
Uppsala UniversityDepartment of Information TehnologyDivision of Sienti� ComputingSolutions to the Examination in Analysis of NumerialMethods2005-12-141. a) Taylor expansion of the exat solution u(x; t) around (xj; tn) yields:u(xj ; tn+1) = u+ kut + k2=2utt + k3=6uttt +O(k4)u(xj�1; tn) = u� hux + h2=2uxx � h3=6uxxx +O(h4)Inserting u = u(xj; tn) for vnj into the Lax-Wendro� shemevn+1j � vnjk + avnj+1 � vnj�12h ��a2k2 � vnj+1 � 2vnj + vnj�1h2 = 0 : (1)and using the PDE ut + ux = 0 yields the trunation errorPk;hu = ut + k=2utt +O(k2) + a(ux + h2=6uxxx +O(h4))� a2k=2(uxx +O(h2))= k=2 (utt � a2uxx) +O(k2) +O(h2)Using the PDE and assuming that the exat solution is smooth, we have utt = �auxt =�autx = a2uxx. Thus, the Lax-Wendro� sheme is seond order aurate in spae and time,i.e. the FDM is onsistent.b) We perform the Fourier analysis by inserting the ansatzvnj = gnei!xjinto the FDM (1) multiplied by k. We get after dividing by gn�1ei!xj and using Euler'sformula ei� = os(�) + isin(�)g = 1� i�sin(�) + �2(os(�)� 1)where � = ak=h is the CFL number and � = !h. Using os(�) � 1 = �2sin2(�=2) andsin(�) = 2sin(�=2)p1� sin2(�=2), we obtainjgj2 = 1� 4�2sin2(�=2) + 4�4sin4(�=2) + 4sin2(�=2)(1 � sin2(�=2)) : (2)Thus jgj2 = 1� 4�2(1� �2)sin4(�=2)) :The von Neumann ondition jgj2 � 1is satis�ed for 0 � 1� �2, i.e. if j�j � 1.Therefore, the Lax-Rihtmyer equivalene theorem implies that the Lax-Wendro� sheme(1) is onvergent, if j�j � 1.2. We perform the GKS analysis. The stability of FDM (1) for periodi boundary onditions wasshown in task 1.b). 1



1. Resolvent equationInserting the ansatz vnj = zn~vj into the FDM (1) multiplied by k yields after dividing byzn�1 (z � 1)~vj + �2 (~vj+1 � ~vj�1)� �22 (~vj+1 � 2~vj + ~vj�1) = 0 ; (3)whih is the resolvent equation.2. Charateristi equationInserting the ansatz ~vj = �j into the resolvent equation (3), we obtain after dividing by�j�1 the harateristi equation(z � 1)� + �2 ��2 � 1�� �22 ��2 � 2�+ 1� = 0 : (4)Ordering the terms and assuming 0 6= � 6= 1, (4) an also be expressed as�2 + 2(z � 1 + �2)� � �2 �� 1 + �1� � = 0 : (5)3. Determinant onditionThe general solution of the resolvent equation (3) is~vj = � �1�j1 + �2�j2 if �1 6= �2�1�j + �2j�j�1 if �1 = �2 = �where �1 and �2 are the two roots of the harateristi equation (4). The oeÆients �1and �2 are determined suh that the boundary ondition vn+10 � 2vn+11 + vn+12 = 0 andvn 2 l2(0;1) are satis�ed for the right quarter plane problem. (Similar reasoning is usedfor the left quarter plane problem with the boundary ondition vn+1N = 0, f. below.)Beause of the form of the harateristi equation (5), the produt of its roots satis�es therelation �1�2 = �1 + �1� � :Aording to the hint, j�1j < 1 and j�2j > 1 for jzj > 1. We have to set �2 = 0 to seurevn 2 l2(0;1).Thus, the solution must be of the formvnj = zn�1�j1 :(For the left quarter plane problem, we have to set �1 = 0 to seure vn 2 l2(0;1), sinej�j1j ! 1 for j ! 1 and �1 6= 0. Inserting the solution into the boundary onditionvn+1N = 0 yields zn+1�2�N2 = 0. Thus, �2 = 0 for �2 6= 0, and onsequently vnj = 0.Therefore, the left quarter plane problem is stable.)Inserting the solution into the boundary ondition vn+10 � 2vn+11 + vn+12 = 0, we get(1� 2�1 + �21)�1 = 0 :For �1 6= 0, we obtain the ase when the determinant ondition is not ful�lled, i.e.�21 � 2�1 + 1 = 0 : (6)2



4. Solve equationsThe ondition (6) has the solution �1 = 1, whih ould be a solution in the limit �1 ! 1�as jzj ! 1+.We solve the harateristi equation (4) by inserting � = 1 into (4). We get the solutionz = 1.Thus, the solution is �1 = 1 ; z = 1 : (7)5. Chek solutionIf � = 1 and z = 1 were a solution in the limit � �! 1� and z �! 1+, the sheme wouldbe unstable. To hek that ase, we assume that z = 1 + Æ with Æ > 0 and � = 1 + �. Weinsert z and � into the harateristi equation (4) and hek the sign of � as Æ �! 0. If� < 0, the sheme is unstable.Inserting z and � into (4), yieldsÆ(1 + �) + �2 �(1 + �)2 � 1�� �22 �(1 + �)2 � 2(1 + �) + 1� = 0 :Negleting the seond order terms, we getÆ + �� = 0 : (8)Thus, � = �Æ=�. Consequently, � > 0, if � < 0, and � < 0, if � > 0.6. ConlusionsTherefore, the FDM (1) with the boundary onditions stated above is unstable, if � > 0.If � = 0, the harateristi equation (4) beomes z = 1, i.e. it does not allow z > 1. Hene,the solution (7) annot be a limit solution for z �! 1+. Thus, the FDM (1) with theboundary onditions stated above is stable, if �1 � � � 0.
3. a) Di�erentiate the �rst and seond equations of the 1D shallow water equations using theprodut rule: ht + uhx + hux = 0 ;hut + u (ht + (hu)x) + huux + ghhx = 0 :Using the �rst equation in the parentheses of the seond one and dividing the seondequation by h assuming that the water depth h is positive, we obtain the nonlinear systemVt +BVx = 0 ; (9)where V = � hu � ; B = � u hg u � :To linearize (9) around the onstant referene state V0 = [H;U ℄T , we insert the ansatzV = V0+U into (9), where U = [b; v℄T denotes the vetor of the water depth and veloityperturbations. Sine the time and spae derivatives of V0 are zero, we obtainbt + Ubx + vbx +Hvx + bvx = 0 ;vt + gbx + Uvx + vvx = 0 :3



As the perturbations and their derivatives are assumed to be small ompared to theirreferene states, the nonlinear terms vbx, bvx and vvx in the above equations are negleted.We obtain the linearized 1D shallow water equationsUt +AUx = 0 ; (10)where U = � bv � ; A = � U Hg U � :b) Determine eigenvalues � of A:det(A� �I) = (U � �)2 � 2 = 0() �1=2 = U �  ;where  = pgH is the gravity wave speed. Thus, the eigenvalues �1 = U� and �2 = U+are real. As they are distint, the orresponding eigenvetors are linearly independent.Thus, the system (10) is hyperboli.Assume that the eigenvetors r1 and r2 de�ne the transformation matrix T = [r1; r2℄. AsAT = T�, where � = � �1 00 �2 � ;the system (10) an be diagonalized bt multiplying it with T�1 from the left. De�ning theharateristi variables W = T�1U, we obtainWt +�Wx = 0 ; (11)i.e. two salar equations w1t + �1w1x = 0w2t + �2w2x = 0 ;whih orrespond to dw1dt = 0 on dxdt = �1dw2dt = 0 on dxdt = �2 :Thus, the �rst harateristi variable w1 is onstant on harateristis dxdt = U � , and theseond harateristi variable w2 is onstant on harateristis dxdt = U + .) The gravity wave speed  = pgH here is  = 100ms . Thus, the slopes of the left and rightgoing harateristis are dxdt = �1 = �100ms and dxdt = �2 = 100ms , respetively, f. Fig. 1.The exat solution of the problem orresponds to the quiesent initial ondition b = 0mand v = 0ms , exept for two strips in the x-t diagram. In the strip (L) bounded by theleft going haraterists with slope dxdt = �100ms starting at x = �10m and x = 10m,w1 is onstant and equal to the initial ondition of w1 in the interval (�10m; 10m). Inthe strip (R) bounded by the right going haraterists with slope dxdt = 100ms starting atx = �10m and x = 10m, w2 is onstant and equal to the initial ondition of w2 in theinterval (�10m; 10m).To onstrut the exat solution, we determine the eigenvetors r1 and r2 ofA (with U = 0ms )orresponding to the eigenvalues �1 = � and �2 = . We obtainr1 = � pH�pg � ; r2 = � pHpg �4



De�ne the transformation matrix as the right eigenvetor matrixT = [r1; r2℄ = � pH pH�pg pg �The inverse of T is T�1 = 12 � pg �pHpg pH �The harateristi variables beomeW = T�1U = 12 � pgb�pHvpgb+pHv � = � w1w2 � :In the intersetion (I) of strips (L) and (R), we get as b = 10m and v = 0ms (omitting thedimensions) WI = 12 � pg10pg10 � : (12)In the left strip (L), exept for the intersetion (I), we get as w2 = 0 thereWL = 12 � pg100 � : (13)In the right strip (R), exept for the intersetion (I), we get as w1 = 0 thereWR = 12 � 0pg10 � : (14)We get the solution from U = TW = � pHw1 +pHw2�pgw1 +pgw2 � :Thus, in the intersetion (I) of strips (L) and (R), we obtain with  = pgHUI = 12 � pgH10 +pgH10�g10 + g10 � = � 100 � : (15)In the left strip (L), exept for the intersetion (I), we get with H = 1000m and g = 10m=s2UL = 12 � pgH10�g10 � = � 5�pg=H � = � 5�0:5 � : (16)In the right strip (R), exept for the intersetion (I), we getUR = 12 � pgH10g10 � = � 5pg=H � = � 50:5 � : (17)Thus, the water height above the water level is 10m and the veloity zero in the intersetion(I) near the origin of the tsunami, whereas the water level is 5m and the veloity �0:5msand 0:5ms in the left and right strips, respetively.The left and right going gravity waves, i.e. the fronts of the left and right strips, travel withthe speed � = �100ms to the left and with the speed  = 100ms to the right, respetiely.Thus, the time needed for a front of the tsunami to reah a oast 1000km away from itsorigin is T = 106m100ms = 104s = 2h 46min 40s :
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Figure 1: Charateristis of disontinuities starting at �10m and 10m.4. a) A sheme is total variation diminishing (TVD), ifTV (vn+1) � TV (vn) ;where TV (vn) =PNj=1 jvnj � vnj�1j is the total variation of vn.Suppose the initial ondition is de�ned by a disontinuity at the midpoint xi+1=2 = (xi +xi+1)=2 between the grid points xi and xi+1:u(x; 0) = � uL x < xi+1=2uR x > xi+1=2with uL 6= uR. We apply the Lax-Wendro� methodvn+1j = vnj � �2 (vnj+1 � vnj�1) + �22 (vnj+1 � 2vnj + vnj�1) ; (18)where � = akh is the CFL number, to omputev1j = � uL j � i� 1uR j � i+ 2v1i = uL + uL�uR2 �(1� �)v1i+1 = uR + uL�uR2 �(1 + �)We get TV (v1) = jv1i � v1i�1j+ jv1i+1 � v1i j+ jv1i+2 � v1i+1j= juL � uR2 �(1� �)j+ j(uL � uR)(�2 � 1)j+ juL � uR2 �(1 + �)jThus, we get TV (v1) = � juL � uRj(1 + � � �2) 0 < � < 1juL � uRj(1 � � � �2) �1 < � < 0Therefore, TV (v1) > juL � uRj = TV (v0) :That means that we have proved with a ounterexample that the Lax-Wendro� sheme isnot TVD. 6



b) Using the de�nition of the energy, di�erentiating and replaing (vj)t by�13 �vjD0vj +D0(v2j )�,we obtainddt jjvjj2h = ddth NXj=1 v2j = h NXj=1 2vj(vj)t= �2h3 NXj=1 vj �vjD0vj +D0(v2j )�= �13 NXj=1 �v2j (vj+1 � vj�1) + vj(v2j+1 � v2j�1)�= �13 0� NXj=1 v2j vj+1 � N�1Xj=0 v2j+1vj + NXj=1 vjv2j+1 � N�1Xj=0 vj+1v2j1A= �13 0�( NXj=1 v2j vj+1 � N�1Xj=0 vj+1v2j ) + (�N�1Xj=0 v2j+1vj + NXj=1 vjv2j+1)1A= �13 �(v2NvN+1 � v1v20)) + (�v21v0 + vNv2N+1)�= 0 ;as the last expression is zero beause of the periodi boundary onditions. Thus, we haveddt jjvjj2h = 0 :Integrating over time yields jjv(t)jj2h � jjv(0)jj2h = 0. Thus, we obtain the estimate for the2-norm jjv(t)jjh � jjv(0)jjh :As the 2-norm of the semidisrete solution v at time t is bounded by the 2-norm of theinitial ondition, the proposed semidisretization of the invisid Burgers' equation is stable.5. a) Suppose w� is an eigenvetor of A orresponding to the eigenvalue �� = 4h2 sin2(��h2 ), i.e.Aw� = ��w�, � = 1; ::: ; n. Sine D�1 = h22 I, we obtain for the iteration matrixG = I� 12D�1A = I� h24 A :Thus, we obtain Gw� = (I� h24 A)w� = (1� h24 ��)w� :Consequently, the eigenvalues of G are�� = 1� h24 �� = 1� sin2(��h2 ) = os2(��h2 ) ; � = 1; ::: ; n: (19)For n1 = n odd, h1 = h, n0 = n1�12 , h0 = 2h1, �0 = n1 + 1� �, we get��0 = os2(�0�h12 ) = os2((n1 + 1� �)�h12 ) = sin2(��h12 ) ;7



where we used (n1 + 1)h1 = 1 and the addition formula for os. As (n0 + 1)h1 = 1=2and os2( (n0+1)�h12 ) = sin2( (n0+1)�h12 ) = 1=2, the error modes w� with low wave numbers� = 1; :::; n0 are damped with a fator larger than 1=2, whereas the error modes w� withhigh wave numbers �0 = n1 + 1 � � are damped with a fator lower than 1=2. Very highhigh wave number error modes are damped very quikly, beause in eah damped Jaobiiteration those error modes are redued by a fator of ��0 � 0.Error modes w� with low wave numbers � on the �ne grid, where 1=4 � �h1 < 1=2, beomehigh wave numbers on the oarse grid, beause the wave number � is seen on the oarsegrid with h0 = 2h1 as 1=2 � �h0 < 1 and the error mode w� is damped by the fator�� = os2(��h02 ) � 1=2 instead of �� = os2(��h12 ) > 1=2 on the �ne grid. In the same way,error modes with wave numbers � on the oarse grid, where 1=4 � �h0 < 1=2, beome highwave numbers on the next oarser grid and an be quikly damped there, et.The ombination of residual smoothing on the �ne grid, where the high wave number errormodes are eÆiently damped by the damped Jaobi method in our ase, and the orretionon the oarse grid, where the low wave numbers on the �ne grid beome high wave numbersand are eÆiently damped, leads to the eÆieny of the multigrid method.b) The error e(m) at iteration m is related to the error e(0) of the starting guess bye(m) = Gme(0) ;whereG is the iteration matrix. In the 2-norm (Eulidian norm here), we have the estimatejje(m)jj2 � jjGjjm2 jje(0)jj2 :If the error is to be redued by one deimal digit, we require jje(m)jj2 � 10�1jje(0)jj2.Requiring jjGjjm2 jje(0)jj2 � 10�1jje(0)jj2, we get the suÆient number of iterations m toredue the error by one deimal digit:m � �1log10(jjGjj2) : (20)Only if G is symmetri, �(G) = jjGjj2 is guaranteed. Otherwise �1log10(�(G)) gives only anapproximation of the number of iterations to redue the error by one deimal digit.For the multigrid method, we may assume that jjGjj2 = 0:1. Then, (20) implies that oneiteration is suÆient to redue the error by one deimal digit.
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