
Uppsala UniversityDepartment of Information Te
hnologyDivision of S
ienti�
 ComputingSolutions to the Examination in Analysis of Numeri
alMethods2005-12-141. a) Taylor expansion of the exa
t solution u(x; t) around (xj; tn) yields:u(xj ; tn+1) = u+ kut + k2=2utt + k3=6uttt +O(k4)u(xj�1; tn) = u� hux + h2=2uxx � h3=6uxxx +O(h4)Inserting u = u(xj; tn) for vnj into the Lax-Wendro� s
hemevn+1j � vnjk + avnj+1 � vnj�12h ��a2k2 � vnj+1 � 2vnj + vnj�1h2 = 0 : (1)and using the PDE ut + ux = 0 yields the trun
ation errorPk;hu = ut + k=2utt +O(k2) + a(ux + h2=6uxxx +O(h4))� a2k=2(uxx +O(h2))= k=2 (utt � a2uxx) +O(k2) +O(h2)Using the PDE and assuming that the exa
t solution is smooth, we have utt = �auxt =�autx = a2uxx. Thus, the Lax-Wendro� s
heme is se
ond order a

urate in spa
e and time,i.e. the FDM is 
onsistent.b) We perform the Fourier analysis by inserting the ansatzvnj = gnei!xjinto the FDM (1) multiplied by k. We get after dividing by gn�1ei!xj and using Euler'sformula ei� = 
os(�) + isin(�)g = 1� i�sin(�) + �2(
os(�)� 1)where � = ak=h is the CFL number and � = !h. Using 
os(�) � 1 = �2sin2(�=2) andsin(�) = 2sin(�=2)p1� sin2(�=2), we obtainjgj2 = 1� 4�2sin2(�=2) + 4�4sin4(�=2) + 4sin2(�=2)(1 � sin2(�=2)) : (2)Thus jgj2 = 1� 4�2(1� �2)sin4(�=2)) :The von Neumann 
ondition jgj2 � 1is satis�ed for 0 � 1� �2, i.e. if j�j � 1.Therefore, the Lax-Ri
htmyer equivalen
e theorem implies that the Lax-Wendro� s
heme(1) is 
onvergent, if j�j � 1.2. We perform the GKS analysis. The stability of FDM (1) for periodi
 boundary 
onditions wasshown in task 1.b). 1



1. Resolvent equationInserting the ansatz vnj = zn~vj into the FDM (1) multiplied by k yields after dividing byzn�1 (z � 1)~vj + �2 (~vj+1 � ~vj�1)� �22 (~vj+1 � 2~vj + ~vj�1) = 0 ; (3)whi
h is the resolvent equation.2. Chara
teristi
 equationInserting the ansatz ~vj = �j into the resolvent equation (3), we obtain after dividing by�j�1 the 
hara
teristi
 equation(z � 1)� + �2 ��2 � 1�� �22 ��2 � 2�+ 1� = 0 : (4)Ordering the terms and assuming 0 6= � 6= 1, (4) 
an also be expressed as�2 + 2(z � 1 + �2)� � �2 �� 1 + �1� � = 0 : (5)3. Determinant 
onditionThe general solution of the resolvent equation (3) is~vj = � �1�j1 + �2�j2 if �1 6= �2�1�j + �2j�j�1 if �1 = �2 = �where �1 and �2 are the two roots of the 
hara
teristi
 equation (4). The 
oeÆ
ients �1and �2 are determined su
h that the boundary 
ondition vn+10 � 2vn+11 + vn+12 = 0 andvn 2 l2(0;1) are satis�ed for the right quarter plane problem. (Similar reasoning is usedfor the left quarter plane problem with the boundary 
ondition vn+1N = 0, 
f. below.)Be
ause of the form of the 
hara
teristi
 equation (5), the produ
t of its roots satis�es therelation �1�2 = �1 + �1� � :A

ording to the hint, j�1j < 1 and j�2j > 1 for jzj > 1. We have to set �2 = 0 to se
urevn 2 l2(0;1).Thus, the solution must be of the formvnj = zn�1�j1 :(For the left quarter plane problem, we have to set �1 = 0 to se
ure vn 2 l2(0;1), sin
ej�j1j ! 1 for j ! 1 and �1 6= 0. Inserting the solution into the boundary 
onditionvn+1N = 0 yields zn+1�2�N2 = 0. Thus, �2 = 0 for �2 6= 0, and 
onsequently vnj = 0.Therefore, the left quarter plane problem is stable.)Inserting the solution into the boundary 
ondition vn+10 � 2vn+11 + vn+12 = 0, we get(1� 2�1 + �21)�1 = 0 :For �1 6= 0, we obtain the 
ase when the determinant 
ondition is not ful�lled, i.e.�21 � 2�1 + 1 = 0 : (6)2



4. Solve equationsThe 
ondition (6) has the solution �1 = 1, whi
h 
ould be a solution in the limit �1 ! 1�as jzj ! 1+.We solve the 
hara
teristi
 equation (4) by inserting � = 1 into (4). We get the solutionz = 1.Thus, the solution is �1 = 1 ; z = 1 : (7)5. Che
k solutionIf � = 1 and z = 1 were a solution in the limit � �! 1� and z �! 1+, the s
heme wouldbe unstable. To 
he
k that 
ase, we assume that z = 1 + Æ with Æ > 0 and � = 1 + �. Weinsert z and � into the 
hara
teristi
 equation (4) and 
he
k the sign of � as Æ �! 0. If� < 0, the s
heme is unstable.Inserting z and � into (4), yieldsÆ(1 + �) + �2 �(1 + �)2 � 1�� �22 �(1 + �)2 � 2(1 + �) + 1� = 0 :Negle
ting the se
ond order terms, we getÆ + �� = 0 : (8)Thus, � = �Æ=�. Consequently, � > 0, if � < 0, and � < 0, if � > 0.6. Con
lusionsTherefore, the FDM (1) with the boundary 
onditions stated above is unstable, if � > 0.If � = 0, the 
hara
teristi
 equation (4) be
omes z = 1, i.e. it does not allow z > 1. Hen
e,the solution (7) 
annot be a limit solution for z �! 1+. Thus, the FDM (1) with theboundary 
onditions stated above is stable, if �1 � � � 0.
3. a) Di�erentiate the �rst and se
ond equations of the 1D shallow water equations using theprodu
t rule: ht + uhx + hux = 0 ;hut + u (ht + (hu)x) + huux + ghhx = 0 :Using the �rst equation in the parentheses of the se
ond one and dividing the se
ondequation by h assuming that the water depth h is positive, we obtain the nonlinear systemVt +BVx = 0 ; (9)where V = � hu � ; B = � u hg u � :To linearize (9) around the 
onstant referen
e state V0 = [H;U ℄T , we insert the ansatzV = V0+U into (9), where U = [b; v℄T denotes the ve
tor of the water depth and velo
ityperturbations. Sin
e the time and spa
e derivatives of V0 are zero, we obtainbt + Ubx + vbx +Hvx + bvx = 0 ;vt + gbx + Uvx + vvx = 0 :3



As the perturbations and their derivatives are assumed to be small 
ompared to theirreferen
e states, the nonlinear terms vbx, bvx and vvx in the above equations are negle
ted.We obtain the linearized 1D shallow water equationsUt +AUx = 0 ; (10)where U = � bv � ; A = � U Hg U � :b) Determine eigenvalues � of A:det(A� �I) = (U � �)2 � 
2 = 0() �1=2 = U � 
 ;where 
 = pgH is the gravity wave speed. Thus, the eigenvalues �1 = U�
 and �2 = U+
are real. As they are distin
t, the 
orresponding eigenve
tors are linearly independent.Thus, the system (10) is hyperboli
.Assume that the eigenve
tors r1 and r2 de�ne the transformation matrix T = [r1; r2℄. AsAT = T�, where � = � �1 00 �2 � ;the system (10) 
an be diagonalized bt multiplying it with T�1 from the left. De�ning the
hara
teristi
 variables W = T�1U, we obtainWt +�Wx = 0 ; (11)i.e. two s
alar equations w1t + �1w1x = 0w2t + �2w2x = 0 ;whi
h 
orrespond to dw1dt = 0 on dxdt = �1dw2dt = 0 on dxdt = �2 :Thus, the �rst 
hara
teristi
 variable w1 is 
onstant on 
hara
teristi
s dxdt = U � 
, and these
ond 
hara
teristi
 variable w2 is 
onstant on 
hara
teristi
s dxdt = U + 
.
) The gravity wave speed 
 = pgH here is 
 = 100ms . Thus, the slopes of the left and rightgoing 
hara
teristi
s are dxdt = �1 = �100ms and dxdt = �2 = 100ms , respe
tively, 
f. Fig. 1.The exa
t solution of the problem 
orresponds to the quies
ent initial 
ondition b = 0mand v = 0ms , ex
ept for two strips in the x-t diagram. In the strip (L) bounded by theleft going 
hara
terist
s with slope dxdt = �100ms starting at x = �10m and x = 10m,w1 is 
onstant and equal to the initial 
ondition of w1 in the interval (�10m; 10m). Inthe strip (R) bounded by the right going 
hara
terist
s with slope dxdt = 100ms starting atx = �10m and x = 10m, w2 is 
onstant and equal to the initial 
ondition of w2 in theinterval (�10m; 10m).To 
onstru
t the exa
t solution, we determine the eigenve
tors r1 and r2 ofA (with U = 0ms )
orresponding to the eigenvalues �1 = �
 and �2 = 
. We obtainr1 = � pH�pg � ; r2 = � pHpg �4



De�ne the transformation matrix as the right eigenve
tor matrixT = [r1; r2℄ = � pH pH�pg pg �The inverse of T is T�1 = 12
 � pg �pHpg pH �The 
hara
teristi
 variables be
omeW = T�1U = 12
 � pgb�pHvpgb+pHv � = � w1w2 � :In the interse
tion (I) of strips (L) and (R), we get as b = 10m and v = 0ms (omitting thedimensions) WI = 12
 � pg10pg10 � : (12)In the left strip (L), ex
ept for the interse
tion (I), we get as w2 = 0 thereWL = 12
 � pg100 � : (13)In the right strip (R), ex
ept for the interse
tion (I), we get as w1 = 0 thereWR = 12
 � 0pg10 � : (14)We get the solution from U = TW = � pHw1 +pHw2�pgw1 +pgw2 � :Thus, in the interse
tion (I) of strips (L) and (R), we obtain with 
 = pgHUI = 12
 � pgH10 +pgH10�g10 + g10 � = � 100 � : (15)In the left strip (L), ex
ept for the interse
tion (I), we get with H = 1000m and g = 10m=s2UL = 12
 � pgH10�g10 � = � 5�pg=H � = � 5�0:5 � : (16)In the right strip (R), ex
ept for the interse
tion (I), we getUR = 12
 � pgH10g10 � = � 5pg=H � = � 50:5 � : (17)Thus, the water height above the water level is 10m and the velo
ity zero in the interse
tion(I) near the origin of the tsunami, whereas the water level is 5m and the velo
ity �0:5msand 0:5ms in the left and right strips, respe
tively.The left and right going gravity waves, i.e. the fronts of the left and right strips, travel withthe speed �
 = �100ms to the left and with the speed 
 = 100ms to the right, respe
ti
ely.Thus, the time needed for a front of the tsunami to rea
h a 
oast 1000km away from itsorigin is T = 106m100ms = 104s = 2h 46min 40s :
5
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Figure 1: Chara
teristi
s of dis
ontinuities starting at �10m and 10m.4. a) A s
heme is total variation diminishing (TVD), ifTV (vn+1) � TV (vn) ;where TV (vn) =PNj=1 jvnj � vnj�1j is the total variation of vn.Suppose the initial 
ondition is de�ned by a dis
ontinuity at the midpoint xi+1=2 = (xi +xi+1)=2 between the grid points xi and xi+1:u(x; 0) = � uL x < xi+1=2uR x > xi+1=2with uL 6= uR. We apply the Lax-Wendro� methodvn+1j = vnj � �2 (vnj+1 � vnj�1) + �22 (vnj+1 � 2vnj + vnj�1) ; (18)where � = akh is the CFL number, to 
omputev1j = � uL j � i� 1uR j � i+ 2v1i = uL + uL�uR2 �(1� �)v1i+1 = uR + uL�uR2 �(1 + �)We get TV (v1) = jv1i � v1i�1j+ jv1i+1 � v1i j+ jv1i+2 � v1i+1j= juL � uR2 �(1� �)j+ j(uL � uR)(�2 � 1)j+ juL � uR2 �(1 + �)jThus, we get TV (v1) = � juL � uRj(1 + � � �2) 0 < � < 1juL � uRj(1 � � � �2) �1 < � < 0Therefore, TV (v1) > juL � uRj = TV (v0) :That means that we have proved with a 
ounterexample that the Lax-Wendro� s
heme isnot TVD. 6



b) Using the de�nition of the energy, di�erentiating and repla
ing (vj)t by�13 �vjD0vj +D0(v2j )�,we obtainddt jjvjj2h = ddth NXj=1 v2j = h NXj=1 2vj(vj)t= �2h3 NXj=1 vj �vjD0vj +D0(v2j )�= �13 NXj=1 �v2j (vj+1 � vj�1) + vj(v2j+1 � v2j�1)�= �13 0� NXj=1 v2j vj+1 � N�1Xj=0 v2j+1vj + NXj=1 vjv2j+1 � N�1Xj=0 vj+1v2j1A= �13 0�( NXj=1 v2j vj+1 � N�1Xj=0 vj+1v2j ) + (�N�1Xj=0 v2j+1vj + NXj=1 vjv2j+1)1A= �13 �(v2NvN+1 � v1v20)) + (�v21v0 + vNv2N+1)�= 0 ;as the last expression is zero be
ause of the periodi
 boundary 
onditions. Thus, we haveddt jjvjj2h = 0 :Integrating over time yields jjv(t)jj2h � jjv(0)jj2h = 0. Thus, we obtain the estimate for the2-norm jjv(t)jjh � jjv(0)jjh :As the 2-norm of the semidis
rete solution v at time t is bounded by the 2-norm of theinitial 
ondition, the proposed semidis
retization of the invis
id Burgers' equation is stable.5. a) Suppose w� is an eigenve
tor of A 
orresponding to the eigenvalue �� = 4h2 sin2(��h2 ), i.e.Aw� = ��w�, � = 1; ::: ; n. Sin
e D�1 = h22 I, we obtain for the iteration matrixG = I� 12D�1A = I� h24 A :Thus, we obtain Gw� = (I� h24 A)w� = (1� h24 ��)w� :Consequently, the eigenvalues of G are�� = 1� h24 �� = 1� sin2(��h2 ) = 
os2(��h2 ) ; � = 1; ::: ; n: (19)For n1 = n odd, h1 = h, n0 = n1�12 , h0 = 2h1, �0 = n1 + 1� �, we get��0 = 
os2(�0�h12 ) = 
os2((n1 + 1� �)�h12 ) = sin2(��h12 ) ;7



where we used (n1 + 1)h1 = 1 and the addition formula for 
os. As (n0 + 1)h1 = 1=2and 
os2( (n0+1)�h12 ) = sin2( (n0+1)�h12 ) = 1=2, the error modes w� with low wave numbers� = 1; :::; n0 are damped with a fa
tor larger than 1=2, whereas the error modes w� withhigh wave numbers �0 = n1 + 1 � � are damped with a fa
tor lower than 1=2. Very highhigh wave number error modes are damped very qui
kly, be
ause in ea
h damped Ja
obiiteration those error modes are redu
ed by a fa
tor of ��0 � 0.Error modes w� with low wave numbers � on the �ne grid, where 1=4 � �h1 < 1=2, be
omehigh wave numbers on the 
oarse grid, be
ause the wave number � is seen on the 
oarsegrid with h0 = 2h1 as 1=2 � �h0 < 1 and the error mode w� is damped by the fa
tor�� = 
os2(��h02 ) � 1=2 instead of �� = 
os2(��h12 ) > 1=2 on the �ne grid. In the same way,error modes with wave numbers � on the 
oarse grid, where 1=4 � �h0 < 1=2, be
ome highwave numbers on the next 
oarser grid and 
an be qui
kly damped there, et
.The 
ombination of residual smoothing on the �ne grid, where the high wave number errormodes are eÆ
iently damped by the damped Ja
obi method in our 
ase, and the 
orre
tionon the 
oarse grid, where the low wave numbers on the �ne grid be
ome high wave numbersand are eÆ
iently damped, leads to the eÆ
ien
y of the multigrid method.b) The error e(m) at iteration m is related to the error e(0) of the starting guess bye(m) = Gme(0) ;whereG is the iteration matrix. In the 2-norm (Eu
lidian norm here), we have the estimatejje(m)jj2 � jjGjjm2 jje(0)jj2 :If the error is to be redu
ed by one de
imal digit, we require jje(m)jj2 � 10�1jje(0)jj2.Requiring jjGjjm2 jje(0)jj2 � 10�1jje(0)jj2, we get the suÆ
ient number of iterations m toredu
e the error by one de
imal digit:m � �1log10(jjGjj2) : (20)Only if G is symmetri
, �(G) = jjGjj2 is guaranteed. Otherwise �1log10(�(G)) gives only anapproximation of the number of iterations to redu
e the error by one de
imal digit.For the multigrid method, we may assume that jjGjj2 = 0:1. Then, (20) implies that oneiteration is suÆ
ient to redu
e the error by one de
imal digit.
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