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Analysis of Numerical Methods

Compulsory assignments

The assignments in Analysis of Numerical Methods are compulsory. There is
one assignment for each module of the course. The results should be presented
at the concluding seminar of each module. The results of each student group
must be presented, even if the group has not been able to solve the assignment
completely.

The presentation consists of two parts, one written and one oral. During the
seminar, each group member should be prepared to orally present the results of
the group. The written presentation (one per student group) is to be handed
in at the beginning of the seminar, and shall contain:

e A brief statement of the problem to be solved.

e A description of how the group solved the problem. (This should fo-
cus on how the group approached the problem, and on the methods and
arguments used.)

For the experiments, supply in addition:
e Program listings.

e Presentation of the results of the experiments (graphs, tables, or what
else may be appropriate for each experiment).

e Comments to the results. Relate the results to the theory, and point at
how the results did (or did not) agree with what you had expected from
a theoretical point of view.

If the group is unable to solve the assignment, partly or completely, the pre-
sentation should focus on the difficulties encountered, and on how the group
attempted to address these.

Advise from the teachers is offered according to the "open door” principle.
The teachers encourage the students to come and discuss the problems, since
this is an important part of the learning process. You are also encouraged to
do your own experiments with the assignments.



Experiments with difference methods

Each assignment has two parts, one experiment and one theoretical problem.

To make a numerical experiment means to apply a numerical method to a
model problem with known solution. The parameters of the method are varied,
and the computed results are evaluated. This is used as a complement to a
theoretical analysis.

Numerical experiments can also be used for demonstrating different prop-
erties of numerical methods. In this course, experiments will be used for this
purpose. In order to avoid time consuming programming, Matlab will be used.

Below, the general setting of the experiments of the three first assignments is
described. The details of each experiment are given in the subsequent sections.

e In the three first experiments, the model problem is:

U = Uy, O<z<1, 0<t,

u(z,0) = sin27z,

with additional boundary conditions. The difference method to be stud-
ied is the Leap-Frog method (which is described in the literature). For
simplicity, we use the ezact solution at the first two time levels.

e The parameters to be varied in the experiments are the step sizes (Az
in space and At in time). Unless another time limit is specified, the
computations are to be continued until we reach a time level where ¢ =~ 5.
The presentation of the experimental results shall consist in a plot of the
grid function v, for different time levels, with the analytic solution v drawn
in the same graph for comparison. Moreover, ||v]| och ||[v — u|| should be
computed for the same time levels. The discrete £o norm should be used
(see the literature). You decide which time levels to present. If nothing
interesting happens to the numerical solution, then it is sufficient to show
the solution and norms for the final time level.

e The results of the experiments shall be evaluated with respect to the
quality of the numerical solution:

— How good is the solution compared to the analytical one?

— How is the quality of the solution affected by changes in the step
sizes?

— How is the quality of the solution affected by changes in the relation
between the step sizes, the parameter A = At/Az?

e Note in particular if unexpected phenomena show up.

— At what time level could you see the first signs of the phenomenon?

— At what position in space did the first signs of the phenomenon show
up?

— (How) does the phenomenon propagate?



Assignment 1:
Basic concepts
Experiment

We begin by an experiment where the data are chosen so that the solution is
nice. The emphasis is on getting used to working with Matlab. Nevertheless,
make an evaluation of the experimental results. The questions about the choice
of parameter values are interesting in the nice cases too.

Use periodic boundary conditions: u(z,t) = u(x + 1,¢). Try five different
choices of parameter values:

a) Az = 0.1, At = 0.049
b) Az =0.1, At = 0.098
¢) Az =0.05, At =0.0245
d) Az =0.05, At = 0.049
e) Az =0.1, At =0.1

Theory

Leap-Frog, which is used in the experiment, has order of accuracy (2, 2). Make
a theoretical analysis that proves this.

What happens when At = Ax?



Assignment 2:
Stability of initial value problems

Experiment

(i) Solve the same problem as in Experiment 1, but choose the following pa-
rameter values:

a) Az =0.1, At = 0.102
b) Az = 0.05, At = 0.051
¢) Az =0.025, At = 0.0255

Change the initial data to a sawtooth wave: u = z for z < % andu=1-2
for z > %, where z = z—|xz]. Solve again the problem with the parameters
above.

(ii) Change the boundary condition to u(1,¢) = 0. This condition is sufficient
for the PDE problem. Leap-Frog, however, needs an additional boundary
condition, at £ = 0. We choose to compute a value at z = 0, by extrap-
olation from the interior of the domain: v2™' = 207 — o5~ (Note: Tn
Matlab the index starts from 1 and then we must change the boundary
condition accordingly.)

The boundary conditions are chosen so that the analytical solution is less
regular than before. This causes an oscillation in the numerical solution.
In order to handle this, we introduce an additional, dissipative term in
Leap-Frog;:
vt = 0f Tt 4+ 2AtDg0] — §(Ax) (DD )0}t

Use this method at the grid points xs,...,zny—2, and the ordinary Leap-
Frog method at the grid points z; and zx_1. (Use the original initial
data). The aim is to find an optimal ¢ for a given A\. Choose Az = 0.05
and At = 0.04. Try different choices of § between 0 and 0.1. Compute
until 7'~ 0.8 and use the original initial condition u(z,0) = sin(27x).

Theory

Experiment 2(i) shows that Leap-Frog is unstable for A > 1. (Theoretically,
we know that Leap-Frog is unstable also for A = 1.) Now, let us modify the
method, keeping the approximation in time, but changing to a fourth-order
approximation in space. This yields the Leap-Frog (2, 4) method, which for
our model problem has the following form:

unttt —gnt B2
% = CLDO (I — ED_FD_) U?

a) Use the Fourier method to investigate the stability of this method.



b) Assume that we want to apply Leap-Frog (2, 4) to the mixed initial bound-
ary value problem below. At what points in space is it necessary to in-
troduce additional boundary conditions and suggest conditions for these
points.

Ut = Ugp, 0<zxz<l, 0<t<T
u(z,0) = f(z)
u(l,t) = 0.



Assignment 3:
Stability of initial boundary value problems

Experiment

(i) For a stable difference method, the speed of convergence is given by the
order of accuracy. The theoretical analysis of the order of accuracy is
carried out under the assumption that the solution has a sufficient number
of continuous derivatives. Thus, the theoretical speed of convergence may
be higher than the one actually achieved in practice.

One way of experimentally investigating the speed of convergence is the
following:
e Solve the problem with step sizes Az och At, until ¢t = T'. Let &1 be
the error norm at the final time level.

e Divide the step sizes by two, and solve the problem again, until
t =T. Let €9 be the error norm at the final time level.

e By comparing €1 and €9, we can find the actual value of min(p, q),
where p is the order of accuracy in time, and ¢ is the order of accuracy
in space.

Conduct experiments according to this strategy, for the two cases:

a) periodic boundary conditions
b) u(1,t) =0, vf ™ =20} —wh .

Let T' =~ 0.8. Choose the initial step sizes as you like. (Repeat the exper-
iment for other choices of initial step sizes, to see if this choice matters.)

(ii) For non-periodic problems, the difference method needs more boundary
conditions than the PDE problem. Let u(1,¢) = sin 27 (1 +¢), and choose
as extra boundary condition:

a) v61+1 — U?Jrl
b) ,U(T)l+1 _ 2v?+1 _ ,Ungl
¢) vp =of

n+1 __ n n—1
d) vg" =20} — vy

Use the same strategy as in (i). Let T' = 5. Begin with Az = 0.1, At =
0.098. Study both stability and convergence speed.

Theory
Show that Leap-Frog with straight extrapolation

is unstable. Use the GKSO theory.



Challenge
Show that Leap-Frog with straight extrapolation of higher order

(hD+)p’Ug+1 =0, P> 2,

is unstable.



Assignment 4:
Efficiency of difference methods

Experiment

The problem

up = 0.4Ug,, O<z<1
u(0, 1) 0
u(l,t) = 1
u(z,0) = sin(brz/2)

has a steady state solution when ¢ — oc.

a) Use the Crank-Nicolson scheme,

u? +ut!
U;L+1 — U;L + 04AtD+D, (% s

for finding the steady state solution. Let Az = 0.01 and iterate forwards
in time until the norm of the difference between the solutions of the two
latest iterations is smaller than 10~*. Take large time steps. You will
need to solve a triangular system at each time level. Declare you Matlab
matrices to be sparse. Then, Matlab will solve the systems efficiently.
Since the matrix is constant, the LU factorization can be done once, before
the time-marching begins. Subsequently, in each time step, the system
can be solved by means of a forward and a back substitution.

Try to find the At that gives the smallest number of iterations. Measure
the execution time (use the Matlab functions clock and etime).

Change the initial condition to sin(4wz), put periodic boundary condi-
tions, and repeat the experiment.

b) Use the Euler method with forward difference,

u?“ =uj +0.4AtD D _uj.

Carry out 1000 iterations with Az = 0.01, using the largest possible
At. Note the norm of the difference between the solutions of the final
two iterations. Measure the execution time. Repeat the experiment, but
continue to iterate until the numerical solution has converged to the steady
analytical solution with an error less than 10~%. Measure the execution
time for the computation.

Theory

In order to conduct the experiment above, the value of At has to be chosen such
that the respective difference methods become stable. Perform the stability
analysis for the case with periodic boundary conditions.



Challenge

Theoretically derive the At that would give the minimal number of iterations
with Crank-Nicolson, in the case u(z,0) = sin(4nz), periodic boundary con-
ditions. How many iterations would then be needed for convergence to the
accuracy specified above?

Carry out the same analysis for the Euler backward scheme, i.e., the implicit
version of Euler’s method.



Assignment 5:
Application to nonlinear fluid problem
Experiment

Air flow (simplified to one space dimension) can be described by the hyperbolic
system

P m 0
m | +| pu2+p | =[ 0],
e (e+p)u 0

t
where the unknowns are p (air density), m (momentum density) och e (total
energy density). The air velocity u is computed as u = m/p. Under the
assumption of an ideal gas, the pressure p is given by

x

p=(r=1)e - 3m?/p),

where v = 1.4. That system is called the 1D Euler equations and is an example
for a conservation law. The conservation of mass, momentum and energy is
described. The system is in conservative form, i.e. Uy + F(U), = 0, where the
vectors U and F(U) can be identified from the system of equations above.

Assume the following initial data:

] (8,0,257 z<0
U(,z) = { (1,0,2.5)7 2 >0

Solve this problem on the interval —1 < z < 1, until time 7" = 0.4. Use the
Lax-Friedrichs scheme
Untl = 1( n 4+ UM ) — AtDyF(U?)
i T 9\Yitt j—1 0 i)
and with approximately 400 grid points in space. Use straight extrapolation as
boundary condition at both boundaries. Try experimentally to find a value of

At that generates a good solution with a minimum of smeared discontinuities.
For stability, the value of At should be chosen such that At < 0.4Az.

Below, the solution to the problem is shown at some time ¢ > 0. Note that
you cannot expect to get such sharp resolution with the method used in our
experiment.

Density for shock tube problem p,/p, =8 and p/p, =10 Velocity for shack tube problem p,/p, =& and p,/p, = 10 Pressure for shock tube problem p,/p, =8 and p,/p, = 10

Fig. Solution to the air flow problem
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Theory

The upper limit of At recommended above is motivated by the fact that the
Jacobian matrix 0F/0U for this problem has spectral radius approximately 2.5
(you need not compute the spectral radius). Hyperbolic systems can be mod-
eled by the model problem w; + aw, = 0, where a is the spectral radius of
the Jacobian matrix (needs not but may with pleasure be motivated). There-
with, analyse stability for the Lax-Friedrichs scheme. You may assume periodic
boundary conditions.

Challenge

Show that the Lax-Friedrichs scheme can be written in conservation form. Show
that the Lax-Friedrichs scheme discretizes the parabolic PDE U, + F(U), =
0 Uzz, where § is the artificial viscosity. Identify 0. What is the condition for
consistency of the Lax-Friedrichs scheme?

Remark

The solution with the Lax-Friedrichs scheme does not have overshoots, because
the scheme is total variation diminishing (TVD). But the method is rather
dissipative. Starting from TVD schemes, more accurate methods have been
developed, which have had great success in computational fluid dynamics. A
2nd order TVD finite volume method is shortly described in assignment 2 of
the course Numerical Analysis IT (W), fall 2002, cf.
http://www.it.uu.se/edu/course/homepage/numii2/ht02/assignment2.html.
There is more information on the homepage of the NGSSC CFD course
http://user.it.uu.se/~bernd/cfd03/module 5.html.
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Assignment 6:
Iterative methods for elliptic problems

Experiment

The model problem

—¢" = (2m)?sin(27z) + (47)% sin(4nz), 0<z<l,
$(0) = ¢(1) =0,

is to be solved with the difference approximation specified in Chapter 12 of the
compendium, Multigrid Methods, chapter 2. For the solution of the resulting
linear system, we make a comparison between damped Jacobi with w = 1/2,
and TGM with S;, R och P as in Chapter 12, Multigrid Methods, chapter 3.
Below, u denotes the exact solution to the linear system, i.e., u = A~ 'f. The
approximate solution obtained by the iterative method is denoted by v.

Conduct the following experiments in Matlab. Use the matrix formulation of
the methods, and take advantage of Matlab’s matrix operations. Make sure
that the matrices are declared as sparse, so that the operations are carried out
efficiently.

a) Solve Au = f with damped Jacobi, h = 0.1. Create a random initial
vector v(9), and save it so that it can be reused for TGM. First, study
the error v) — 4 visually, for j = 1, 2... until the error curve no longer
looks oscillating. How many iterations were needed? Then, go on until
[0 — ully < 1075, Note the number of iterations j.

b) Solve Au = f with TGM, hy = 0.1. Use v = 1, 2, 3, 4, and 5, respectively.
For each value of v, perform TGM iterations until |v) — ulls < 1076,
How many TGM iterations were required in each case?

¢) Repeat a) and b) with A = 0.05.

Theory

a) Use Matlab to compute ||S1]]2 and ||G(3)||2, for h = 0.1 and h = 0.05,
respectively.

b) Demonstrate that the result in a) is in agreement with the theoretical values
given by Formulae (2.6) och (4.20) in chapter 12, Multigrid Methods, of
the compendium.

c) Use the values from a) to predict the number of iterations that would be
needed, with damped Jacobi and TGM, respectively, in order to reach

[00) — uly < 1075, Consider both h = 0.1 and h = 0.05.
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Challenge

Extend the two-grid method TGM to a multigrid method MGM. Test MGM
for solving the model problem with h = 1/128 and 7 grids to reach ||v — ull2 <
107%? Compare the computing times for TGM and MGM. Draw conclusions.
Is the improvement, i.e. v+ —v®)||;, a good measure to check convergence
for TGM and MGM?
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