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a) Taylor expansion of the exact solution u(z,t) around (z;,t") yields:

u(zj, tnt1) = uxku+ K )2uy + £K 6wy + O(K)
Wzjertn) = w4 h 200 £ B Gty + O(hY)

Inserting u = u(z;,t,) for v} into the left hand side of the FDM

n+l _  n-—1 n _ ,n+l _  n—1 n
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and using the PDE u; — buy, = 0 yields the truncation error

Pk,hu = U + k2/6 Ut + O(k4) — b(um + h2/12 Ugpprs T O(h4) — k2/h2 U + O(k4/h2))

= k2/6 Ut + O(k4) - b(h2/12 Ugppzr T O(h4) - ]CQ/h2 Ut + O(’C4/h2))

= O(k?) + O(h?) + bk?/h? uy + O(k*/h?)

If p = hk—2 is constant, then k2 = p2h* and bk?/h? uy = O(h?). Thus, for y = hk—2 constant,
the FDM is second order accurate in space and time, i.e. the FDM is consistent. In fact,
Py pu = O(h?).
If A = % is constant, then k* = A?h? and Py pu = u; — bugy + bA? uy + O(K?) + O(h?).
Thus, for A = % constant, the FDM is consistent with the PDE wu; — bugg + bA%2 uy = 0, but
not with the heat equation u; — by, = 0!
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Pk’h’l);-l =

We perform the Fourier analysis by inserting the ansatz
U;L _ gneiwxj
into the FDM (1) multiplied by 2k. We get after dividing by ¢"~!e/“%
gQ 1= d(geiwh _92 -1 _I_ge—iwh)

where d = 2bk/h?. Using ™" + e¢~™h = 2cos(wh) and ordering the terms, we get the
second order polynomial for the amplification factor g:
5 2dcos(wh) 1—d

- —0. 9
1va 9 13747 " (2

The solutions are

d cos(wh) \/d%osQ(wh) 1-d
9gi1/2 =

1+d (1ad? T1+d

or

_ dcos(wh) £ /1 —d?(1 — cos?>(wh)) _ dcos(wh) + /1 — d?sin?(wh)
9172 = 1 +d N 1+d
We have to check the sign of the discriminant.




(a) 1—d%sin?(wh) >0
Then the square root is real, and we can estimate using d > 0, |cos(wh)| < 1 and
—d?sin?(wh) <0

d|cos(wh)| + /1 — d?>sin?(wh) < d+1

=1
1+d —14d

191/2] <
Thus, the von Neumann condition \91/2\ < 1 for simple roots is satisfied for this case.
(b) 1 — d?sin?(wh) =0
Then we have a double root g; = go, which can be estimated as

d|cos(wh)| P d

_ <1
l91/2] 1+d —1+d

Thus, the von Neumann condition \91/2\ < 1 for double roots is satisfied for this case.
(¢) 1 —d?%sin?(wh) <0
Then the square root is imaginary, because /1 — d?sin?(wh) = i/d?sin?(wh) — 1. We
get
gual? = d?cos®(wh) + d®sin®(wh) =1 d*> -1 <1
B2l = (1+d)? ITEYOE

Thus, the von Neumann condition |gl/2\ < 1 for simple roots is also satisfied for this

case.

As the von Neumann condition is satisfied for all possible roots of (2), the FDM (1) is
unconditionally stable.

2. We perform the GKS analysis. The stability of FDM (1) for periodic boundary conditions was
shown in task 1.b).
1. Resolvent equation

Inserting the ansatz v} = 2"0; into the FDM (1) yields after dividing by P

(22 = 1)3; — d [2(Tj11 + T51) — (2> + 1)i5] = 0, (3)

which is the resolvent equation.

2. Characteristic equation
Inserting the ansatz #; = x/ into the resolvent equation (3), we obtain
(2> = DK —d[2( T + 7Y -~ P+ )R] = 0.
Dividing by #/~!, we get the characteristic equation
(2> =)k —d[2(*+1) = (2> + 1)r] = 0. (4)
Ordering the terms, (4) can also be expressed as

2 _14d(z2+1
W22 +dz(z + )Fé-i-l — 0. (5)




3. Determinant condition

The general solution of the resolvent equation (3) is

b — 01%{4—02%%‘ ifﬁl#ﬁg
J o1k 4+ 09jk Tl if K =Ko =K

where 1 and k9 are the two roots of the characteristic equation (4). The coefficients

. L. —3pn gyt _yntl
o1 and o9 are determined such that the boundary condition 0 Sh 2— = (0 and

v™ € 15(0, 00) are satisfied for the right quarter plane problem. (Similar reasoning is used for
the left quarter plane problem with the boundary condition UX,H =0, cf. below.) Because
of the form of the characteristic equation (5), the product of its roots satisfies the relation

I<&1I<&2=1.

Thus, either k1| < 1 and |k2| > 1 or |k1]| = |k2| = 1. In either case, we have to set oo =0
to secure v" € I5(0,00). Now, we check |ki| = 1. Inserting k = €’ into the characteristic
equation (4), we get for z the same result as for the amplification factor g in the von
Neumann stability analysis (cf. task 1.b)), i.e. |z| < 1.

Thus, there can only be solutions with |z| > 1 for |k;| < 1 and |k2| > 1, and the solution
must be of the form

J

P =2"o1Ky .

Yj

Inserting the solution into the boundary condition v = 0 yields 2" oY = 0. Thus,
g N 1

k1 = 0 for o1 # 0, and consequently v} = 0. Therefore, the left quarter plane problem is
stable.)
R

Inserting the solution into the boundary condition 5T =0, we get

(=3 + 4K, — K)o =0.
For o1 # 0, we obtain the determinant condition

KT —4k1 +3=0. (6)

4. Solve equations

The determinant condition (6) has the solutions k1 = 1 and k1 = 3. k1 = 3 can be excluded,
because |k1| < 1, cf. above. However, k1 = 1 could be a solution in the limit k1 — 1_ as
|z = 14.

We solve the characteristic equation (4) by inserting x = 1 into (4). We get after ordering

——z-— = 0.
“T1+d  1+4d
Thus, we have the solutions z = 1 and z = %. As |‘f+;[11\ < 1, the latter solution is
uncritical and can be excluded.
Thus, the solution is
k=1 ,z=1. (7)

5. Check solutions

If Kk =1 and z = 1 were a solution in the limit x — 1_ and z — 1, the scheme would
be unstable. To check that case, we assume that 2z =140 with § >0 and kK =1+ €. We
insert z and k into the characteristic equation (4) and check the sign of € as § — 0. If



3.

€ < 0, the scheme is unstable.
Inserting z and & into (4), yields

(146> =11 +e) —d[(1+0)((1+e?+1) = (1+6)*+1)(1+¢)] =0
Neglecting the third order terms, we get
26 + 20 —d[e? —6°] = 0. (8)

Neglecting the second order terms yields 29 = 0. Thus, 2de —d [62 — (52] =0,as d — 0. We
get €(20 — de)/d = 6%. Therefore, (25 — de)/d — 0 as § — 0. Thus, ¢ = 26/d. Consequently,
€ > 0, because § > 0 and d > 0. As € > 0, the scheme is stable, as discussed above.

6. Conclusions

The FDM (1) with the boundary conditions stated above is unconditionally stable.

a) The 1D Maxwell equations in a nonconducting medium can be expressed as

U,+ AU, =0, 9)

where

Determine eigenvalues A of A:
det(A —XI) =) —? =0 <= \ = +c.

Thus, the eigenvalues \; = —c and A\ = +c are real. Determine corresponding eigenvectors
r; and ro, i.e. (A — AI)r = 0. We obtain for example

() ()

Define the transformation matrix as the right eigenvector matrix

T = [r1,19] = ( _i i)

Tfl_i C —1
C2¢\c 1

T 'AT = A,

(XA O
=0 %)
i.e. A is diagonalizable.

Summarizing, the first order system (9) is a hyperbolic system.

The inverse of T is

Therefore,

where
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b) Multiplying the hyperbolic system (9) by T ! from the left, using the diagonalization of A

and the definition of the characteristic variables
1 (¢B-FE w!
_mp-lyr _
W=t U_20<CB-I—E> <w2>’

W, + AW, =0, (10)

we get

i.e. two scalar equations

’wtl + Alwi == 0
2

w? 4+ Mw? = 0,

which correspond to

dw'
—— =0 on H=)
dw?
T =0 on ‘Z—f =X
Thus, w' and consequently ¢B — E is constant on characteristics ‘Z—f = —¢, and w? and

consequently ¢B + FE is constant on characteristics ‘Z—f =c.

c) The characteristics for (9) look similar as the ones for exercise 1.2.1, Strikwerda (1989), p.

11.

If we provide the ingoing characteristic variables as boundary conditions, the hyperbolic
initial boundary value problem for the hyperbolic system (9) is well-posed. For example,
we can prescribe the following boundary conditions:

wl(l,t) = aqyw?(1,t) + Bi(t)
w2(0,t) = aww'(0,t) + Ba(t)

where the coefficients @7 and as may be constants or functions of . For simplicity, we
assume a1 = ao = 0. Then, the exact solution for the characteristic variables reads

_ wy(x + ct) rz+ct <1
w'et) = {ﬂlo(t—l—(x—l)/c) Tt > 1
B wi(z — ct) z—ct>0
w'(e,1) = {ﬂ;(t—az/c) z—ct <0

where w'!(z,0) = w{(z) and w?(z,0) = w3 (x) are the initial conditions for the characteristic
variables. Using the definition of the characteristic variables, the exact solution of (9) is
obtained from

(11)

U-1w = [ @@t +w (1) |
( )

c(w?(z,t) —w'(z,t))

a) A scheme is total variation diminishing (TVD), if
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Inserting the Lax-Friedrichs method, we get using the CFL number o = a3,

N
Z ‘Unﬂ n+1 = Zj:l |%(U;l+1 - ”;}71) — (v} G+1 0;11) - [%(U? - 0;12) - %(U;l - U;ZQ)H

N _
:Z' 1‘1—0( ;Z+1_”j)+1—|2_0(”3 1~ 0 o)l
< UZJ 1|Ug+1_vn‘+1+gzj L 07 — 0]y
:ijl |Uj _vj—l‘

where the triangle inequality and |o| < 1 were used for the inequality and the periodic
boundary conditions for the last equality.

b) The exact solution to the inviscid Burgers’ equation u;+ (“2—2> = 0 with the initial condition
x

u(z,0) = - NS (12)
’ 2 T > T141/2

. . . (uf,5)?
is an expansion fan centered at z;,o, i.e. U[1]+1/2 = (0 . Therefore, h1+1/2 = %1/2 =

0. This value agrees with min_1§u§21‘2—2 = 0. A hyperbolic initial value problem with
discontinuous initial conditions like (12) is called a Riemann problem. For the corresponding
Riemann problem with

u(x,()):{ 2 T < Ta41/2
1 T > Toy1/2
the exact solution is a shock moving with the shock speed s = % = 1.5. Thus, the exact
solution at o4y is ug+1/2 = 2 . Therefore, h2+1/2 = % 22 = 2. This value

. 2
agrees with mazo>,>1%5 = 2.
The Godunov method is a conservative method
un-l—l )

k
Y E(h;l“/? - h?71/2) (13)
For j =2, n =0 and % = 0.25, (13) becomes for the inviscid Burgers’ equation with the
numerical fluxes computed above:

uy =2-025(2-0)=15.

5. a) Determine the spectral radius of G for pw=1..ng

w_ (o b
G”‘(a/ﬂ)
2 2v

where a = s;,¢;” and = 02 52” The eigenvalues of G( 1) are easily computed to be A\; =0

and Ay = o+ . Thus, the spectral radius of G i
2 2v 2 2v
p(G()—a—l—B—sc + sy

; 2 _ 2 (pumhi\ _ 1 _ o2 (pmhi ) 1 _ o2
Slncecu—cos(Q)—l 3m(2 =1-s;,

.2 2\v 2 2v
p(G(“)—su(l—su) + (1 =s,) s,



Since 0 < pphy < (ng+1)hy = an'H =1 and 0 < sin? (“”Thl> < sin? (1) = 1, we have the

estimate

p(G) = mazicu<ngri{sy (1-sp)" + (1-53) 5"}
< mazoce<i2{€(1 =€)+ (1= = py. (14)

Since £ <1 —¢ for 0 < ¢ < 1/2, we can estimate the bound p, in (14) by

p(G) < py < 2mazgce<i o1 - 6"} .

We define f(§) = £(1 —¢)” and determine the maximum mazo<e<q/2f ().

For v =1, f'(¢§) = 1—2¢ =0 for £ = 5. It is a maximum, because f”(3) = -2 < 0.
As p(G) < 2mamo<e<i/af () < 2f(%) = 2% = % < 1, the TMG method is convergent for
v=1.

With similar reasoning, we get for v > 1 that f/(¢) = (1-¢)V 1 (1—(14v)¢) = 0 for & = 14%1/
(¢ =0 is a minimum). ¢ = 14%1/ is a maximum, because f"(p%y) =(1-&)"2(-v) <0. As
p(G) < 2mazg<e<iof(§) < 2f(1+%) = 2(14%}(1 — 1_l%u)”) < 21_%” < 1, the TMG method is
also convergent for v > 1.



