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1. a) Taylor expansion of the exact solution u(x,t) around (z;,t,) yields:
w(xj,tnp1) = u+ kug+ k2 /2wy + k3 /6 gy + (’)(k4)
w(xjt1,tn) = uEhuy + h2/2 Upy + h3/6 Upzr + (’)(h4)
Inserting u = u(z;,t,) for v} into the Lax-Wendroff scheme
v;“d — o N av;’_l_l — i B <a?_]g> Ui — i+ 0 )
k 2h 2 h? '
and using the PDE u; + u, = 0 yields the truncation error
Pepu =g+ k/2uy + O(k?) + a(ug + h% /6wy + O(hY)) — a®k/2(uzy + O(h?))
=k/2 (uy — a*uyy) + O(K%) + O(h?)
Using the PDE and assuming that the exact solution is smooth, we have uy = —auy =

—auy, = a’Ug,. Thus, the Lax-Wendroff scheme is second order accurate in space and time,
i.e. the FDM is consistent.

b) We perform the Fourier analysis by inserting the ansatz
,U;L — gneiwxj

into the FDM (1) multiplied by k. We get after dividing by ¢" 'e’“%i and using Euler’s
formula €'© = cos(©) + isin(O)

g =1—iosin(0) + 0*(cos(©) — 1)
where o = ak/h is the CFL number and © = wh. Using cos(0©) — 1 = —2sin?(©/2) and
sin(0©) = 2sin(0/2)y/1 — sin?(©/2), we obtain

9|2 = 1 — 40%5in?(©/2) + 40*sin?(©/2) + 4sin?(©/2)(1 — sin(0/2)) . (2)

Thus

19> = 1 —40%(1 — 0?)sin'(0/2)).
The von Neumann condition

gl <1

is satisfied for 0 < 1 — 02, i.e. if |o] < 1.
Therefore, the Lax-Richtmyer equivalence theorem implies that the Lax-Wendroff scheme
(1) is convergent, if |o] < 1.

2. We perform the GKS analysis. The stability of FDM (1) for periodic boundary conditions was
shown in task 1.b).



1. Resolvent equation

Inserting the ansatz v7 = 2"9; into the FDM (1) multiplied by k yields after dividing by

J
zn—l
2

~ o N o° . . -
(Z - 1)Uj + 5 (Uj+1 - Ujfl) - 7 (’Uj+1 — 2Uj + Ujfl) =0, (3)

which is the resolvent equation.

2. Characteristic equation

Inserting the ansatz 9; = s/ into the resolvent equation (3), we obtain after dividing by
kJ~1 the characteristic equation

(z—l)n—l—%(nQ—l)—%2(/@2—%;—1—1)=0. (4)

Ordering the terms and assuming 0 # o # 1, (4) can also be expressed as

20z —1 2 1
2 (2 +U)H +o

K - = 0. 5
o— o2 l1—0o (5)
3. Determinant condition
The general solution of the resolvent equation (3) is
. 01%{ + O'Qlﬁ?% if K1 7é K9
'U]‘ = . PP T
o167 + 097K iK1 =Ky =k

where k1 and ko are the two roots of the characteristic equation (4). The coefficients oy
and o9 are determined such that the boundary condition vgﬂ - 2v?+1 + USH = 0 and
v™ € l9(0,00) are satisfied for the right quarter plane problem. (Similar reasoning is used
for the left quarter plane problem with the boundary condition UR,H = 0, cf. below.)
Because of the form of the characteristic equation (5), the product of its roots satisfies the

relation
1+o0

1—0o

Ri1k2 = —

According to the hint, |k1] < 1 and |kg| > 1 for |z] > 1. We have to set o9 = 0 to secure

o™ € 13(0, 00).

Thus, the solution must be of the form
n

Uj

=201k .
(For the left quarter plane problem, we have to set o1 = 0 to secure v" € I2(0, 00), since
|k9| — oo for 5 = oc and k1 # 0. Inserting the solution into the boundary condition
v?\f"l = 0 yields 2"'oyk) = 0. Thus, ko = 0 for o9 # 0, and consequently v = 0.
Therefore, the left quarter plane problem is stable.)

Tnserting the solution into the boundary condition vj ™t — 207! + 03t = 0, we get

(1 -2k 4+ K)o =0.
For o1 # 0, we obtain the case when the determinant condition is not fulfilled, i.e.

K =261 +1=0. (6)



4. Solve equations

The condition (6) has the solution k1 = 1, which could be a solution in the limit k; — 1_
as |z| = 1.
We solve the characteristic equation (4) by inserting x = 1 into (4). We get the solution
z=1.
Thus, the solution is

k=1 ,z=1. (7)

5. Check solution

If Kk =1 and 2z = 1 were a solution in the limit Kk — 1_ and z — 14, the scheme would
be unstable. To check that case, we assume that 2z =140 with § >0 and kK =1+ €. We
insert z and k into the characteristic equation (4) and check the sign of € as § — 0. If
€ < 0, the scheme is unstable.

Inserting z and & into (4), yields

2

5(1+e)+%((1+6)2—1) —%((1+e)2—2(1+e)+1) = 0.
Neglecting the second order terms, we get
d+oe = 0. (8)

Thus, e = —§/o. Consequently, € > 0, if 0 < 0, and € < 0, if 0 > 0.

6. Conclusions

Therefore, the FDM (1) with the boundary conditions stated above is unstable, if o > 0.
If o = 0, the characteristic equation (4) becomes z = 1, i.e. it does not allow z > 1. Hence,
the solution (7) cannot be a limit solution for z — 1;. Thus, the FDM (1) with the
boundary conditions stated above is stable, if —1 < ¢ < 0.

Differentiate the first and second equations of the 1D shallow water equations using the
product rule:

hy +uhy + hu, =0,
huy 4+ u (hy + (hu)z) + huug + ghhy =0.

Using the first equation in the parentheses of the second one and dividing the second
equation by A assuming that the water depth h is positive, we obtain the nonlinear system

V,+BV, =0, (9)
where
v=(u) m=( )
u g u
To linearize (9) around the constant reference state Vo = [H,U]T, we insert the ansatz

V = Vi + U into (9), where U = [b,v]” denotes the vector of the water depth and velocity
perturbations. Since the time and space derivatives of V are zero, we obtain
by + Ub, + vb, + Hv, + bv, =0,
v+ gby + Uvy +vv, =0.



As the perturbations and their derivatives are assumed to be small compared to their
reference states, the nonlinear terms vb,, bv, and vv, in the above equations are neglected.
We obtain the linearized 1D shallow water equations

U, + AU, =0, (10)

o-(1). a-(0 8)

b) Determine eigenvalues A of A:

where

det(A = M) = (U =N’ - =0 N\pp=U%Fc,

where ¢ = \/gH is the gravity wave speed. Thus, the eigenvalues \{ = U —cand Ay = U+¢
are real. As they are distinct, the corresponding eigenvectors are linearly independent.
Thus, the system (10) is hyperbolic.

Assume that the eigenvectors ry and ry define the transformation matrix T = [ry,r9]. As

AT = TA, where
(M0
a= (o)

the system (10) can be diagonalized bt multiplying it with T~! from the left. Defining the
characteristic variables W = T~!U, we obtain

W, +AW, =0, (11)
i.e. two scalar equations
’wtl + Alwi == 0
’LUt2 + )\Q’UJ?C = 0,

which correspond to

dw" da
7 =0 on a = )\1
dw? da
W =0 on dat = )\2 .
Thus, the first characteristic variable w' is constant on characteristics fl—f = U — ¢, and the

second characteristic variable w? is constant on characteristics [é—f =U+ec.

c) The gravity wave speed ¢ = \/gH here is ¢ = 1007, Thus, the slopes of the left and right
going characteristics are [é—f = A1 = =100 and fl—"f = Ao = 100, respectively, cf. Fig. 1.
The exact solution of the problem corresponds to the quiescent initial condition b = Om
and v = 0%, except for two strips in the x-t diagram. In the strip (L) bounded by the

left going characteristcs with slope [é—f = —100% starting at * = —10m and x = 10m,

w' is constant and equal to the initial condition of w! in the interval (—10m,10m). In
the strip (R) bounded by the right going characteristcs with slope [é—f = 1007 starting at
z = —10m and z = 10m, w? is constant and equal to the initial condition of w? in the
interval (—10m, 10m).

To construct the exact solution, we determine the eigenvectors ry and ry of A (with U = 072)

corresponding to the eigenvalues A\; = —c and Ay = ¢. We obtain

() ()

4



Define the transformation matrix as the right eigenvector matrix

T = [ry,10] = ( A

The inverse of T is

In the intersection (I) of strips (L) an

v

, we get as b= 10m and v = 02 (omitting the

dimensions)
1 ( /310
= — . 12
c ( V910 ) (12)
In the left strip (L), except for the intersection (I), we get as w? = 0 there
1 [ /g10
Wi =— . 13
LY. < 0 > (13)
In the right strip (R), except for the intersection (I), we get as w' = 0 there
1 0
Wpgr=— . 14
LY ( /910 > (14)
We get the solution from
1 2
U=TW = \/ﬁw 1—1— \/ﬁw2 .
V9w + /gw

Thus, in the intersection (I) of strips (L) and (R), we obtain with ¢ = \/gH

U, — 2C<\/_10+\/_10> (10>' (15)

910 + ¢10 0
In the left strip (L), except for the intersection (T), we get with H = 1000m and g = 10m /s>

o L(VIOY (0 (0, ”

In the right strip (R), except for the intersection (I), we get

we b (E)-Cam)-(8) o

Thus, the water height above the water level is 10m and the velocity zero in the intersection
(I) near the origin of the tsunami, whereas the water level is 5m and the velocity —0.5%
and 0.5% in the left and right strips, respectively.
The left and right going gravity waves, i.e. the fronts of the left and right strips, travel with
the speed —c = —1007 to the left and with the speed ¢ = 1007} to the right, respecticely.
Thus, the time needed for a front of the tsunami to reach a coast 1000km away from its
origin is

10%m

= Togm = 10's = 2h 46min 40s .
S
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Figure 1: Characteristics of discontinuities starting at —10m and 10m.

a) A scheme is total variation diminishing (TVD), if
TV (V") < TV (v,

where TV (v") = Z;VZI [vj —vj_4| is the total variation of v".
Suppose the initial condition is defined by a discontinuity at the midpoint z;, /0 = (7; +
xit+1)/2 between the grid points z; and z;41:

w(z,0) = { ur, T < Tiyy)2

UR T > Tiy1)2

with ur, # ugr. We apply the Lax-Wendroff method
2
o o

U;H = v} — §(U?+1 —viq) + 7(’0;2_*_1 — 207 + i), (18)

where o = a% is the CFL number, to compute

ol = UL J<ti—1
J UR j>i+2
v =up+ LG (1 - o)
vy = ur+ 52 0(1 + o)
We get
TV(VY) = |oi —via| + |vigy = of |+ [vie — v
ur — UR ur — UR
= (2o o) (s~ um)(0 )]+ [ o (1 4 o)
Thus, we get
— 1+0—0? 0<o<1
vyl = d [ur —url(
Vivy) {uL—uRu—a—a?) <o<0
Therefore,

TV (VY > jup —ugp| = TV (vY).

That means that we have proved with a counterexample that the Lax-Wendroff scheme is
not TVD.



b) Using the definition of the energy, differentiating and replacing (v;); by —% (’Ung’Uj + Dy (vf)) ,

we obtain
d d, & -
2 2
%Hth = %hzv]’ = hz 20j(vj)
j=1 J=1
N
2h
j=1
|
= 73 v3+1 vj-1) + Uj(“12'+1 - “12'*1))
J=1
1 N N—1 N N-1
-3 D UTvie = D v+ D v = Y vy
j=1 j=0 i=1 7=0
. N N—1
= g ZUJQQ)J‘+1 — Z ’Uj_|_1’U]2') + (_ /U32‘+1’Uj + Z ’U]"U]2'+1)
j=1 Jj=0 Jj=0 7=1

—= ((WXons1 — v198)) + (—vive + vnvA4))

OJ|>—~

as the last expression is zero because of the periodic boundary conditions. Thus, we have
d 2
v|lz =0.
ol

Integrating over time yields |[v()]|2 — |[v(0)||? = 0. Thus, we obtain the estimate for the
2-norm

Ho@)ln < lv(0)]n -

As the 2-norm of the semidiscrete solution v at time ¢ is bounded by the 2-norm of the
initial condition, the proposed semidiscretization of the inviscid Burgers’ equation is stable.

Suppose w, is an eigenvector of A corresponding to the eigenvalue ¢, = }f—2 sinQ(#), ie.

Aw, = (,w,, p =1, ...,n. Since D! = hQ—QI, we obtain for the iteration matrix

1 h?
G=I--D'A=1-—A.
2 4

Thus, we obtain

h? h?
Gw, = (I- ZA) =(1- ZCM)WM'
Consequently, the eigenvalues of G are
h? h h
Aﬂ_1——<ﬂ_1—sm2(%) :cosﬁ(%),uﬂ, e (19)

For ny = n odd, hy = h, ng =

=2hy, 4 =ny +1—pu, we get

,u'7rh1 9 (n1 +1-— u)ﬂ'hl

WS cosQ(T) = cos”( 5 prh

2

) = sin’( )



where we used (ni + 1)h1 = 1 and the addition formula for cos. As (ng + 1)hy = 1/2
and cosQ(M) = sinQ(M) = 1/2, the error modes w,, with low wave numbers
p=1,...,n9 are damped with a factor larger than 1/2, whereas the error modes w, with
high wave numbers ' = ny + 1 — i are damped with a factor lower than 1/2. Very high
high wave number error modes are damped very quickly, because in each damped Jacobi
iteration those error modes are reduced by a factor of A,/ = 0.

Error modes w,, with low wave numbers x on the fine grid, where 1/4 < ph; < 1/2, become
high wave numbers on the coarse grid, because the wave number p is seen on the coarse
grid with hg = 2hy as 1/2 < phg < 1 and the error mode w, is damped by the factor
Ay = cosQ(’MQﬂ) < 1/2 instead of A, = cosQ(“gﬁ) > 1/2 on the fine grid. In the same way,
error modes with wave numbers p on the coarse grid, where 1/4 < phg < 1/2, become high
wave numbers on the next coarser grid and can be quickly damped there, etc.

The combination of residual smoothing on the fine grid, where the high wave number error
modes are efficiently damped by the damped Jacobi method in our case, and the correction
on the coarse grid, where the low wave numbers on the fine grid become high wave numbers
and are efficiently damped, leads to the efficiency of the multigrid method.

b) The error e(™) at iteration m is related to the error (%) of the starting guess by

elm) — gme(®

where G is the iteration matrix. In the 2-norm (Euclidian norm here), we have the estimate
1e™ ]2 < |G e

If the error is to be reduced by one decimal digit, we require |[e™)[|; < 10~"|[e(®)]],.
Requiring [|G/|[3"|[e®]]; < 1071]|e(?)||s, we get the sufficient number of iterations m to
reduce the error by one decimal digit:

-1

™2 Togn(1GIR) 20)

Ouly if G is symmetric, p(G) = ||G||2 is guaranteed. Otherwise Togro(p(G)) 8ives only an
approximation of the number of iterations to reduce the error by one decimal digit.

For the multigrid method, we may assume that ||G||o = 0.1. Then, (20) implies that one
iteration is sufficient to reduce the error by one decimal digit.



