with z �! 1+.6. Con
lusionsThe FDM (1) with the boundary 
onditions stated above is un
onditionally stable.
3. a) A = � u 

 u �3



Determine eigenvalues � of A:det(A� �I) = (u� �)2 � 
2 = 0() � = u� 
 :Thus, the eigenvalues �1 = u � 
 and �2 = u + 
 are real. Determine 
orrespondingeigenve
tors r1 and r2, i.e. (A� �I)r = 0. We obtain after normalizing:r1 = 1p2 � �11 � ; r2 = 1p2 � 11 �De�ne the transformation matrix as the right eigenve
tor matrixT = [r1; r2℄ = 1p2 � �1 11 1 �T is symmetri
 and orthogonal, i.e. T�1 = T. Therefore,T�1AT = � ;where � = � �1 00 �2 �i.e. A is diagonalizable.Summarizing, the �rst order system Vt +AVx = 0 ; (7)where V = � vp �is a hyperboli
 system.b) Multiplying the hyperboli
 system (7) by T�1 from the left, using the diagonalization of Aand the de�nition of the 
hara
teristi
 variablesW = T�1V = 1p2 � p� vp+ v � = � w1w2 � ;we get Wt +�Wx = 0 ; (8)i.e. two s
alar equations w1t + �1w1x = 0w2t + �2w2x = 0 ;whi
h 
orrespond to dw1dt = 0 on dxdt = �1dw2dt = 0 on dxdt = �2 :Thus, w1 and 
onsequently p � v is 
onstant on 
hara
teristi
s dxdt = u � 
, and w2 and
onsequently p+ v is 
onstant on 
hara
teristi
s dxdt = u+ 
.4




) The leapfrog s
heme for solving the hyperboli
 system readsVn+1j = Vn�1j � �A(Vnj+1 �Vnj�1) ; (9)where Vnj = � vnjpnj � approximates � v(xj ; tn)p(xj ; tn) � and � = kh again.The stability analysis is fa
ilitated by performing it for the 
hara
teristi
 equations (8), i.e.for a s
alar equation of the form wt + awx = 0, for whi
h the leapfrog s
heme reads:wn+1j = wn�1j � �a(wnj+1 � wnj�1) : (10)w = wl ; a = �l ; l = 1; 2; denotes the �rst or se
ond 
omponent of W and the �rst orse
ond eigenvalue of A, respe
tively.Applying the von Neumann stability analysis, we insert the ansatz wnj = gnei!xj into (10)to get gn+1ei!xj = [gn�1 � �a(ei!h � e�i!h)gn℄ei!xj :With the same arguments as in task 1, we get the quadrati
 equation for the ampli�
ationfa
tor g g2 + 2i�asin(!h)g � 1 = 0 :Its roots are g1;2 = �i�asin(!h)�p1� (�asin(!h))2 :We have three 
ases:Case 1: j�aj < 1Then, (�asin(!h))2 < 1 and the square root is real and positive. Consequently, g1 6= g2.As jg1;2j = 1 and the roots are simple, the s
heme is then stable.Case 2: j�aj = 1For !h = �=2, g1 = g2 = �i�a and jg1j = jg2j = 1. As g1 is a double root, but not jg1j < 1,the s
heme is then unstable.Case 3: j�aj > 1For !h = �=2, either jg1j > 1 or jg2j > 1, sin
e jg1;2j = j � �a �p(�a)2 � 1j. Therefore,the s
heme is unstable then.Thus, the leapfrog s
heme is stable for j�aj < 1. As here a = u�
 and maxju�
j = juj+
,the stability 
ondition be
omes �(juj+ 
) < 1 : (11)
4. a) Applying the von Neumann stability analysis, the ansatz vnj = gnei!xj is inserted into theupwind method. We getg = 1� a�(1� e�i!h) = 1� a�(1� 
os(!h)� ia�sin(!h) (12)Using trigonometri
 identities, we obtainjgj2 = 1� 4a�(1� a�)sin2(!h2 ) :We see that the ne
essary and suÆ
ient stability 
onditionjg(!h)j � 15



is equivalent to the CFL 
ondition ja�j � 1 :A s
heme is total variation diminishing (TVD), ifNXj=1 jvn+1j � vn+1j�1 j � NXj=1 jvnj � vnj�1j :Inserting the upwind method, we getNXj=1 jvn+1j � vn+1j�1 j =PNj=1 jvnj � a�(vnj � vnj�1)� [vnj�1 � a�(vnj�1 � vnj�2)j=PNj=1 j(1 � a�)(vnj � vnj�1) + a�(vnj�1 � vnj�2)j� (1� a�)PNj=1 jvnj � vnj�1j+ a�PNj=1 jvnj�1 � vnj�2j=PNj=1 jvnj � vnj�1jwhere the triangle inequality and 0 � a� � 1 were used for the inequality and the periodi
boundary 
onditions for the last equality.b) The 
onservative upwind method for the invis
id Burgers' equation be
omesvn+1j = vnj � a�(hnj+1=2 � hnj�1=2) ; (13)where hnj+1=2 = h(vnj ; vnj+1) = ( (vnj )2=2 if anj+1=2 � 0(vnj+1)2=2 if anj+1=2 < 0with anj+1=2 = 12(vnj + vnj+1). By de�nition, the upwind s
heme (13) is 
onservative. It isalso 
onsistent, be
ause h(u; u) = u2=2.Performing one time step with the given initial 
ondition, the solution does not 
hange.Thus, instead of approximating the 
orre
t entropy satisfying exa
t solution, i.e. a rarefa
-tion wave, the upwind s
heme (13) yields an entropy violating steady expansion sho
k.The numeri
al 
ux fun
tion of the upwind s
heme (13) 
an also be written ashnj+1=2 = h(vnj ; vnj+1) = 12 �(vnj )2=2 + (vnj+1)2=2 � janj+1=2j(vnj+1 � vnj )� (14)At x = 0, we get a0�1=2 = 12(v�1 + v0) = 12(�1 + 1) = 0. Thus, at the dis
ontinuity, wherewe need numeri
al vis
osity, we do not get any with the upwind s
heme (13). Therefore,Harten (1983) suggested as entropy �x to repla
e janj+1=2j in (14) by Q(anj+1=2), whereQ(a) = � jaj if jaj � Æ(a2 + Æ2)=(2Æ) if jaj < Æwith e.g. Æ = max(0; vnj+1 � vnj ) for Q(anj+1=2).5. a) The multigrid method is based on the following two ideas:
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(a) Iterative improvementSuppose ~u is an approximation to the exa
t solution u to the linear system Au = f .Compute the residual r = A~u� f and solve the linear system Av = r. Then, 
orre
tthe approximate solution to get the exa
t solutionu = ~u� v ;be
ause Au = A(~u� v) = A~u�Av = A~u� r = A~u� (A~u� f) = f .Even ifAv = r is only solved approximately by ~v, ~u�~v will yield an improved solution.(b) Residual smoothingThe eigenvalues of the the iteration matrix GJ;! = I � ! h22 A of the damped Ja
obimethod uk+1 = S1uk = GJ;!uk + ! h22 f for ! = 12 are�� = 1� sin2(��h2 ) ; � = 1; :::; n ;i.e. the high wave numbers � = n+12 ; :::; n are qui
kly damped by a few damped Ja
obiiterations, sin
e j��j � 12 for those �. The low wave numbers � = n+14 ; :::; n+12 � 1 
anbe damped on a 
oarser grid with h0 = 2h, where they be
ome high wave numbers.The two-grid multigrid algorithm 
an be summarized as follows:TMG(u; f)u := S�1u � iterations with damped Ja
obi on �ne gridr := R(Au� f) residual on �ne grid is restri
ted to 
oarse gridv := A�10 r A0v = r is solved exa
tly on 
oarse gridu := u�Pv 
orre
tion is prolongated to �ne grid to improve solutionSin
e only the matri
es are relevant for the iteration matrix, we 
an set f to zero as forinvestigating the error ek+1 = Gek to get the TMG iteration matrix. Thus, we get fromthe TMG algorithm above: ek+1 = (I�PA�10 RA)G�J;!ek :Therefore, the iteration matrix of the TMG algorithm isG(�) = (I�PA�10 RA)G�J;! :b) If the FDM is multiplied by h2, it 
an be written as�(ui+1;j � 2ui;j + ui�1;j)� (ui;j+1 � 2ui;j + ui;j�1) = h2fi;j :Thus, the FDM for i = 1; :::; n and j = 1; :::; n 
an be expressed as the linear systemAu = h2f ;where U = [u1;1; u2;1; :::; un;1; u1;2; u2;2; un;2; :::; u1;n; u2;n; :::; un;n℄T andA is the n�n blo
k-tridiagonal matrix A = 0BBBBBBBB�
B C 0 � � � � 0 0C B C 0 � � � � 0� � �� � �� � �0 � � � � 0 C B C0 0 � � � � 0 C B

1CCCCCCCCA7



with the n� n tridiagonal matrix
B = 0BBBBBBBB�

4 �1 0 � � � � 0 0�1 4 �1 0 � � � � 0� � �� � �� � �0 � � � � 0 �1 4 �10 0 � � � � 0 �1 4
1CCCCCCCCAand the n� n diagonal matrix C = �In.The dire
t solution of a linear system with a N � N band matrix A of bandwidth dtakes O(Nd2) 
ops with LU de
omposition and forward and ba
kward substitution. Sin
ehere N = n2 and d = n, the dire
t solution of the above system takes O(n4) 
ops.An iterative method like Ja
obi or Gauss-Seidel needs O(n2) iterations to 
onverge, be-
ause the number of iterations k to rea
h a toleran
e tol isk � log(tol=jje0jj2)log(jjGjj2)and log(jjGjj2) � log(1 � O(h2)) � �O(h2) � � 1n2 . One Ja
obi or Gauss-Seidel iterationtakes O(N) 
ops. Thus, to rea
h a 
ertain toleran
e takes O(n2)O(N) = O(n4) 
ops.The multigrid method takes O(1) iterations to 
onverge. A

ording to A
hi Brandt, itshould not take more than 10 multigrid 
y
les. Sin
e one multigrid 
y
le takes O(N) 
ops,the multigrid method needs O(1)O(N) = O(n2) 
ops.
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