
Uppsala UniversityDepartment of Information TehnologyDivision of Sienti� ComputingSolutions to the Examination in Analysis of NumerialMethods2004-12-101. a) Taylor expansion of the exat solution u(x; t) around (xj; tn) yields:u(xj ; tn�1) = u� kut + k2=2utt +�k3=6uttt +O(k4)u(xj�1; tn) = u� hux + h2=2uxx � h3=6uxxx +O(h4)Inserting u = u(xj; tn) for vnj into the left hand side of the FDMPk;hvnj = vn+1j � vn�1j2k � bvnj+1 � vn+1j � vn�1j + vnj�1h2 = 0 (1)and using the PDE ut � buxx = 0 yields the trunation errorPk;hu = ut + k2=6uttt +O(k4)� b(uxx + h2=12uxxxx +O(h4)� k2=h2 utt +O(k4=h2))= k2=6uttt +O(k4)� b(h2=12uxxxx +O(h4)� k2=h2 utt +O(k4=h2))= O(k2) +O(h2) + bk2=h2 utt +O(k4=h2)If � = kh2 is onstant, then k2 = �2h4 and bk2=h2 utt = O(h2). Thus, for � = kh2 onstant,the FDM is seond order aurate in spae and time, i.e. the FDM is onsistent. In fat,Pk;hu = O(h2).If � = kh is onstant, then k2 = �2h2 and Pk;hu = ut � buxx + b�2 utt + O(k2) + O(h2).Thus, for � = kh onstant, the FDM is onsistent with the PDE ut� buxx+ b�2 utt = 0, butnot with the heat equation ut � buxx = 0 !b) We perform the Fourier analysis by inserting the ansatzvnj = gnei!xjinto the FDM (1) multiplied by 2k. We get after dividing by gn�1ei!xjg2 � 1 = d(gei!h � g2 � 1 + ge�i!h)where d = 2bk=h2. Using ei!h + e�i!h = 2os(!h) and ordering the terms, we get theseond order polynomial for the ampli�ation fator g:g2 � 2d os(!h)1 + d g � 1� d1 + d = 0 : (2)The solutions are g1=2 = d os(!h)1 + d �sd2os2(!h)(1 + d)2 + 1� d1 + dor g1=2 = d os(!h) �p1� d2(1� os2(!h))1 + d = d os(!h)�p1� d2sin2(!h)1 + dWe have to hek the sign of the disriminant.1



(a) 1� d2sin2(!h) > 0Then the square root is real, and we an estimate using d > 0, jos(!h)j � 1 and�d2sin2(!h) � 0jg1=2j � djos(!h)j +p1� d2sin2(!h)1 + d � d+ 11 + d = 1Thus, the von Neumann ondition jg1=2j � 1 for simple roots is satis�ed for this ase.(b) 1� d2sin2(!h) = 0Then we have a double root g1 = g2, whih an be estimated asjg1=2j = djos(!h)j1 + d � d1 + d < 1Thus, the von Neumann ondition jg1=2j < 1 for double roots is satis�ed for this ase.() 1� d2sin2(!h) < 0Then the square root is imaginary, beausep1� d2sin2(!h) = ipd2sin2(!h) � 1. Weget jg1=2j2 = d2os2(!h) + d2sin2(!h)� 1(1 + d)2 = d2 � 1(1 + d)2 < 1Thus, the von Neumann ondition jg1=2j � 1 for simple roots is also satis�ed for thisase.As the von Neumann ondition is satis�ed for all possible roots of (2), the FDM (1) isunonditionally stable.2. We perform the GKS analysis. The stability of FDM (1) for periodi boundary onditions wasshown in task 1.b).1. Resolvent equationInserting the ansatz vnj = zn~vj into the FDM (1) yields after dividing by zn�1(z2 � 1)~vj � d �z(~vj+1 + ~vj�1)� (z2 + 1)~vj� = 0 ; (3)whih is the resolvent equation.2. Charateristi equationInserting the ansatz ~vj = �j into the resolvent equation (3), we obtain(z2 � 1)�j � d �z(�j+1 + �j�1)� (z2 + 1)�j� = 0 :Dividing by �j�1, we get the harateristi equation(z2 � 1)�� d �z(�2 + 1)� (z2 + 1)�� = 0 : (4)Ordering the terms, (4) an also be expressed as�2 � z2 � 1 + d(z2 + 1)dz �+ 1 = 0 : (5)2



3. Determinant onditionThe general solution of the resolvent equation (3) is~vj = � �1�j1 + �2�j2 if �1 6= �2�1�j + �2j�j�1 if �1 = �2 = �where �1 and �2 are the two roots of the harateristi equation (4). The oeÆients�1 and �2 are determined suh that the boundary ondition �3vn+10 +4vn+11 �vn+122h = 0 andvn 2 l2(0;1) are satis�ed for the right quarter plane problem. (Similar reasoning is used forthe left quarter plane problem with the boundary ondition vn+1N = 0, f. below.) Beauseof the form of the harateristi equation (5), the produt of its roots satis�es the relation�1�2 = 1 :Thus, either j�1j < 1 and j�2j > 1 or j�1j = j�2j = 1. In either ase, we have to set �2 = 0to seure vn 2 l2(0;1). Now, we hek j�1j = 1. Inserting � = ei� into the harateristiequation (4), we get for z the same result as for the ampli�ation fator g in the vonNeumann stability analysis (f. task 1.b)), i.e. jzj � 1.Thus, there an only be solutions with jzj > 1 for j�1j < 1 and j�2j > 1, and the solutionmust be of the form vnj = zn�1�j1 :(Inserting the solution into the boundary ondition vn+1N = 0 yields zn+1�1�N1 = 0. Thus,�1 = 0 for �1 6= 0, and onsequently vnj = 0. Therefore, the left quarter plane problem isstable.)Inserting the solution into the boundary ondition �3vn+10 +4vn+11 �vn+122h = 0, we get(�3 + 4�1 � �21)�1 = 0 :For �1 6= 0, we obtain the determinant ondition�21 � 4�1 + 3 = 0 : (6)4. Solve equationsThe determinant ondition (6) has the solutions �1 = 1 and �1 = 3. �1 = 3 an be exluded,beause j�1j < 1, f. above. However, �1 = 1 ould be a solution in the limit �1 ! 1� asjzj ! 1+.We solve the harateristi equation (4) by inserting � = 1 into (4). We get after orderingz2 � 2d1 + dz � 1� d1 + d = 0 :Thus, we have the solutions z = 1 and z = d�11+d . As jd�11+d j < 1, the latter solution isunritial and an be exluded.Thus, the solution is �1 = 1 ; z = 1 : (7)5. Chek solutionsIf � = 1 and z = 1 were a solution in the limit � �! 1� and z �! 1+, the sheme wouldbe unstable. To hek that ase, we assume that z = 1 + Æ with Æ > 0 and � = 1 + �. Weinsert z and � into the harateristi equation (4) and hek the sign of � as Æ �! 0. If3



� < 0, the sheme is unstable.Inserting z and � into (4), yields((1 + Æ)2 � 1)(1 + �)� d �(1 + Æ)((1 + �)2 + 1)� ((1 + Æ)2 + 1)(1 + �)� = 0Negleting the third order terms, we get2Æ + 2Æ�� d ��2 � Æ2� = 0 : (8)Negleting the seond order terms yields 2Æ = 0. Thus, 2Æ�� d ��2 � Æ2� = 0, as Æ ! 0. Weget �(2Æ�d�)=d = Æ2. Therefore, (2Æ�d�)=d! 0 as Æ ! 0. Thus, � = 2Æ=d. Consequently,� > 0, beause Æ > 0 and d > 0. As � > 0, the sheme is stable, as disussed above.6. ConlusionsThe FDM (1) with the boundary onditions stated above is unonditionally stable.
3. a) The 1D Maxwell equations in a nononduting medium an be expressed asUt +AUx = 0 ; (9)where U = � BE � ; A = � 0 12 0 � :Determine eigenvalues � of A:det(A � �I) = �2 � 2 = 0() � = � :Thus, the eigenvalues �1 = � and �2 = + are real. Determine orresponding eigenvetorsr1 and r2, i.e. (A� �I)r = 0. We obtain for exampler1 = � 1� � ; r2 = � 1 �De�ne the transformation matrix as the right eigenvetor matrixT = [r1; r2℄ = � 1 1�  �The inverse of T is T�1 = 12 �  �1 1 �Therefore, T�1AT = � ;where � = � �1 00 �2 �i.e. A is diagonalizable.Summarizing, the �rst order system (9) is a hyperboli system.4



b) Multiplying the hyperboli system (9) by T�1 from the left, using the diagonalization of Aand the de�nition of the harateristi variablesW = T�1U = 12 � B �EB +E � = � w1w2 � ;we get Wt +�Wx = 0 ; (10)i.e. two salar equations w1t + �1w1x = 0w2t + �2w2x = 0 ;whih orrespond to dw1dt = 0 on dxdt = �1dw2dt = 0 on dxdt = �2 :Thus, w1 and onsequently B � E is onstant on harateristis dxdt = �, and w2 andonsequently B +E is onstant on harateristis dxdt = .) The harateristis for (9) look similar as the ones for exerise 1.2.1, Strikwerda (1989), p.11.If we provide the ingoing harateristi variables as boundary onditions, the hyperboliinitial boundary value problem for the hyperboli system (9) is well-posed. For example,we an presribe the following boundary onditions:w1(1; t) = �1w2(1; t) + �1(t)w2(0; t) = �2w1(0; t) + �2(t);where the oeÆients �1 and �2 may be onstants or funtions of t. For simpliity, weassume �1 = �2 = 0. Then, the exat solution for the harateristi variables readsw1(x; t) = � w10(x+ t) x+ t � 1�1(t+ (x� 1)=) x+ t > 1w2(x; t) = � w20(x� t) x� t � 0�2(t� x=) x� t < 0where w1(x; 0) = w10(x) and w2(x; 0) = w20(x) are the initial onditions for the harateristivariables. Using the de�nition of the harateristi variables, the exat solution of (9) isobtained from U = TW = � w1(x; t) + w2(x; t)(w2(x; t)� w1(x; t)) � : (11)
4. a) A sheme is total variation diminishing (TVD), ifNXj=1 jvn+1j � vn+1j�1 j � NXj=1 jvnj � vnj�1j :5



Inserting the Lax-Friedrihs method, we get using the CFL number � = akhNXj=1 jvn+1j � vn+1j�1 j =PNj=1 j12 (vnj+1 � vnj�1)� �2 (vnj+1 � vnj�1)� [12 (vnj � vnj�2)� �2 (vnj � vnj�2)℄j=PNj=1 j1��2 (vnj+1 � vnj ) + 1+�2 (vnj�1 � vnj�2)j� 1��2 PNj=1 jvnj+1 � vnj j+ 1+�2 PNj=1 jvnj�1 � vnj�2j=PNj=1 jvnj � vnj�1jwhere the triangle inequality and j�j � 1 were used for the inequality and the periodiboundary onditions for the last equality.b) The exat solution to the invisid Burgers' equation ut+�u22 �x = 0 with the initial onditionu(x; 0) = � �1 x < x1+1=22 x > x1+1=2 (12)is an expansion fan entered at x1+1=2, i.e. u01+1=2 = 0 . Therefore, h01+1=2 = (u01+1=2)22 =0. This value agrees with min�1�u�2 u22 = 0. A hyperboli initial value problem withdisontinuous initial onditions like (12) is alled a Riemann problem. For the orrespondingRiemann problem with u(x; 0) = � 2 x < x2+1=21 x > x2+1=2the exat solution is a shok moving with the shok speed s = 2+12 = 1:5. Thus, the exatsolution at x2+1=2 is u02+1=2 = 2 . Therefore, h02+1=2 = (u02+1=2)22 = 222 = 2. This valueagrees with max2�u�1 u22 = 2.The Godunov method is a onservative methodun+1j = unj � kh(hnj+1=2 � hnj�1=2) (13)For j = 2, n = 0 and kh = 0:25, (13) beomes for the invisid Burgers' equation with thenumerial uxes omputed above:u12 = 2� 0:25 (2� 0) = 1:5 :
5. a) Determine the spetral radius of G(�) for � = 1; :::; n0.G(�) = � � �� � ; �where � = s2�2�� and � = 2�s2�� . The eigenvalues of G(�) are easily omputed to be �1 = 0and �2 = �+ � . Thus, the spetral radius of G(�) is�(G(�) = �+ � = s2�2�� + 2�s2�� :Sine 2� = os2 ���h12 � = 1� sin2 ���h12 � = 1� s2� ,�(G(�) = s2� (1� s2�)� + (1� s2�) s2�� :6



Sine 0 < �h1 � (n0 + 1)h1 = n1+12 = 12 and 0 < sin2 ���h12 � � sin2 �14� = 12 , we have theestimate �(G) = max1���n0+1fs2� (1� s2�)� + (1� s2�) s2�� g� max0���1=2f�(1� �)� + (1� �)�� =: �� : (14)b) Sine � � 1� � for 0 � � � 1=2, we an estimate the bound �� in (14) by�(G) � �� � 2max0���1=2f�(1� �)�g :We de�ne f(�) = �(1� �)� and determine the maximum max0���1=2f(�).For � = 1, f 0(�) = 1 � 2� = 0 for � = 12 . It is a maximum, beause f 00(12) = �2 < 0.As �(G) � 2max0���1=2f(�) � 2f(12) = 214 = 12 < 1, the TMG method is onvergent for� = 1.With similar reasoning, we get for � > 1 that f 0(�) = (1��)��1 (1�(1+�)�) = 0 for � = 11+�(� = 0 is a minimum). � = 11+� is a maximum, beause f 00( 11+� ) = (1� �)��2(��) < 0. As�(G) � 2max0���1=2f(�) � 2f( 11+� ) = 2( 11+� (1� 11+� )�) < 2 11+� < 1, the TMG method isalso onvergent for � > 1.
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