
Uppsala UniversityDepartment of Information TehnologyDivision of Sienti� ComputingSolutions to the Examination in Analysis of NumerialMethods2003-10-081. a) Taylor expansion of the exat solution u(x; t) around (xj; tn+1) is easier than around (xj ; tn),whih is also possible, of ourse.u(xj ; tn) = u� kut + k2=2utt +O(k3)u(xj�1; tn+1) = u� hux + h2=2uxx � h3=6uxxx +O(k4)Inserting u = u(xj; tn+1) for vn+1j into the left hand side of the FDMPk;hvn+1j = vn+1j � vnjk + avn+1j+1 � vn+1j�12h � bvn+1j = 0 (1)and using the PDE ut + aux � bu = 0 yields the trunation errorPk;hu = ut � k=2utt +O(k2) + a(ux + h2=6uxxx +O(h4))� bu= �k=2utt +O(k2) + a(h2=6uxxx +O(h4))= O(k) +O(h2)Thus, the FDM is �rst order aurate in time and seond order aurate in spae, i.e. theFDM is onsistent.We perform the von Neumann stability analysis by inserting the ansatzvnj = gnei!xjinto the FDM (1). We get��1 + �a2 (ei!h � e�i!h)� kb� g � 1� gnk ei!xj = 0 : (2)After dividing and using ei!h � e�i!h = 2isin(!h), we obtain the ampli�ation fatorg = 11� kb+ i�asin(!h) :We note that jgj2 = 1(1� kb)2 + (�asin(!h))2 � 1beause the denominator is larger equal 1 as b � 0 for all k > 0. Thus, the FDM is unon-ditionally stable.The Lax-Rihtmyer equivalene theorem states that for a onsistent FDM stability and on-vergene are equivalent. We have shown that the FDM (1) is onsistent and unonditionallystable. Thus, it is onvergent. 1



b) In the limit k �!1, we getjgj = 1p(1� kb)2 + (�asin(!h))2 �! � 1 if b = 0 and !h = 0 or �0 otherwise;Thus, all wave numbers !, exept for the lowest and largest for b = 0, are optimally dampedfor k �! 1. For k =1 the time di�erene in FDM (1) disappears and we get the diretmethod for the steady state problem, i.e. the steady state solution is obtained in one step.2. We perform the GKS analysis. The stability of FDM (1) for periodi boundary onditions wasshown in task 1.1. Resolvent equationInserting the ansatz vnj = zn~vj into the FDM (1) for b � 0 yields�(z � 1)~vj + z�a2 (~vj+1 � ~vj�1)� znk = 0 :For z 6= 0, we get the resolvent equation(z � 1)~vj + z�a2 (~vj+1 � ~vj�1) = 0 : (3)2. Charateristi equationInserting the ansatz ~vj = �j into the resolvent equation (3), we obtain(z � 1)�j + z�a2 (�j+1 � �j�1) = 0 :Dividing by z �a2 �j�1 and ordering, we get the harateristi equation�2 + z � 1z 2�a�� 1 = 0 (4)3. Determinant onditionThe general solution of the resolvent equation (3) is~vj = � �1�j1 + �2�j2 if �1 6= �2�1�j + �2j�j�1 if �1 = �2 = �where �1 and �2 are the two roots of the harateristi equation (4). The oeÆients �1 and�2 are determined suh that the boundary ondition vn+10 = 2vn+11 �vn+12 and vn 2 l2(0;1)are satis�ed for the right half plane problem. (Similar reasoning is used for the left halfplane problem with the boundary ondition vn+1N = 0, f. below.) Beause of the form ofthe harateristi equation (4), the produt of its roots satis�es the relation�1�2 = �1 :Thus, either j�1j < 1 and j�2j > 1 or j�1j = j�2j = 1. In either ase, we have to set �2 = 0to seure vn 2 l2(0;1). Now, we hek j�1j = 1. Inserting � = ei� into the harateristiequation (4), we get for z the same result as for the ampli�ation fator g in the von2



Neumann stability analysis (f. task 1), i.e. jzj � 1.Thus, there an only be solutions with jzj > 1 for j�1j < 1 and j�2j > 1, and the solutionmust be of the form vnj = zn�1�j1 :(Inserting the solution into the boundary ondition vn+1N = 0 yields zn+1�1�N1 = 0. Thus,�1 = 0 for �1 6= 0, and onsequently vnj = 0. Therefore, the left half plane problem isstable.)Inserting the solution into the boundary ondition vn+10 = 2vn+11 � vn+12 , we getzn+1�1 = zn+1�1(2�1 � �21) :For �1 6= 0, we obtain �21 � 2�1 + 1 = 0 :Therefore, the determinant ondition is �1 = 1 : (5)4. Solve equationsWe solve the harateristi equation (4) and the determinant ondition (5) by inserting� = 1 into (4). We get z�1z 2�a = 0, i.e. z = 1. Thus, the solution is�1 = 1 ; z = 1 : (6)5. Chek solutionsIf � = 1 and z = 1 were a solution in the limit � �! 1� and z �! 1+, the sheme wouldbe unstable. To hek that ase, we assume that z = 1 + Æ with Æ > 0 and � = 1 + �. Weinsert z and � into the harateristi equation (4) and hek the sign of � as Æ �! 0. If� < 0, the sheme is unstable.Inserting z and � into (4), yields(1 + �)2 + 1 + Æ � 11 + Æ 2�a(1 + �)� 1 = 0Using 11+Æ = 1� Æ +O(Æ2) and negleting the quadrati and higher order terms, we get� = � 1�aÆ :Thus, � > 0, beause Æ > 0 and a < 0. As � > 0, the sheme is stable, beause then � = �2.But sine �2 = 0, there is no ritial solution with z �! 1+.6. ConlusionsThe FDM (1) with the boundary onditions stated above is unonditionally stable.
3. a) A = � u  u �3



Determine eigenvalues � of A:det(A� �I) = (u� �)2 � 2 = 0() � = u�  :Thus, the eigenvalues �1 = u �  and �2 = u +  are real. Determine orrespondingeigenvetors r1 and r2, i.e. (A� �I)r = 0. We obtain after normalizing:r1 = 1p2 � �11 � ; r2 = 1p2 � 11 �De�ne the transformation matrix as the right eigenvetor matrixT = [r1; r2℄ = 1p2 � �1 11 1 �T is symmetri and orthogonal, i.e. T�1 = T. Therefore,T�1AT = � ;where � = � �1 00 �2 �i.e. A is diagonalizable.Summarizing, the �rst order system Vt +AVx = 0 ; (7)where V = � vp �is a hyperboli system.b) Multiplying the hyperboli system (7) by T�1 from the left, using the diagonalization of Aand the de�nition of the harateristi variablesW = T�1V = 1p2 � p� vp+ v � = � w1w2 � ;we get Wt +�Wx = 0 ; (8)i.e. two salar equations w1t + �1w1x = 0w2t + �2w2x = 0 ;whih orrespond to dw1dt = 0 on dxdt = �1dw2dt = 0 on dxdt = �2 :Thus, w1 and onsequently p � v is onstant on harateristis dxdt = u � , and w2 andonsequently p+ v is onstant on harateristis dxdt = u+ .4



) The leapfrog sheme for solving the hyperboli system readsVn+1j = Vn�1j � �A(Vnj+1 �Vnj�1) ; (9)where Vnj = � vnjpnj � approximates � v(xj ; tn)p(xj ; tn) � and � = kh again.The stability analysis is failitated by performing it for the harateristi equations (8), i.e.for a salar equation of the form wt + awx = 0, for whih the leapfrog sheme reads:wn+1j = wn�1j � �a(wnj+1 � wnj�1) : (10)w = wl ; a = �l ; l = 1; 2; denotes the �rst or seond omponent of W and the �rst orseond eigenvalue of A, respetively.Applying the von Neumann stability analysis, we insert the ansatz wnj = gnei!xj into (10)to get gn+1ei!xj = [gn�1 � �a(ei!h � e�i!h)gn℄ei!xj :With the same arguments as in task 1, we get the quadrati equation for the ampli�ationfator g g2 + 2i�asin(!h)g � 1 = 0 :Its roots are g1;2 = �i�asin(!h)�p1� (�asin(!h))2 :We have three ases:Case 1: j�aj < 1Then, (�asin(!h))2 < 1 and the square root is real and positive. Consequently, g1 6= g2.As jg1;2j = 1 and the roots are simple, the sheme is then stable.Case 2: j�aj = 1For !h = �=2, g1 = g2 = �i�a and jg1j = jg2j = 1. As g1 is a double root, but not jg1j < 1,the sheme is then unstable.Case 3: j�aj > 1For !h = �=2, either jg1j > 1 or jg2j > 1, sine jg1;2j = j � �a �p(�a)2 � 1j. Therefore,the sheme is unstable then.Thus, the leapfrog sheme is stable for j�aj < 1. As here a = u� and maxju�j = juj+,the stability ondition beomes �(juj+ ) < 1 : (11)
4. a) Applying the von Neumann stability analysis, the ansatz vnj = gnei!xj is inserted into theupwind method. We getg = 1� a�(1� e�i!h) = 1� a�(1� os(!h)� ia�sin(!h) (12)Using trigonometri identities, we obtainjgj2 = 1� 4a�(1� a�)sin2(!h2 ) :We see that the neessary and suÆient stability onditionjg(!h)j � 15



is equivalent to the CFL ondition ja�j � 1 :A sheme is total variation diminishing (TVD), ifNXj=1 jvn+1j � vn+1j�1 j � NXj=1 jvnj � vnj�1j :Inserting the upwind method, we getNXj=1 jvn+1j � vn+1j�1 j =PNj=1 jvnj � a�(vnj � vnj�1)� [vnj�1 � a�(vnj�1 � vnj�2)j=PNj=1 j(1 � a�)(vnj � vnj�1) + a�(vnj�1 � vnj�2)j� (1� a�)PNj=1 jvnj � vnj�1j+ a�PNj=1 jvnj�1 � vnj�2j=PNj=1 jvnj � vnj�1jwhere the triangle inequality and 0 � a� � 1 were used for the inequality and the periodiboundary onditions for the last equality.b) The onservative upwind method for the invisid Burgers' equation beomesvn+1j = vnj � a�(hnj+1=2 � hnj�1=2) ; (13)where hnj+1=2 = h(vnj ; vnj+1) = ( (vnj )2=2 if anj+1=2 � 0(vnj+1)2=2 if anj+1=2 < 0with anj+1=2 = 12(vnj + vnj+1). By de�nition, the upwind sheme (13) is onservative. It isalso onsistent, beause h(u; u) = u2=2.Performing one time step with the given initial ondition, the solution does not hange.Thus, instead of approximating the orret entropy satisfying exat solution, i.e. a rarefa-tion wave, the upwind sheme (13) yields an entropy violating steady expansion shok.The numerial ux funtion of the upwind sheme (13) an also be written ashnj+1=2 = h(vnj ; vnj+1) = 12 �(vnj )2=2 + (vnj+1)2=2 � janj+1=2j(vnj+1 � vnj )� (14)At x = 0, we get a0�1=2 = 12(v�1 + v0) = 12(�1 + 1) = 0. Thus, at the disontinuity, wherewe need numerial visosity, we do not get any with the upwind sheme (13). Therefore,Harten (1983) suggested as entropy �x to replae janj+1=2j in (14) by Q(anj+1=2), whereQ(a) = � jaj if jaj � Æ(a2 + Æ2)=(2Æ) if jaj < Æwith e.g. Æ = max(0; vnj+1 � vnj ) for Q(anj+1=2).5. a) The multigrid method is based on the following two ideas:
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(a) Iterative improvementSuppose ~u is an approximation to the exat solution u to the linear system Au = f .Compute the residual r = A~u� f and solve the linear system Av = r. Then, orretthe approximate solution to get the exat solutionu = ~u� v ;beause Au = A(~u� v) = A~u�Av = A~u� r = A~u� (A~u� f) = f .Even ifAv = r is only solved approximately by ~v, ~u�~v will yield an improved solution.(b) Residual smoothingThe eigenvalues of the the iteration matrix GJ;! = I � ! h22 A of the damped Jaobimethod uk+1 = S1uk = GJ;!uk + ! h22 f for ! = 12 are�� = 1� sin2(��h2 ) ; � = 1; :::; n ;i.e. the high wave numbers � = n+12 ; :::; n are quikly damped by a few damped Jaobiiterations, sine j��j � 12 for those �. The low wave numbers � = n+14 ; :::; n+12 � 1 anbe damped on a oarser grid with h0 = 2h, where they beome high wave numbers.The two-grid multigrid algorithm an be summarized as follows:TMG(u; f)u := S�1u � iterations with damped Jaobi on �ne gridr := R(Au� f) residual on �ne grid is restrited to oarse gridv := A�10 r A0v = r is solved exatly on oarse gridu := u�Pv orretion is prolongated to �ne grid to improve solutionSine only the matries are relevant for the iteration matrix, we an set f to zero as forinvestigating the error ek+1 = Gek to get the TMG iteration matrix. Thus, we get fromthe TMG algorithm above: ek+1 = (I�PA�10 RA)G�J;!ek :Therefore, the iteration matrix of the TMG algorithm isG(�) = (I�PA�10 RA)G�J;! :b) If the FDM is multiplied by h2, it an be written as�(ui+1;j � 2ui;j + ui�1;j)� (ui;j+1 � 2ui;j + ui;j�1) = h2fi;j :Thus, the FDM for i = 1; :::; n and j = 1; :::; n an be expressed as the linear systemAu = h2f ;where U = [u1;1; u2;1; :::; un;1; u1;2; u2;2; un;2; :::; u1;n; u2;n; :::; un;n℄T andA is the n�n blok-tridiagonal matrix A = 0BBBBBBBB�
B C 0 � � � � 0 0C B C 0 � � � � 0� � �� � �� � �0 � � � � 0 C B C0 0 � � � � 0 C B
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with the n� n tridiagonal matrix
B = 0BBBBBBBB�

4 �1 0 � � � � 0 0�1 4 �1 0 � � � � 0� � �� � �� � �0 � � � � 0 �1 4 �10 0 � � � � 0 �1 4
1CCCCCCCCAand the n� n diagonal matrix C = �In.The diret solution of a linear system with a N � N band matrix A of bandwidth dtakes O(Nd2) ops with LU deomposition and forward and bakward substitution. Sinehere N = n2 and d = n, the diret solution of the above system takes O(n4) ops.An iterative method like Jaobi or Gauss-Seidel needs O(n2) iterations to onverge, be-ause the number of iterations k to reah a tolerane tol isk � log(tol=jje0jj2)log(jjGjj2)and log(jjGjj2) � log(1 � O(h2)) � �O(h2) � � 1n2 . One Jaobi or Gauss-Seidel iterationtakes O(N) ops. Thus, to reah a ertain tolerane takes O(n2)O(N) = O(n4) ops.The multigrid method takes O(1) iterations to onverge. Aording to Ahi Brandt, itshould not take more than 10 multigrid yles. Sine one multigrid yle takes O(N) ops,the multigrid method needs O(1)O(N) = O(n2) ops.
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