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 ComputingSolutions to the Examination in Analysis of Numeri
alMethods2004-12-101. a) Taylor expansion of the exa
t solution u(x; t) around (xj; tn) yields:u(xj ; tn�1) = u� kut + k2=2utt +�k3=6uttt +O(k4)u(xj�1; tn) = u� hux + h2=2uxx � h3=6uxxx +O(h4)Inserting u = u(xj; tn) for vnj into the left hand side of the FDMPk;hvnj = vn+1j � vn�1j2k � bvnj+1 � vn+1j � vn�1j + vnj�1h2 = 0 (1)and using the PDE ut � buxx = 0 yields the trun
ation errorPk;hu = ut + k2=6uttt +O(k4)� b(uxx + h2=12uxxxx +O(h4)� k2=h2 utt +O(k4=h2))= k2=6uttt +O(k4)� b(h2=12uxxxx +O(h4)� k2=h2 utt +O(k4=h2))= O(k2) +O(h2) + bk2=h2 utt +O(k4=h2)If � = kh2 is 
onstant, then k2 = �2h4 and bk2=h2 utt = O(h2). Thus, for � = kh2 
onstant,the FDM is se
ond order a

urate in spa
e and time, i.e. the FDM is 
onsistent. In fa
t,Pk;hu = O(h2).If � = kh is 
onstant, then k2 = �2h2 and Pk;hu = ut � buxx + b�2 utt + O(k2) + O(h2).Thus, for � = kh 
onstant, the FDM is 
onsistent with the PDE ut� buxx+ b�2 utt = 0, butnot with the heat equation ut � buxx = 0 !b) We perform the Fourier analysis by inserting the ansatzvnj = gnei!xjinto the FDM (1) multiplied by 2k. We get after dividing by gn�1ei!xjg2 � 1 = d(gei!h � g2 � 1 + ge�i!h)where d = 2bk=h2. Using ei!h + e�i!h = 2
os(!h) and ordering the terms, we get these
ond order polynomial for the ampli�
ation fa
tor g:g2 � 2d 
os(!h)1 + d g � 1� d1 + d = 0 : (2)The solutions are g1=2 = d 
os(!h)1 + d �sd2
os2(!h)(1 + d)2 + 1� d1 + dor g1=2 = d 
os(!h) �p1� d2(1� 
os2(!h))1 + d = d 
os(!h)�p1� d2sin2(!h)1 + dWe have to 
he
k the sign of the dis
riminant.1



(a) 1� d2sin2(!h) > 0Then the square root is real, and we 
an estimate using d > 0, j
os(!h)j � 1 and�d2sin2(!h) � 0jg1=2j � dj
os(!h)j +p1� d2sin2(!h)1 + d � d+ 11 + d = 1Thus, the von Neumann 
ondition jg1=2j � 1 for simple roots is satis�ed for this 
ase.(b) 1� d2sin2(!h) = 0Then we have a double root g1 = g2, whi
h 
an be estimated asjg1=2j = dj
os(!h)j1 + d � d1 + d < 1Thus, the von Neumann 
ondition jg1=2j < 1 for double roots is satis�ed for this 
ase.(
) 1� d2sin2(!h) < 0Then the square root is imaginary, be
ausep1� d2sin2(!h) = ipd2sin2(!h) � 1. Weget jg1=2j2 = d2
os2(!h) + d2sin2(!h)� 1(1 + d)2 = d2 � 1(1 + d)2 < 1Thus, the von Neumann 
ondition jg1=2j � 1 for simple roots is also satis�ed for this
ase.As the von Neumann 
ondition is satis�ed for all possible roots of (2), the FDM (1) isun
onditionally stable.2. We perform the GKS analysis. The stability of FDM (1) for periodi
 boundary 
onditions wasshown in task 1.b).1. Resolvent equationInserting the ansatz vnj = zn~vj into the FDM (1) yields after dividing by zn�1(z2 � 1)~vj � d �z(~vj+1 + ~vj�1)� (z2 + 1)~vj� = 0 ; (3)whi
h is the resolvent equation.2. Chara
teristi
 equationInserting the ansatz ~vj = �j into the resolvent equation (3), we obtain(z2 � 1)�j � d �z(�j+1 + �j�1)� (z2 + 1)�j� = 0 :Dividing by �j�1, we get the 
hara
teristi
 equation(z2 � 1)�� d �z(�2 + 1)� (z2 + 1)�� = 0 : (4)Ordering the terms, (4) 
an also be expressed as�2 � z2 � 1 + d(z2 + 1)dz �+ 1 = 0 : (5)2



3. Determinant 
onditionThe general solution of the resolvent equation (3) is~vj = � �1�j1 + �2�j2 if �1 6= �2�1�j + �2j�j�1 if �1 = �2 = �where �1 and �2 are the two roots of the 
hara
teristi
 equation (4). The 
oeÆ
ients�1 and �2 are determined su
h that the boundary 
ondition �3vn+10 +4vn+11 �vn+122h = 0 andvn 2 l2(0;1) are satis�ed for the right quarter plane problem. (Similar reasoning is used forthe left quarter plane problem with the boundary 
ondition vn+1N = 0, 
f. below.) Be
auseof the form of the 
hara
teristi
 equation (5), the produ
t of its roots satis�es the relation�1�2 = 1 :Thus, either j�1j < 1 and j�2j > 1 or j�1j = j�2j = 1. In either 
ase, we have to set �2 = 0to se
ure vn 2 l2(0;1). Now, we 
he
k j�1j = 1. Inserting � = ei� into the 
hara
teristi
equation (4), we get for z the same result as for the ampli�
ation fa
tor g in the vonNeumann stability analysis (
f. task 1.b)), i.e. jzj � 1.Thus, there 
an only be solutions with jzj > 1 for j�1j < 1 and j�2j > 1, and the solutionmust be of the form vnj = zn�1�j1 :(Inserting the solution into the boundary 
ondition vn+1N = 0 yields zn+1�1�N1 = 0. Thus,�1 = 0 for �1 6= 0, and 
onsequently vnj = 0. Therefore, the left quarter plane problem isstable.)Inserting the solution into the boundary 
ondition �3vn+10 +4vn+11 �vn+122h = 0, we get(�3 + 4�1 � �21)�1 = 0 :For �1 6= 0, we obtain the determinant 
ondition�21 � 4�1 + 3 = 0 : (6)4. Solve equationsThe determinant 
ondition (6) has the solutions �1 = 1 and �1 = 3. �1 = 3 
an be ex
luded,be
ause j�1j < 1, 
f. above. However, �1 = 1 
ould be a solution in the limit �1 ! 1� asjzj ! 1+.We solve the 
hara
teristi
 equation (4) by inserting � = 1 into (4). We get after orderingz2 � 2d1 + dz � 1� d1 + d = 0 :Thus, we have the solutions z = 1 and z = d�11+d . As jd�11+d j < 1, the latter solution isun
riti
al and 
an be ex
luded.Thus, the solution is �1 = 1 ; z = 1 : (7)5. Che
k solutionsIf � = 1 and z = 1 were a solution in the limit � �! 1� and z �! 1+, the s
heme wouldbe unstable. To 
he
k that 
ase, we assume that z = 1 + Æ with Æ > 0 and � = 1 + �. Weinsert z and � into the 
hara
teristi
 equation (4) and 
he
k the sign of � as Æ �! 0. If3



� < 0, the s
heme is unstable.Inserting z and � into (4), yields((1 + Æ)2 � 1)(1 + �)� d �(1 + Æ)((1 + �)2 + 1)� ((1 + Æ)2 + 1)(1 + �)� = 0Negle
ting the third order terms, we get2Æ + 2Æ�� d ��2 � Æ2� = 0 : (8)Negle
ting the se
ond order terms yields 2Æ = 0. Thus, 2Æ�� d ��2 � Æ2� = 0, as Æ ! 0. Weget �(2Æ�d�)=d = Æ2. Therefore, (2Æ�d�)=d! 0 as Æ ! 0. Thus, � = 2Æ=d. Consequently,� > 0, be
ause Æ > 0 and d > 0. As � > 0, the s
heme is stable, as dis
ussed above.6. Con
lusionsThe FDM (1) with the boundary 
onditions stated above is un
onditionally stable.
3. a) The 1D Maxwell equations in a non
ondu
ting medium 
an be expressed asUt +AUx = 0 ; (9)where U = � BE � ; A = � 0 1
2 0 � :Determine eigenvalues � of A:det(A � �I) = �2 � 
2 = 0() � = �
 :Thus, the eigenvalues �1 = �
 and �2 = +
 are real. Determine 
orresponding eigenve
torsr1 and r2, i.e. (A� �I)r = 0. We obtain for exampler1 = � 1�
 � ; r2 = � 1
 �De�ne the transformation matrix as the right eigenve
tor matrixT = [r1; r2℄ = � 1 1�
 
 �The inverse of T is T�1 = 12
 � 
 �1
 1 �Therefore, T�1AT = � ;where � = � �1 00 �2 �i.e. A is diagonalizable.Summarizing, the �rst order system (9) is a hyperboli
 system.4



b) Multiplying the hyperboli
 system (9) by T�1 from the left, using the diagonalization of Aand the de�nition of the 
hara
teristi
 variablesW = T�1U = 12
 � 
B �E
B +E � = � w1w2 � ;we get Wt +�Wx = 0 ; (10)i.e. two s
alar equations w1t + �1w1x = 0w2t + �2w2x = 0 ;whi
h 
orrespond to dw1dt = 0 on dxdt = �1dw2dt = 0 on dxdt = �2 :Thus, w1 and 
onsequently 
B � E is 
onstant on 
hara
teristi
s dxdt = �
, and w2 and
onsequently 
B +E is 
onstant on 
hara
teristi
s dxdt = 
.
) The 
hara
teristi
s for (9) look similar as the ones for exer
ise 1.2.1, Strikwerda (1989), p.11.If we provide the ingoing 
hara
teristi
 variables as boundary 
onditions, the hyperboli
initial boundary value problem for the hyperboli
 system (9) is well-posed. For example,we 
an pres
ribe the following boundary 
onditions:w1(1; t) = �1w2(1; t) + �1(t)w2(0; t) = �2w1(0; t) + �2(t);where the 
oeÆ
ients �1 and �2 may be 
onstants or fun
tions of t. For simpli
ity, weassume �1 = �2 = 0. Then, the exa
t solution for the 
hara
teristi
 variables readsw1(x; t) = � w10(x+ 
t) x+ 
t � 1�1(t+ (x� 1)=
) x+ 
t > 1w2(x; t) = � w20(x� 
t) x� 
t � 0�2(t� x=
) x� 
t < 0where w1(x; 0) = w10(x) and w2(x; 0) = w20(x) are the initial 
onditions for the 
hara
teristi
variables. Using the de�nition of the 
hara
teristi
 variables, the exa
t solution of (9) isobtained from U = TW = � w1(x; t) + w2(x; t)
(w2(x; t)� w1(x; t)) � : (11)
4. a) A s
heme is total variation diminishing (TVD), ifNXj=1 jvn+1j � vn+1j�1 j � NXj=1 jvnj � vnj�1j :5



Inserting the Lax-Friedri
hs method, we get using the CFL number � = akhNXj=1 jvn+1j � vn+1j�1 j =PNj=1 j12 (vnj+1 � vnj�1)� �2 (vnj+1 � vnj�1)� [12 (vnj � vnj�2)� �2 (vnj � vnj�2)℄j=PNj=1 j1��2 (vnj+1 � vnj ) + 1+�2 (vnj�1 � vnj�2)j� 1��2 PNj=1 jvnj+1 � vnj j+ 1+�2 PNj=1 jvnj�1 � vnj�2j=PNj=1 jvnj � vnj�1jwhere the triangle inequality and j�j � 1 were used for the inequality and the periodi
boundary 
onditions for the last equality.b) The exa
t solution to the invis
id Burgers' equation ut+�u22 �x = 0 with the initial 
onditionu(x; 0) = � �1 x < x1+1=22 x > x1+1=2 (12)is an expansion fan 
entered at x1+1=2, i.e. u01+1=2 = 0 . Therefore, h01+1=2 = (u01+1=2)22 =0. This value agrees with min�1�u�2 u22 = 0. A hyperboli
 initial value problem withdis
ontinuous initial 
onditions like (12) is 
alled a Riemann problem. For the 
orrespondingRiemann problem with u(x; 0) = � 2 x < x2+1=21 x > x2+1=2the exa
t solution is a sho
k moving with the sho
k speed s = 2+12 = 1:5. Thus, the exa
tsolution at x2+1=2 is u02+1=2 = 2 . Therefore, h02+1=2 = (u02+1=2)22 = 222 = 2. This valueagrees with max2�u�1 u22 = 2.The Godunov method is a 
onservative methodun+1j = unj � kh(hnj+1=2 � hnj�1=2) (13)For j = 2, n = 0 and kh = 0:25, (13) be
omes for the invis
id Burgers' equation with thenumeri
al 
uxes 
omputed above:u12 = 2� 0:25 (2� 0) = 1:5 :
5. a) Determine the spe
tral radius of G(�) for � = 1; :::; n0.G(�) = � � �� � ; �where � = s2�
2�� and � = 
2�s2�� . The eigenvalues of G(�) are easily 
omputed to be �1 = 0and �2 = �+ � . Thus, the spe
tral radius of G(�) is�(G(�) = �+ � = s2�
2�� + 
2�s2�� :Sin
e 
2� = 
os2 ���h12 � = 1� sin2 ���h12 � = 1� s2� ,�(G(�) = s2� (1� s2�)� + (1� s2�) s2�� :6



Sin
e 0 < �h1 � (n0 + 1)h1 = n1+12 = 12 and 0 < sin2 ���h12 � � sin2 �14� = 12 , we have theestimate �(G) = max1���n0+1fs2� (1� s2�)� + (1� s2�) s2�� g� max0���1=2f�(1� �)� + (1� �)�� =: �� : (14)b) Sin
e � � 1� � for 0 � � � 1=2, we 
an estimate the bound �� in (14) by�(G) � �� � 2max0���1=2f�(1� �)�g :We de�ne f(�) = �(1� �)� and determine the maximum max0���1=2f(�).For � = 1, f 0(�) = 1 � 2� = 0 for � = 12 . It is a maximum, be
ause f 00(12) = �2 < 0.As �(G) � 2max0���1=2f(�) � 2f(12) = 214 = 12 < 1, the TMG method is 
onvergent for� = 1.With similar reasoning, we get for � > 1 that f 0(�) = (1��)��1 (1�(1+�)�) = 0 for � = 11+�(� = 0 is a minimum). � = 11+� is a maximum, be
ause f 00( 11+� ) = (1� �)��2(��) < 0. As�(G) � 2max0���1=2f(�) � 2f( 11+� ) = 2( 11+� (1� 11+� )�) < 2 11+� < 1, the TMG method isalso 
onvergent for � > 1.
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