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1. a) Taylor expansion of the exact solution u(z, t) around (z;,#""") is easier than around (z;, t"),
which is also possible, of course.

w(zjty) = u—ku+k*/2uy + O(K?)
W(Tjt1,tne1) = u+ hig + h? /2y + B /6 gy + O(K")

Inserting u = u(z;, tp41) for U;H'l into the left hand side of the FDM

n+l . n n+l _ n+l
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and using the PDE u; 4+ au, — bu = 0 yields the truncation error

Pk,hv

Pepu =up —k/2uy + O(k?) + a(ug + h% /6 ugpy + O(hY)) — bu
= —k/2 Ut + O(kQ) + a(h2/6 Upgy T+ O(h4))
= O(k) + O(h?)

Thus, the FDM is first order accurate in time and second order accurate in space, i.e. the
FDM is consistent.

We perform the von Neumann stability analysis by inserting the ansatz

n n _iwe;
i J
vy =ge

into the FDM (1). We get

\a . o
[(1 + ;(e“‘”h — e why kb) g - 1] %e“"xi =0. (2)

After dividing and using e — e~™" = 2jsin(wh), we obtain the amplification factor

1
1 —kb+iXasin(wh)

9

We note that 1

ol = (1 — kb)? + (Aasin(wh))? =

because the denominator is larger equal 1 as b < 0 for all £ > 0. Thus, the FDM is uncon-
ditionally stable.

The Lax-Richtmyer equivalence theorem states that for a consistent FDM stability and con-
vergence are equivalent. We have shown that the FDM (1) is consistent and unconditionally
stable. Thus, it is convergent.




b) In the limit & — oo, we get

9| = 1 _}{1 iftb=0andwh=0orm=
I V(1 = kb)2 + (Aasin(wh))? 0 otherwise,

Thus, all wave numbers w, except for the lowest and largest for b = 0, are optimally damped
for k — oo. For k = oc the time difference in FDM (1) disappears and we get the direct
method for the steady state problem, i.e. the steady state solution is obtained in one step.

2. We perform the GKS analysis. The stability of FDM (1) for periodic boundary conditions was
shown in task 1.

1. Resolvent equation

Inserting the ansatz o7 = 2"9; into the FDM (1) for b = 0 yields

- Aa . 2"
(Z — 1)’()]' + 27(7)9‘4_1 — Q)j_l) ? =0.

For z # 0, we get the resolvent equation

. Aa . .
(2 =195 + 25041 = 9j-1) = 0. (3)

2. Characteristic equation

Inserting the ansatz #; = x/ into the resolvent equation (3), we obtain

. )
(z = 1)K’ —i—z?a(/#"'l -k =0.

Dividing by z%nj ~! and ordering, we get the characteristic equation

3. Determinant condition

The general solution of the resolvent equation (3) is

P am{-l—awé if kK1 # ko
J o1k 4 09jkl Tl if Ky =Ko =K

where k1 and k9 are the two roots of the characteristic equation (4). The coefficients o1 and
o9 are determined such that the boundary condition v ' = 207! — 42! and v™ € 15(0, o)
are satisfied for the right half plane problem. (Similar reasoning is used for the left half
plane problem with the boundary condition v%"’l = 0, cf. below.) Because of the form of

the characteristic equation (4), the product of its roots satisfies the relation
R1R9 = —1.

Thus, either k1| < 1 and |k2| > 1 or |k1]| = |k2| = 1. In either case, we have to set oo =0
to secure v™ € I3(0,00). Now, we check |k1| = 1. Inserting x = ¢ into the characteristic
equation (4), we get for z the same result as for the amplification factor g in the von



Neumann stability analysis (cf. task 1), i.e. |z| < 1.
Thus, there can only be solutions with |z| > 1 for |s1] < 1 and |k2| > 1, and the solution
must be of the form

J

n__ .n j
vi = 2"o1K .

(Inserting the solution into the boundary condition UX,H = 0 yields z"*'o k) = 0. Thus,
k1 = 0 for o1 # 0, and consequently vj = 0. Therefore, the left half plane problem is
stable.)

Tnserting the solution into the boundary condition v ™' = 207! — 2!

— vy, we get

"oy = z”+101(2/§1 — ,%2) .

For o1 # 0, we obtain
KT =2k +1=0.

Therefore, the determinant condition is

Iilzl. (5)

4. Solve equations

We solve the characteristic equation (4) and the determinant condition (5) by inserting

k= 1into (4). We get 2212 =0, i.e. 2 = 1. Thus, the solution is

z Aa

k=1 ,z2=1. (6)

5. Check solutions

If Kk =1 and 2z = 1 were a solution in the limit Kk — 1_ and z — 14, the scheme would
be unstable. To check that case, we assume that 2z =140 with § >0 and kK =1+ €. We
insert z and k into the characteristic equation (4) and check the sign of € as § — 0. If
€ < 0, the scheme is unstable.

Inserting 2z and & into (4), yields

1+6-12
2 _ — =
(1+¢€)+ 53 )\a(1+6) 1 =0

Using 1% =1 -6+ O(0?) and neglecting the quadratic and higher order terms, we get

1
——9.
Aa

€ —=

Thus, € > 0, because § > 0 and a < 0. As e > 0, the scheme is stable, because then Kk = ks.
But since g9 = 0, there is no critical solution with z — 1.

6. Conclusions

The FDM (1) with the boundary conditions stated above is unconditionally stable.



Determine eigenvalues A of A:
det(A - M) =(u—- N> - =0 =u+tc.

Thus, the eigenvalues A\; = v — ¢ and Ay = u + ¢ are real. Determine corresponding
eigenvectors ry and rg, i.e. (A — AI)r = 0. We obtain after normalizing:

() - ()

Define the transformation matrix as the right eigenvector matrix

=5 1)

T is symmetric and orthogonal, i.e. T~' = T. Therefore,

T 'AT = A,
where
(M0
A= < 0 A )
i.e. A is diagonalizable.
Summarizing, the first order system
V,+AV, =0, (7)

where

()

b) Multiplying the hyperbolic system (7) by T ! from the left, using the diagonalization of A
and the definition of the characteristic variables

worivo L (r-v)_ (v
V2 \ p+uo w? )’

is a hyperbolic system.

we get
Wi+ AW, =0, (8)
i.e. two scalar equations
’wtl + )\110;: == 0
w} + Aw? = 0,
which correspond to
dw?
— =0 on H=)
dw?
7 =0 on (Z—? = )\2 .

Thus, w' and consequently p — v is constant on characteristics [é—f = u — ¢, and w? and

consequently p + v is constant on characteristics fl—f =u+c.



4.

c) The leapfrog scheme for solving the hyperbolic system reads

T i+~ Vi)
vt = v M (VI =V ) (9)

s . v(zj,tn) .

where V7 = J | approximates e > and X = £ again.
g ( ? ) PP < p(gjjatn) h 26

The stability analysis is facilitated by performing it for the characteristic equations (8), i.e.

for a scalar equation of the form w; + aw, = 0, for which the leapfrog scheme reads:

w?"'l = w;l_l —Aa(wjy —wjiy) . (10)
w=w!, a=2X, [=1,2, denotes the first or second component of W and the first or

second eigenvalue of A, respectively.
Applying the von Neumann stability analysis, we insert the ansatz wj = g"e%i into (10)
to get

gn-l—leiwxj — [gn—l . )\a(eiwh _ e—iwh)gn]eiwxj )

With the same arguments as in task 1, we get the quadratic equation for the amplification
factor g
g> + 2idasin(wh)g —1 = 0.

Its roots are

g1 = —idasin(wh) £ /1 — (\asin(wh))? .

We have three cases:

Case 1: |ha| <1

Then, (Aasin(wh))? < 1 and the square root is real and positive. Consequently, g1 # go.
As |g1 2] =1 and the roots are simple, the scheme is then stable.

Case 2: |Aa| =1

For wh = 7/2, g1 = go = —iXa and |g1| = |g2| = 1. As gy is a double root, but not |g1| < 1,
the scheme is then unstable.

Case 3: |Aa| > 1

For wh = m/2, either |gi| > 1 or |ga| > 1, since [g; 5 = | — Aa £ \/(Aa)? — 1]. Therefore,
the scheme is unstable then.

Thus, the leapfrog scheme is stable for [Aa| < 1. As here a = u%c and maz|utc| = |u|+c,
the stability condition becomes
AMlul+¢) < 1. (11)

a) Applying the von Neumann stability analysis, the ansatz vj = g"e™%i is inserted into the

upwind method. We get
g=1—aX1—e ™" =1—a)\(1 — cos(wh) — iarsin(wh) (12)
Using trigonometric identities, we obtain
9> =1 — daX(1 — aA)sinQ(%h) .
We see that the necessary and sufficient stability condition

g(wh)] <1



is equivalent to the CFL condition
laX| < 1.

A scheme is total variation diminishing (TVD), if

N N
P AR AN DI TR
i=1 j=1

Inserting the upwind method, we get

N
1 1 N
Z \U;H— - U;Zj_l =20 [vf = aA (] — i) = [l —aA(v] — vl )
j=1
N
= ijl (1- a)\)(v;l — 0?71) + a)\(U;Ll — 0?72)\
n

N N
<(1-a)) Zj:l |U;L - U;Lﬂ + aA Zj:l |U;Lf1 - v]72|

N
= Zj:l ‘”;l - U;Lﬂ

where the triangle inequality and 0 < aA < 1 were used for the inequality and the periodic
boundary conditions for the last equality.

The conservative upwind method for the inviscid Burgers’ equation becomes

U;H—l = U;l - GA(h;LH/Q - h;'lf1/2) ) (13)
where )
B0 = h(o®, 0" ) = (v) /22 ifaj iy, 20
i+1/2 7 (vj41)?/2 lf61?4—1/2 <0
with a,, , = %(vy +v7,;). By definition, the upwind scheme (13) is conservative. It is

also consistent, because h(u,u) = u?/2.

Performing one time step with the given initial condition, the solution does not change.
Thus, instead of approximating the correct entropy satisfying exact solution, i.e. a rarefac-
tion wave, the upwind scheme (13) yields an entropy violating steady expansion shock.
The numerical flux function of the upwind scheme (13) can also be written as

n n n ]' n n n n n
B = b i) = 5 (@22 4+ 01022 = laf ol 00 —v]))  (19)

Atz =0, we get ag_y)p = T(v_1 +v9) = (=1 + 1) = 0. Thus, at the discontinuity, where
we need numerical viscosity, we do not get any with the upwind scheme (13). Therefore,

Harten (1983) suggested as entropy fix to replace |a;.’+1/2\ in (14) by Q(a;.’H/Q), where

_J la| if la| > ¢
@la) —{ (a® + 62)/(20) if|a| < 0

with e.g. § = maz(0, Uiy — U;l) for Q(a?+1/2)'

The multigrid method is based on the following two ideas:



(a) Tterative improvement
Suppose 4 is an approximation to the exact solution u to the linear system Au = f.
Compute the residual r = Aa — f and solve the linear system Av = r. Then, correct
the approximate solution to get the exact solution

u=u-v,
because A u=A(a—v)=Au—-Av=Aua-r=Au- (Au-f)="1.
Even if Av = r is only solved approximately by v, u—v will yield an improved solution.

(b) Residual smoothing
The eigenvalues of the the iteration matrix G, = I — th—QA of the damped Jacobi

2
method uf*! = S uf = G ,u” + w%f for w =1 are

2
h
)\le—sinQ(%) \ pw=1..n,
i.e. the high wave numbers y = "T"'l, ..., are quickly damped by a few damped Jacobi
iterations, since |\,| < % for those p. The low wave numbers y = "TH, . "T“ — 1 can

be damped on a coarser grid with hy = 2h, where they become high wave numbers.

The two-grid multigrid algorithm can be summarized as follows:

TMG(u, f)

u:= Siu v iterations with damped Jacobi on fine grid

r:= R(Au-f) residual on fine grid is restricted to coarse grid

v = Aalr Ayv =r is solved exactly on coarse grid

u:=u-Pv correction is prolongated to fine grid to improve solution

Since only the matrices are relevant for the iteration matrix, we can set f to zero as for

investigating the error e**! = GeF to get the TMG iteration matrix. Thus, we get from

the TMG algorithm above:
e" = (I-PA;'RA)GY e" .
Therefore, the iteration matrix of the TMG algorithm is
G(v) = (I-PA;'RA)GY,, .

b) If the FDM is multiplied by A2, it can be written as
— (i1 — 2uij 4 wi1g) — (i1 — 2uij +uij1) =hfij .
Thus, the FDM for s = 1,...,n and 7 = 1,...,n can be expressed as the linear system
Au = hW’f,

where U = [t1,1, U2, 1, o, Un, 1, 81,2, U2,2, Un. 2, coos Uln, U2y oens un’n]T and A is the n x n block-
tridiagonal matrix

BCO - - - 00
c BCO- - - - - 0
A=
0o - 0 C B C
0 0 0 C B



with the n x n tridiagonal matrix

4 -1 0 0 O
-1 4 -1 0 0
B =
0 . - -0 -1 4 -1
0 0 - - - -0 =1 4
and the n x n diagonal matrix C = —1I,,.

The direct solution of a linear system with a N x N band matrix A of bandwidth d
takes O(Nd?) flops with LU decomposition and forward and backward substitution. Since
here N = n? and d = n, the direct solution of the above system takes O(n?*) flops.

An iterative method like Jacobi or Gauss-Seidel needs O(n?) iterations to converge, be-
cause the number of iterations k£ to reach a tolerance tol is

log(tol/||e°] 5)
log(||Gll2)

and log(||G||2) =~ log(1 — O(h?)) =~ —O(h?) ~ —711—2. One Jacobi or Gauss-Seidel iteration
takes O(N) flops. Thus, to reach a certain tolerance takes O(n?)O(N) = O(n*) flops.

The multigrid method takes O(1) iterations to converge. According to Achi Brandt, it
should not take more than 10 multigrid cycles. Since one multigrid cycle takes O(N) flops,
the multigrid method needs O(1)O(N) = O(n?) flops.



