
Exercises 2

Bayesian linear regression

Exercise 2.1 Continuous random variables
Consider a continuous random variable X with mean E[X] = µ and variance Var[X] = σ2. Consider also the
transformation Y = aX + b. Use the definition of the mean and the variance to compute E[Y ] and Var[Y ].

Hint: For a scalar continuous random variable X the following relation holds

E[f(X)] =

∫ ∞
−∞

f(x)p(x)dx

where f(X) is a function of X and p(x) is the density function for X . Moreover, the variance is defined as

Var[X] = E[(X − E[X])2] = σ2.

Exercise 2.2 Gaussian random variables
Consider a Gaussian random variable X with

X ∼ N
(
x; µ, σ2

)
, where N

(
x; µ, σ2

)
=

1√
2πσ2

e−
(x−µ)2

2σ2

(a) Show that the mean of X is µ.

(b) Show that the variance of X is σ2. Hint:
∫∞
z=0

z2e−z
2

dz =
√
π
4

(c) Assume that another random variable Y is related to X as Y = aX + b where a, b ∈ R. What is the density
function of Y ? Hint: Use the cumulative distribution function of Y .

Exercise 2.3 The Gaussian distribution
Consider two independent random variablesX ∼ pX(x) and Y ∼ pY (y) and their sum Z = X + Y . Then, the probability
density function of Z ∼ pZ(z) is

pZ(z) =

∫ ∞
−∞

pY (z − x)pX(x)dx. (4)

IfX and Y are Gaussian random variables with pX(x) = N
(
x; µX , σ

2
X

)
and pY (y) = N

(
y; µY , σ

2
Y

)
we get that

pZ(z) =

∫ ∞
−∞
N
(
z − x; µY , σ

2
Y

)
N
(
x; µX , σ

2
X

)
dx = N

(
z; µX + µY , σ

2
X + σ2

Y

)
(5)

(a) Assume that pX(x) = N
(
x; 0, 12

)
and pY (y) = N

(
y; 2, 22

)
. What is pZ(z)?

(b) Assume the same expressions for pX(x) and pY (y) as in (a). In addition, we receive the observation X = 1. What
is the conditional probability density function of Z under this observation, i.e. what is pZ|X(z|X = 1)?
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Exercises 2. Bayesian linear regression 5

(c) Assume the same expressions for pX(x) and pY (y) as in (a). In addition, we receive the observation Z = 1. What is
the conditional probability density function of X under this observation, i.e. what is pX|Z(x|Z = 1)? Hint: Use
Bayes’ theorem p(x|Z = z) = p(z|x)p(x)

p(z) .

(d) Extra: Prove (4).

(e) Extra: Prove (5).

Exercise 2.4 Conditional Gauss (scalar)
Consider the joint probability density function

p (xa, xb) = N (x; µ, Σ)

where

x =

[
xa
xb

]
, µ =

[
µa
µb

]
, Σ =

[
σaa σab
σab σbb

]
where xa and xb are scalars.

(a) Show that

p(xa) = N (xa; µa, σaa) . (7)

(b) Use result in (7) and show that

p
(
xa| xb

)
= N

(
xa; µa|b, σa|b

)
where

µa|b = µa +
σab
σbb

(xb − µb), σa|b = σaa −
σ2
ab

σbb

Exercise 2.5 Conditional Gauss (multivariate)
Consider the joint probability density function

p (xa, xb) = N (x; µ, Σ)

where

x =

[
xa
xb

]
, µ =

[
µa
µb

]
, Σ =

[
Σaa Σab

ΣT
ab Σbb

]
where xa and xb are vectors.

(a) Show that

p(xa) = N (x; µa, Σaa) . (10)

(b) Use result in (10) and show that

p
(
xa| xb

)
= N

(
xa; µa|b, Σa|b

)
where

µa|b = µa + ΣabΣ
−1
bb (xb − µb), Σa|b = Σaa −ΣabΣ

−1
bb ΣT

ab

Exercise 2.6 Marginal and Conditional Gauss (multivariate)
Consider a marginal Gaussian distribution for xb and a conditional Gaussian distribution for xa given xb

p (xa) = N (xa; µa, Σaa)

p
(
xb| xa

)
= N

(
xb; Axa + b, Σb|a

)
where xa and xb are vectors.
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(a) Show that

p(xb) = N (x; µb, Σbb) .

where

µb = Aµa + b

Σbb = Σb|a + AΣaaA
T

(b) Show that

p
(
xa| xb

)
= N

(
xa; µa|b, Σa|b

)
where

µa|b = Σa|b

(
ATΣ−1b|a(xb − b) + Σ−1aaµa

)
= µa + ΣaaA

TΣ−1bb (xb − b−Aµa)

Σa|b =
(
Σ−1aa + ATΣ−1b|aA

)−1
= Σaa −ΣaaA

TΣ−1bb AΣaa

Exercise 2.7 (adapted from [2])
Consider the Bayesian linear regression model

p(y|w, β) =

N∏
n=1

N
(
yn; wTxn, β

−1
)

with the prior p(w) = N (w; m0, S0)

where β, m0, and S0 are known.

a) Show that the likelihood can be expressed as a multivariat Guassian distribution with a diagonal covariance matrix,
i.e. that

p(y|w, β) =

N∏
n=1

N
(
yn; wTxn, β

−1
)

= N
(
y; Xw, β−1IN

)
where IN is the identity matrix of size N ×N and where

X =


xT
1
...

xT
N

 and y =


y1
...
yN

 .
b) Use the result in Exercise 2.6(b) to verify that the posterior distribution of the parameters w is

p(w|y) = N (w; mN , SN )

where

mN = SN (S−10 m0 + βXTy), (15)

S−1N = S−10 + βXTX,

Exercise 2.8 Bayesian linear regression
We have made the observations

sample input x1 input x2 output y
(1) 3 -1 2
(2) 4 2 1
(3) 2 1 1

and want to learn a linear regression model on the form y = w1x1 + w2x2 + ε, where ε ∼ N (0, 5).

(a) Find w = (w1 w2)T using the maximum likelihood approach.
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(b) Now assume the prior

p(w) = N

(
w |

(
0
0

)
,

(
0.2 0
0 0.2

))
and find w using the probabilistic approach!

(c) Compare the results from (a) and (b).

Exercise 2.9 Bayesian linear regression example
A colleague of yours is doing a study on the Swedish lower secondary school. She has collected some data about grades,
and asked you for help in assembling a model. Her ultimate goal is to predict the probability distribution for a student’s
grade, based on some data about how he/she spends his/her spare time. The data contains the merit-value (the Swedish
equivalent to GPA) for a number of students, which is on the scale 0-340 points with an average somewhere around 200
points. Her data also concerns how much time each student spends on reading books and comics, playing computer games,
taking parts in sports activities, and hanging out with friends. Each of these are normalized on a scale [−1, 1] (where
0 is the average student), and she can see no reason (based on the outset of the study itself) to favor any activity in the
explanation. In fact, your colleague tells you, it would be rather unlikely if either of these factors explained more than about
10 points each (apart from the reading, which she thinks could be likely to explain up to around 20 points). She also tells
you that she does not expect these factors to explain the merit-value perfectly, but she thinks other factors not included in
the study are quite likely to explain at least up to 20 points.

(a) Write down a probabilistic linear regression model (with all distributions specified!) for the problem.

(b) If you were to include gender (likely to explain not much more than 10 points, according to your colleague) in the
model as well, how would you do that?

Exercise 2.10 Regularization and priors
Consider the following Gaussian data distribution

p(yi|w) = N
(
yi; xT

i w, σ2
)

We are interested in a so-called maximum a posteriori estimate of w,

ŵ = arg max
w

p(w|y).

Hint: Remember the definition p(w|y) =
∏N
i=1 p(yi|w)∏N
i=1 p(yi)

p(w), which implies that log p(w|y) =
∑N
i=1 log p(yi|w)+log p(w)

Show that ŵ is . . .

(a) . . . the same as the solution to the least square problem

ŵ = arg min
w


N∑
i=1

(yi − xT
i w)2


if we choose an uninformative prior

p(w) ∝ 1

(b) . . . the solution to linear regression with ridge regression

ŵ = arg min
w


N∑
i=1

(yi − xT
i w)2 + λ

p∑
j=1

|wj |2
 (18a)

if we choose a Gaussian prior

p(w) =

p∏
j=1

p(wj) =

p∏
j=1

N
(
wj ; 0, α2

)
What is is the value of α?
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(c) . . . the solution to linear regression with LASSO

ŵ = arg min
w


N∑
i=1

(yi − xTi w)2 + λ

p∑
j=1

|wj |

 (19a)

if we choose a Laplacian prior

p(w) =

p∏
j=1

p(wj) =

p∏
j=1

L(wj | 0, α)

(Hint: the Laplace distribution has the density function L(x | µ, α) = 1
2α exp

(
− |x−µ|α

)
).

What is the value of α?

Exercise 2.11 (adapted from [2])
In Exercise (2.7) we assumed that the precision β is known. Now assume that β is unknown and treat is as a random
variable. That means we need to have a prior for both w and β and solve

p(w, β|y) =
p(y|w, β)p(w, β)

p(y)
∝ p(y|w, β)p(w, β).

Show that if we consider the likelihood p(y|w, β) in Exercise (2.7) and the following Gauss-Gamma prior

p(w, β) = N
(
w; m0, β

−1S0

)
Gam (β; a0, b0) ,

where Gam (β; a, b) is the Gamma distribution

Gam (β; a, b) =
1

Γ(a)
baβa−1e−bβ , β ∈ [0,∞)

then the posterior will also be a Gauss-Gamma distribution

p(w, β|y) = N
(
w; mN , β

−1SN

)
Gam (β; aN , bN ) ,

where

mN = SN (S−10 m0 + XTy),

S−1N = S−10 + XTX,

aN = a0 +
N

2
,

bN = b0 +
1

2

mT
0S−10 m0 −mT

NS−1N mN +

N∑
n=1

y2n

 .

This means that the Gauss-Gamma prior is a conjugate prior to the Gaussian likelihood with unknown w and β.
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Bayesian linear regression

Solution to Exercise 2.1
Denote the probability distribution of X with p(x). Then for the mean we have

E[Y ] = E[aX + b] =

∫
(ax+ b)p(x)dx = a

∫
xp(x)dx︸ ︷︷ ︸

=E[X]=µ

+b

∫
p(x)dx︸ ︷︷ ︸
1

= aµ+ b.

Consequently, the mean operator is a linear operator. (The derivation is similar for the multivariate case.)
For the variance we have

Var[Y ] = E[(Y − E[Y ])2] = E[(aX + b− aµ− b)2] = E[a2(X − µ)2] = a2
∫ ∞
x=−∞

(x− µ)2p(x)dx︸ ︷︷ ︸
E[(X−E[X])2]

= a2Var[X] = a2σ2.

Solution to Exercise 2.2 (a) The definition of the mean and the assumption that X ∼ N
(
x; µ, σ2

)
gives

E[X] =

∫ ∞
x=−∞

xN
(
x; µ, σ2

)
dx

=

∫ ∞
x=−∞

x
1√

2σ2π
e−

(x−µ)2

2σ2 dx

= /z = x− µ/ =

∫ ∞
z=−∞

(z + µ)
1√

2σ2π
e−

z2

2σ2 dz

=

∫ ∞
z=−∞

z
1√

2σ2π
e−

z2

2σ2 dz︸ ︷︷ ︸
=0 (odd function)

+µ

∫ ∞
z=−∞

1√
2σ2π

e−
z2

2σ2 dz︸ ︷︷ ︸
=1 (integral of a pdf)

= µ

(b) The variance of X is

Var[X] = E[(X − E[X])2] =

∫ ∞
x=−∞

(x− µ)2N
(
x; µ, σ2

)
dx

=

∫ ∞
x=−∞

(x− µ)2
1√

2σ2π
e−

(x−µ)2

2σ2 dx

= /z =
x− µ√

2σ2
/ =

∫ ∞
z=−∞

2z2σ2 1√
2σ2π

e−z
2√

2σ2dz

=
2σ2

√
π

∫ ∞
z=−∞

z2e−z
2

dz =
4σ2

√
π

∫ ∞
z=0

z2e−z
2

dz︸ ︷︷ ︸
=
√
π/4

= σ2
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(c) Let FY (t) be the cumulative distribution function of Y . Then

FY (t) =

∫ t

y=−∞
p(y)dy = Pr[Y ≤ t] = Pr[aX + b ≤ t] = Pr

[
X ≤ t− b

a

]
=

∫ t−b
a

x=−∞
N
(
x; µ, σ2

)
dx

= /y = ax+ b/ =

∫ t

y=−∞

1

a
N
(
y − b
a

; µ, σ2

)
dy

Further, we see that

1

a
N
(
y − b
a

; µ, σ2

)
=

1

a

1√
2σ2π

e−
1

2σ2
( y−ba −µ)

2

=
1√

2a2σ2π
e−

1
2a2σ2

(y−b−aµ)2 = N
(
y; aµ+ b, a2σ2

)
From this follows that∫ t

y=−∞
p(y)dy =

∫ t

y=−∞
N
(
y; aµ+ b, a2σ2

)
dy ⇒ p(y) = N

(
y; aµ+ b, a2σ2

)
.

Consequently, Y is also a Gaussian random variable with the mean aµ+ b and the variance a2σ2.

Solution to Exercise 2.3 (a) According to (5)we havepZ(z) = N
(
z; µX + µY , σ

2
X + σ2

Y

)
= N

(
z; 0 + 2, 12 + 22

)
=

N
(
z; 2,

√
5
2
)

(b) Now we have Z = 1 +Y which gives pZ(z|X = 1) = N
(
z; 1 + µY , σ

2
Y

)
= N

(
z; 1 + 2, 22

)
= N

(
z; 3, 22

)
.

You can see this by (i) either using µX = 1 and σ2
X = 0 in (5), or (ii) using the relation derived in Exercise 2.1.

(c) Use Bayes’ theorem

p(x|Z = z) =
p(z|x)p(x)

p(z)
=
N
(
z; x+ µY , σ

2
Y

)
N
(
x; µX , σ

2
X

)
N
(
z; µX + µY , σ2

X + σ2
Y

) =
N
(
z; x+ 2, 22

)
N
(
x; 0, 12

)
N
(
z; 2,

√
5
2
)

=

1√
2π22

e−
1
2

(z−(x+2))2

22
1√
2π12

e−
1
2
x2

12

1√
2π
√
5
2
e
− 1

2
(z−2)2
√

52

=
1√

2π(4/5)
e
− 1

2

(
(z−(x+2))2

22
+ x2

12
− (z−2)2
√

52

)

Using z = 1 gives

p(x|Z = 1) =
1√

2π(4/5)
e
− 1

2

(
x2+2x+1

22
+ x2

12
− 1√

52

)

Now, complete the squares of the exponent

x2 + 2x+ 1

4
+
x2

1
− 1

5
=
x2 + 2x+ 1 + 4x2 − 4/5

4

=
5x2 + 2x+ 1/5

4

=
5(x2 + 2/5x+ 1/25)

4

=
5(x+ 1/5)2

4

=
(x− (−1/5))2

4/5
.

Consequently, we have that

p(x|Z = 1) =
1√

2π(4/5)
e−

(x−(−1/5))2

(4/5) = N

(
x; −1

5
,

(
2√
5

)2
)
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(d) Starting with the joint probability density function of X and Z pX,Z(x, z) and using the definition of conditioning
pZ|X(z|X = x) =

pX,Z(x,z)
pX(x) we get

pZ(z) =

∫ ∞
−∞

pX,Z(x, z)dx

=

∫ ∞
−∞

pZ|X(z|X = x)pX(x)dx

=

∫ ∞
−∞

pY (z − x)pX(x)dx

(e) -

Solution to Exercise 2.4 a) -

b) We start with the definition of the conditioning

p
(
xa| xb

)
=
p (xa, xb)

p (xb)
⇒ log p

(
xa| xb

)
= log p (xa, xb)− log p (xb)

From the exercise we also have that

log p
(
xa| xb

)
= − 1

2σa|b
(xa − µa|b)2 + const. (29a)

log p (xb) = − 1

2σbb
(xb − µb)2 + const. (29b)

log p (xa, xb) = −1

2
(x− µ)TΣ−1(x− µ) + const. = −1

2
(x− µ)TΛ(x− µ) + const.

= −λa
2

(xa − µa)2 − λab(xa − µa)(xb − µb)−
λbb
2

(xb − µb)2 + const. (29c)

where we have used the precision matrix instead of the covariance matrix

Λ = Σ−1 ⇒
[
λaa λab
λab λbb

]
=

[
σaa σab
σab σbb

]−1
=

1

σaaσbb − σ2
ab

[
σbb −σab
−σab σaa

]−1
⇒ 1

λaa
= σaa −

σ2
ab

σbb
,

1

λbb
= σbb −

σ2
ab

σaa

1

λab
= σab −

σaaσbb
σab

(30a)

Combining (29b) and (29c) gives

E , log p (xa, xb)− log p (xb) =− λa
2

(xa − µa)2 − λab(xa − µa)(xb − µb)

− λbb
2

(xb − µb)2 +
1

2σbb
(xb − µb)2 + const.

To get the form (29a) we first expand the parenthesis and collect the quadratic and the linear terms of xa, and then
complete the squares with respect to xa.

E = −λa
2
x2a +

(
λaµa − λab(xb − µb)

)
xa + const.

= −λa
2

(
xa −

(
µa −

λab
λa

(xb − µb)
))2

+ const.

which by comparing with (29a) gives that

µa|b = µa −
λab
λa

(xb − µb) = µa −
σaa − σ2

ab

σbb

σab − σaaσbb
σab

(xb − µb) = µa +
σab
σbb

(xb − µb)

σa|b =
1

λaa
= σaa −

σ2
ab

σbb

where the identities in (30a) have been used.
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Solution to Exercise 2.5 a) -

b) We start with the definition of the conditioning

p
(
xa| xb

)
=
p (xa, xb)

p (xb)
⇒ log p

(
xa| xb

)
= log p (xa, xb)− log p (xb)

From the exercise we also have that

log p
(
xa| xb

)
=− 1

2
(xa − µa|b)

TΣ−1a|b(xa − µa|b) + const. (32a)

log p (xb) =− 1

2
(xb − µb)

TΣ−1bb (xb − µb) + const. (32b)

log p (xa, xb) =− 1

2
(x− µ)TΣ−1(x− µ) = −1

2
(x− µ)TΛ(x− µ) + const.

=− 1

2
(xa − µa)TΛaa(xa − µa)− (xa − µa)TΛab(xb − µb)

− 1

2
(xb − µb)

TΛbb(xb − µb) + const. (32c)

where we have used the precision matrix instead of the covariance matrix

Λ = Σ−1 ⇒
[
Λaa Λab

Λab Λbb

]
=

[
Σaa Σab

Σab Σbb

]−1
⇒ Λaa = (Σaa −ΣabΣ

−1
bb ΣT

ab)
−1, Λbb = (Σbb −ΣT

abΣ
−1
aaΣab)

−1, (33a)

Λab = −(Σaa −ΣabΣ
−1
bb ΣT

ab)
−1ΣabΣ

−1
bb (33b)

Combining (32b) and (32c) gives

E , log p (xa, xb)− log p (xb) =− 1

2
(xa − µa)TΛaa(xa − µa)− (xa − µa)TΛab(xb − µb)

− 1

2
(xb − µb)

TΛbb(xb − µb) +
1

2
(xb − µb)

TΣ−1bb (xb − µb) + const.

To get the form (32a) we first expand the parenthesis and collect the quadratic and the linear terms of xa, and then
complete the squares with respect to xa.

E = −1

2
xT
aΛaaxa + xT

a

(
Λaaµa −Λab(xb − µb)

)
+ const.

= −1

2

(
xa −

(
µa −Λ−1aaΛab(xb − µb)

))T

Λaa

(
xa −

(
µa −Λ−1aaΛab(xb − µb)

))
+ const.

which by comparing with (32a) and using the identities (33a) and (33b) gives that

µa|b = µa −Λ−1aaΛab(xb − µb) = µa + ΣabΣ
−1
bb (xb − µb)

Σa|b = Λ−1aa = Σaa −ΣabΣ
−1
bb ΣT

ab

Solution to Exercise 2.7 a) The likelihood can be written as

N
(
y; Xw, INβ

−1
)

=
1

(2π)N/2
√

det INβ−1
exp

(
−1

2
(y −Xw)T(INβ

−1)−1(y −Xw)

)
=

1

(2π)N/2
√
β−N

exp

(
− 1

2β−1
(y −Xw)T(y −Xw)

)

=
1

(2π)N/2
√
β−N

exp

− 1

2β−1

N∑
n=1

(y − xT
nw)2


=

N∏
n=1

1√
2πβ−1

exp

(
− 1

2β−1
(y − xT

nw)2
)

=

N∏
n=1

N
(
yn; wTxn, β

−1
)
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b) Together with the prior p(w) = N (w; m0, S0) we can by comparing with Exercise 2.6 identify

xa = w, µa = m0, Σaa = S0

xb = y, A = X, Σb|a = β−1IN ,

µa|b = mN , Σa|b = SN

This inserted in equations in Exercise 2.6(b) gives

mN = SN (βXTy + S−10 m0),

SN = (S−10 + βXTX)−1.

Solution to Exercise 2.8 a) Since the assumption is that ε is Gaussian distributed, ŵ is found using least squares

ŵ = (XTX)−1XTy =

( 3 4 2
−1 2 1

)3 −1
4 2
2 1



−1(

3 4 2
−1 2 1

)2
1
1

 = · · · = 1

25

(
13
−11

)
=

(
0.52
−0.44

)

b) By using equation (15), we get

SN = (S−10 + βXTX)−1 =

(1/5 0
0 1/5

)−1
+

1

5

(
3 4 2
−1 2 1

)3 −1
4 2
2 1



−1

= . . .

=
1

325

(
31 −7
−7 54

)
≈
(

0.10 −0.02
−0.02 0.17

)
and

mN = SN (S−10 m0 + βXTy) = SN

(1/5 0
0 1/5

)−1(
0
0

)
+

1

5

(
3 4 2
−1 2 1

)2
1
1


 = . . .

=
1

325

(
73
−6

)
≈
(

0.22
−0.02

)
Thus, the answer is

p(w |y) = N

(
w |

(
0.22
−0.02

)
,

(
0.10 −0.02
−0.02 0.17

))
.

c) The most apparent difference is that the maximum likelihood solution is a number, whereas the probabilistic solution
is a distribution. Further, the mean of the probabilistic solution is smaller than the maximum likelihood estimate,
which is due to the fact that the posterior is also influenced by the (rather narrow) prior (akin to regularization).

Solution to Exercise 2.9 (a) We list all variables involved:

• y: merit-value
• x1: (normalized) time spent on reading books and comics
• x2: (normalized) time spent on gaming
• x3: (normalized) time spent on sports activities
• x4: (normalized) time spent with friends

Putting this together in a probabilistic linear regression model yields

y = w0 + w1x1 + w2x2 + w3x3 + w4x4 + ε

where our colleague also has provided the following information
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• ε ∼ N (0, 202)

• w0 ∼ N (200, 102)

• w1 ∼ N (0, 202)

• w2 ∼ N (0, 102)

• w3 ∼ N (0, 102)

• w4 ∼ N (0, 102)

(other interpretations of the text are also possible)

(b) Including also the gender (which is a binary variable) can be done as

y = w0 + w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6 + ε

where x5 = 1 and x6 = 0 or vice versa, depending on the student’s gender, andw5 ∼ N (0, 102) andw6 ∼ N (0, 102).

Solution to Exercise 2.10 (a) Using the uninformative prior p(w) ∝ 1 together with the likelihood, we get the posterior

p(w|y) ∝
N∏
i=1

p(yi|w)

=

N∏
i=1

N
(
yi; xT

i w, σ2
)

∝
N∏
i=1

e−
1

2σ2
(yi−xT

iw)
2

Further, since log is a monotonically increasing function, we can write

ŵ = arg max
w

p(w|y)

= arg max
w

log p(w|y)

= arg max
w


N∑
i=1

− 1

2σ2
(yi − xT

i w)2


= arg min

w


N∑
i=1

(yi − xT
i w)2


(b) Using the Gaussian prior together with the likelihood, we get the posterior

p(w|y) ∝
N∏
i=1

p(yi|w)p(w)

=

N∏
i=1

N
(
yi; xT

i w, σ2
) p∏
j=1

N
(
wj ; 0, α2

)

∝
N∏
i=1

e−
1

2σ2
(yi−xT

iw)
2

p∏
j=1

e−
1

2α2w
2
j
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As in the previous exercise, we make use of the fact that log is a monotonically increasing function

ŵ = arg max
w

p(w|y)

= arg max
w

log p(w|y)

= arg max
w


N∑
i=1

− 1

2σ2
(yi − xT

i w)2 +

p∑
j=1

− 1

2α2
w2
j


= arg min

w


N∑
i=1

(yi − xT
i w)2 +

σ2

α2

p∑
j=1

w2
j


which is equivalent to (18a) if α = σ√

λ

(c) In a similar fashion as in the previous exercise we get

p(w|y) =

N∏
i=1

N
(
yi; xT

i w, σ2
) p∏
j=1

L(wj ; 0, α)

∝
N∏
i=1

e−
1

2σ2
(yi−xT

iw)
2

p∏
j=1

e−
|wj |
α

Further, since log is a monotonically increasing function, we can write

ŵ = arg max
w

p(w|y)

= arg max
w

log p(w|y)

= arg max
w


N∑
i=1

− 1

2σ2
(yi − xT

i w)2 +

p∑
j=1

−|wj |
α


= arg min

w


N∑
i=1

(yi − xT
i w)2 +

2σ2

α

p∑
j=1

|wj |


which is equivalent to (19a) if α = 2σ2

λ

Solution to Exercise 2.11
The solution can be simplified by considering the logarithm of Bayes’ theorem

ln p(w, β|y) = ln p(y|w, β) + ln p(w, β) + const.,

where const. is a constant that depends neither on w, nor β. This gives

ln p(w, β|y) = lnN
(
y; Xw, β−1IN

)
+ lnN

(
w; m0, β

−1S0

)
+ lnGam (β; a0, b0) + const.

=
N

2
lnβ − 1

2
β(y −Xw)T(y −Xw) +

p

2
lnβ − 1

2
β(w −m0)TS−10 (w −m0) + (a0 − 1) lnβ − b0β + const.,

(35)

where p is the dimension of w. We have used the fact that |γA| = γp|A| for a matrix A with dimension p× p and we have
also again disregarded all terms that do not depend on w or β.

Similarly, we also compute the logarithm of the suggested Gauss-Gamma form of the posterior

ln p(w, β|y) = lnN
(
w; mN , β

−1SN

)
+ lnGam (β; aN , bN ) + const.

=
p

2
lnβ − 1

2
β(w −mN )TS−1N (w −mN ) + (aN − 1) lnβ − bNβ + const. (36)
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To bring (35) into the form (36) we first need to complete the squares in (35) with respect to w

−1

2
β(y −Xw)T(y −Xw)−1

2
β(w −m0)TS−10 (w −m0)

= −1

2
β
(
yTy − 2wTXTy + wTXTXw + wTS−10 w − 2wTS−10 m0 + mT

0S−10 m0

)
= −1

2
β
(
wT(XTX + S−10 )w − 2wT(XTy + S−10 m0) + yTy + mT

0S−10 m0

)
.

To simplify the notation, denote A = XTX + S−10 and b = XTy + S−10 m0 and get

−1

2
β
(
wTAw − 2wTb + yTy + mT

0S−10 m0

)
= −1

2
β
(

(w −A−1b)TA(w −A−1b)− bTA−1b + yTy + mT
0S−10 m0

)
.

(37)

By comparing (37) with the quadratic form of w in (36), we can identify

S−1N = A = XTX + S−10 ,

mN = A−1b = SN (XTy + S−10 m0),

where (37) expressed in S−1N and mN will be

−1

2
β
(

(w −mN )TS−1N (w −mN )−mT
NS−1N mN + yTy + mT

0S−10 m0

)
.

By plugging this expression back into (35) we get

ln p(w, β|y) = −1

2
β(w −mN )TS−1N (w −mN ) +

1

2
βmT

NS−1N mN −
1

2
βyTy − 1

2
βmT

0S−10 m0

+
N

2
lnβ +

p

2
lnβ + (a0 − 1) lnβ − b0β + const.

=
p

2
lnβ − 1

2
β(w −mN )TS−1N (w −mN )

+

(
a0 +

N

2
− 1

)
lnβ −

(
b0 −

1

2
mT
NS−1N mN +

1

2
yTy +

1

2
βmT

0S−10 m0

)
β + const.

and by comparing with (36) we get

aN = a0 +
N

2
,

bN = b0 +
1

2

mT
0S−10 m0 −mT

NS−1N mN +

N∑
n=1

y2n

 .
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