
Exercises 5

Undirected graphical models

5.1 Factor-graph basics

Exercise 5.1 Bayes’ theorem
Consider the factor graph in Figure 5.1

A
Ber(0.3) f

B
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B̄ 0.1 0.8

Figure 5.1: Factor graph in Exercise 5.1

Note that f(A,B) can be represented using indicator functions as

f(a, b) = 0.91A(a)1B(b) + 0.21Ā(a)1B(b) + 0.11A(a)1B̄(b) + 0.81Ā(a)1B̄(b),

where 1(E) be the indicator function of event E.

a) Compute the distribution of A using message passing.

b) Let p(B|A) = f(A,B) denote the conditional distribution of B given A, compute p(A|B) using Bayes’ theorem
and compare with the result in (a).

Exercise 5.2 Convolution of normals
Consider the factor f in the graph in Figure 5.2.

A
f1 f2

B

Figure 5.2: Factor graph in Exercise 5.2

Suppose that f1(A) = N (A;µ1, σ
2
1) and f2(A,B) = N (B;αA, σ2

2). Using message passing:

a) compute the marginal distribution of A;

b) compute the marginal distribution of B.

Exercise 5.3 Professor Bayes’ mid-term exam
Professor Bayes wants to check how well his students are following his course. To this end, he devised a three-question
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mid-term exam to verify if the students have learned Bayesian networks (BN ) and Factor graphs (FG). Only BN is
needed to answer question 1, and only FG is needed to answer question 2; to answer question 3, both BN and FG are
needed (Hint: represent this condition as a random variable). In all cases, Professor Bayes estimates that a student with the
right knowledge has a 90% probability of answering correctly, and that a student without has 20% probability of answering
correctly.

Suppose that a student gives a correct answer to question 1 and fails questions 2 and 3; in addition, suppose that
Professor Bayes uses a non-informative prior.

a) Identify the conditional distributions in the model and draw the Bayesian Network.

b) Transform the Bayesian Network into a factor graph.

c) Using message passing, compute the probability that the student is knowledgeable in BN .

d) Using message passing, compute the probability that the student is knowledgeable in FG.

e) Write a program to verify the probabilities using Monte Carlo simulation.

Exercise 5.4 Paperclips inc.
The company Paperclips inc. produces clips and pins using two different machines. Each day, the machines produce
random amounts of clips and pins with, each with a Poisson distibution Po(λ), where the rate λ depends on the quality of
the steel the company is using on that specific day. The Poisson distribution is given by:

x ∼ Po(λ) =⇒ p(x) =
λxe−λ

x!
.

If the steel is of high quality, λ = 10, if it is of low quality λ = 7. The company has a one in four chance of receiving
high quality steel on any specific day.

Suppose that at the end of the day the company has produced 10 clips and 8 pins.

a) Identify the conditional distributions in the model and draw the Bayesian Network.

b) Transform the Bayesian Network into a factor graph.

c) Using message passing, compute the probability that the company was using high-quality steel.

d) Write a program to verify the calculated probability using Monte Carlo simulation.



Solutions 5

Undirected graphical models

Solution to Exercise 5.1 a) • The node B is observed, so the first message passed is µB→f (b) = 1B(b).
• The factor f receives this message and computes

µf→A(a) =
∑
b

f(a, b)µB→f (b)

=
∑
b

(
0.91A(a)1B(b) + 0.21Ā(a)1B(b) + 0.11A(a)1B̄(b) + 0.81Ā(a)1B̄(b)

)
1B(b)

= 0.91A(a) + 0.21Ā(a).

• The factor Ber(0.3) is a leaf factor, so it sends a message to the node A given by

µBer(0.3)→A(a) = 0.31A(a) + 0.71Ā(a).

• The node A collects the messages µBer(0.3)→A and µf→A and computes the local marginal

µA(a) = µBer(0.3)→A(a) · µf→A(a)

=
(

0.91A(a) + 0.21Ā(a)
)(

0.31A(a) + 0.71Ā(a)
)

= 0.271A(a) + 0.141Ā(a)

• We normalize the local marginal with

ZA =
∑
a

µA(a) = µA(A) + µA(Ā) = 0.27 + 0.14 = 0.41

and we get that p(a) = µA(a)/ZA ≈ 0.6591A(a) + 0.3411Ā(a). So the graphical model describes a
probability of A of approximately 0.659.

b) From the model, we have that p(A) = 0.3, and p(B|A) = f(A,B). Using f(A,B), we can compute the marginal
p(B) according to

p(B) = p(B|A)p(A) + p(B|Ā)p(Ā) = 0.9 · 0.3 + 0.2 · 0.7 = 0.41.

Hence
p(A|B) =

p(B|A)p(A)

p(B)
=

0.9 · 0.3
0.41

≈ 0.659,

which is the probability found in (a).

Solution to Exercise 5.2 a) The leaf node B sends the message µB→f2 = 1 to the factor f2.
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This factor computes and passes along the message

µf2→A(a) =

∫
f2(a, b)µB→f2(b) db

=

∫
N (b;αa, σ2

2) db = 1.

Similarly, the leaf node f1 sends the message µf1→A = N (µ1, σ
2
1).

Then, the marginal distribution of A can be computed with

pA(a) =
1

ZA
µf1→A(a) · µf2→A(a) = N (a;µ1, σ

2
1);

so, in the graphical model, p(A) = N (µ1, σ
2
1).

b) The leaf factor f1 sends the message to the variable node A, which passes it along to the factor f2 according to

µA→f2(a) = N (a;µ1, σ
2
1).

Finally, the factor f2 takes this message and passes it along the graph according to

µf2→B(b) =

∫
f(a, b)µA→f2(a) da

=

∫
N (b;αa, σ2

2)N (a;µ1, σ
2
1) da

∝ N (b;αµ1, α
2σ2

1 + σ2
2)

where we have used Corollary 2 from Lecture 2. Alternatively, by explicit computation

µf2→B(b) =

∫
N (b;αa, σ2

2)N (a;µ1, σ
2
1) da

=
1

2πσ1σ2

∫
exp

{
−1

2

(b− αa)
2

σ2
2

}
exp

{
−1

2

(a− µ1)
2

σ2
1

}
da

=
1

2πσ1σ2

∫
exp

{
−1

2

(
b2 − 2αab+ α2a2

σ2
2

+
a2 + µ2

1 − 2aµ1

σ2
1

)}
da

=
1

2πσ1σ2
exp

{
−1

2

(
b2

σ2
2

+
µ2

1

σ2
1

)}∫
exp

{
−1

2

(
α2

σ2
2

+
1

σ2
1

)
a2 +

(
αb

σ2
2

+
µ1

σ2
1

)
a

}
da;

completing the square inside the integral, we get∫
exp

{
−1

2

(
α2

σ2
2

+
1

σ2
1

)
a2 +

(
αb

σ2
2

+
µ1

σ2
1

)
a

}
da ∝ exp

{
1

2

(
σ2

1σ
2
2

α2σ2
1 + σ2

2

)(
αb

σ2
2

+
µ1

σ2
1

)2}
Hence,

µf2→B(b) ∝ exp

{
−1

2

b2

σ2
2

}
exp

{
1

2

(
σ2

1σ
2
2

α2σ2
1 + σ2

2

)(
αb

σ2
2

+
µ1

σ2
1

)2}
= exp

{
−1

2

b2

σ2
2

+
1

2

(
σ2

1σ
2
2

α2σ2
1 + σ2

2

)(
αbσ2

1 + µ1σ
2
2

σ2
1σ

2
2

)2}
= exp

{
−1

2

b2

σ2
2

+
1

2

(
α2b2σ4

1 + µ2
1σ

4
2 + 2αbσ2

1µ1σ
2
2

σ2
1σ

2
2(α2σ2

1 + σ2
2)

)}
= exp

{
−1

2

(
b2σ2

1(α2σ2
1 + σ2

2)− α2b2σ4
1 − µ2

1σ
4
2 − 2αbσ2

1µ1σ
2
2

σ2
1σ

2
2(α2σ2

1 + σ2
2)

)}
= exp

{
−1

2

(
b2σ2

1σ
2
2 − µ2

1σ
4
2 − 2αbσ2

1µ1σ
2
2

σ2
1σ

2
2(α2σ2

1 + σ2
2)

)}
∝ exp

{
−1

2

(
b2 − 2bµ1

α2σ2
1 + σ2

2

)}
∝ N (b;αµ1, α

2σ2
1 + σ2

2)
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Solution to Exercise 5.3
Define the following events:

A: the student knows Bayesian networks
B: the student knows factor graphs
Ci: the student answers question i correctly

D = A ∧B: the student knows Bayesian networks and factor graphs

Let 1E be the indicator function of event E; then we can write

p(C1 = q|A = a) = fC1,A(q, a) = 0.91A(a)1C1(q) + 0.21Ā(a)1C1(q) + 0.11A(a)1C̄1
(q) + 0.81Ā(a)1C̄1

(q).

a) The factor graph is represented in Figure 5.1 (left).

A D B

p(A) p(B)

fC1,A fC2,B

And

C1 C2

fC3,D

C3

A D B

C1 C2C3

µ1 µ2µ3

µ4 µ5µ6

µ7
µ9 µ8

A D B

C1 C2C3

µ1 µ2µ3

µ4 µ5µ6

µ7
µ10 µ12

Figure 5.1: Exercise 5.3 – Left: Factor graph; Center: messages required to compute p(A); Right: messages required to
compute p(B).

b) We want to compute p(A|C1, C̄2, C̄3). Consider the message-passing schedule in Figure 5.1 (center).

• Messages from observed nodes (note that the messages are functions of one variable node)

µ1 = 1C1 µ2 = 1C̄2
µ3 = 1C̄3

• Pass µ1 through fC1,A

µ4 =
∑
q

µ1(q)fC1,A(q, ·)

=
∑
q

1C1(q)
(
0.91C1(q)1A + 0.21C1(q)1Ā + 0.11C̄1

(q)1A + 0.81C̄1
(q)1Ā

)
= 0.91A + 0.21Ā.

• Similarly, pass µ2 through fC2,B

µ5 =
∑
q

µ2(q)fC2,B(q, ·)

=
∑
q

1C̄2
(q)
(
0.91C2

(q)1B + 0.21C2
(q)1B̄ + 0.11C̄2

(q)1B + 0.81C̄2
(q)1B̄

)
= 0.11B + 0.81B̄ ,

and µ3 through fC3,D

µ6 = 0.11D + 0.81D̄.

• At node D, we have that µ7 = µ6.
At node B, the message from the leaf factor p(B) is non-informative and we can put µ8 = µ5 (note that
messages are defined up to a scalar multiple).
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• To compute µ9, define the three-argument And operator as

1D=A∧B(a, b, d) = 1A(a)1B(b)1D(d)+ 1A(a)1B̄(b)1D̄(d)+ 1Ā(a)1B(b)1D̄(d)+ 1Ā(a)1B̄(b)1D̄(d)

this function is one only when D is equal to A ∧B. Then, we can compute

µ9 =
∑
b,d

µ7(d)µ8(b)1D=A∧B(a, · , d)

=
∑
b,d

(0.11D(d) + 0.81D̄(d))(0.11B(b) + 0.81B̄(b))1D=A∧B(· , b, d)

=
∑
b,d

(
0.011B(b)1D(d) + 0.081D̄(d)1B(b) + 0.081D(d)1B̄(b) + 0.641D̄(d)1B̄(b)

)
1D=A∧B(· , b, d)

= 0.011A + 0.081Ā + 0.641A + 0.641Ā

= 0.651A + 0.721Ā.

• At node A, we have that

p(A = a) ∝ µ4(a)µ9(a) =
(
0.91A(a) + 0.21Ā(a)

) (
0.651A(a) + 0.721Ā(a)

)
= 0.5851A(a)+0.1441Ā(a)

so, according to the model,

p(A|C1, C̄2, C̄3) =
0.585

0.585 + 0.155
≈ 0.8025.

c) We want to compute p(B|C1, C̄2, C̄3). Consider the message-passing schedule in Figure 5.1 (right); note that the
messages µ1 through µ7 are the same as the ones computed in point (b).

• At node A, the message from the leaf factor p(A) is non-informative and we can put µ10 = µ4.
• We use the three-argument And operator to compute

µ12 =
∑
a,d

µ10(a)µ7(d)1D=A∧B(a, · , d)

=
∑
a,d

(
0.91A(a) + 0.21Ā(a)

) (
0.11D(d) + 0.81D̄(d)

)
1D=A∧B(a, · , d)

=
∑
a,d

(
0.091A(a)1D(d) + 0.721A(a)1D̄(d) + 0.021Ā(a)1D(d) + 0.161Ā(a)1D̄(d)

)
1D=A∧B(a, · , d)

= 0.091B + 0.721B̄ + 0.161B + 0.161B̄ = 0.251B + 0.881B̄

• At node B, we have that

p(B = b) ∝ µ12(b)µ5(b) = (0.251B + 0.881B̄)(0.11B + 0.81B̄) = 0.0251B + 0.7041B̄

so, according to the model,

p(B|C1, C̄2, C̄3) =
0.025

0.025 + 0.704
≈ 0.034.

d) The following listing shows a python program to compute p(A|C1, C̄2, C̄3) and p(B|C1, C̄2, C̄3).
1 from random import random as rand
2 from random import seed
3
4 def drawQuestion(Skill):
5 """Randomly draws the result of a question based on Skill"""
6 return rand() < 0.9 if Skill else rand() < 0.2
7
8 def simulateStudent():
9 """Randomly draws a student and the results of the questions"""
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10 A = rand() < 0.5
11 B = rand() < 0.5
12 C1 = drawQuestion(A)
13 C2 = drawQuestion(B)
14 C3 = drawQuestion(A and B)
15
16 return A,B,C1,C2,C3
17
18 if __name__ == "__main__":
19 seed(123)
20 N_total, N_A, N_B = 0, 0, 0
21
22 while N_total < 200000:
23 A,B,C1,C2,C3 = simulateStudent()
24 if C1 and not C2 and not C3:
25 N_total += 1
26 if A: N_A += 1
27 if B: N_B += 1
28
29 print(f"P(A|C1, ~C2, ~C3) = {N_A/N_total}") # Output: P(A|C1, ~C2, ~C3) = 0.802515
30 print(f"P(B|C1, ~C2, ~C3) = {N_B/N_total}") # Output: P(B|C1, ~C2, ~C3) = 0.034115

Solution to Exercise 5.4
Define the following random variables:

S: the company was processing high-quality steel
λ: the production rate of the day
C: the number of clips produced
P : the number of pins produced

a) The factor graph is represented in Figure 5.2 (left).

S

p(S)

S ∧ λ = 10 ∨ S̄ ∧ λ = 7

λ

Po(λ) Po(λ)

C P

S

λ

C P

µ1

µ2

µ3

µ4

µ5

µ6

µ7

Figure 5.2: Exercise 5.4 – Left: Factor graph; Right: messages required to compute p(S).

b) We want to compute p(S|C = 10, P = 8). Consider the message-passing schedule in Figure 5.2 (right).

• At node C, we have the observation C = 10, so µ1 is a point mass at 10:

µ1 = 110

• The message µ1 passes through the Po(λ) factor to give µ2 according to

µ2(λ) =

∞∑
k=0

Po(k;λ)µ1(k) =

∞∑
k=0

λke−λ

k!
110(k) =

λ10e−λ

10!

• Using the same argument, we have that µ3 = 18 and µ4(λ) = λ8e−λ/8!.
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• The node λ passes along the message

µ5(λ) = µ3(λ) · µ4(λ) =
λ18e−2λ

10!8!

• The message µ5 arrives at the factor node. This factor describes one point mass at S ∧ λ = 10 and one point
mass at S̄ ∧ λ = 7:

f(s, λ) = 1S(s)δ(λ− 10) + 1S̄(s)δ(λ− 7),

where δ(·) is the Dirac measure.
Hence, we have that

µ6(s) =

∫ ∞
0

f(s, λ)µ5(λ) dλ

=

∫ ∞
0

(
1S(s)δ(λ− 10) + 1S̄(s)δ(λ− 7)

)
µ5(λ) dλ

=
1018e−20

10!8!
1S(s) +

718e−14

10!8!
1S̄(s)

• From the prior factor, we have the message

µ7 = 0.251S + 0.751S̄

• At node S, we can compute

p(S = s) ∝ µ6(s) · µ7(s)

=

(
1018e−20

10!8!
1S(s) +

718e−14

10!8!
1S̄(s)

)(
0.251S(s) + 0.751S̄(s)

)
=

1018e−20

4 · 10!8!
1S(s) +

3 · 718e−14

4 · 10!8!
1S̄(s)

so, normalizing, we get that

p(S|C = 10, P = 8) =
1018e−20

4·10!8!
1018e−20

4·10!8! + 3·718e−14

4·10!8!

=
1

1 + 3 ·
(

7
10

)18
e6
≈ 0.3366.

• The following listing shows a python program to compute p(S|C = 10, P = 8).
1 from numpy.random import poisson
2 from numpy.random import random as rand
3 from numpy.random import seed
4
5 def simulateDay():
6 """Simulate one day at the factory"""
7 S = rand() < 0.25
8 L = 10 if S else 7
9 P = poisson(L)
10 C = poisson(L)
11
12 return S,L,P,C
13
14 if __name__ == "__main__":
15 seed(123)
16 N_total, N_S = 0, 0
17
18 while N_total < 20000:
19 S,L,P,C = simulateDay()
20 if P==8 and C==10:
21 N_total += 1
22 if S: N_S += 1
23
24 print(f"P(S|P=8,C=10) = {N_S/N_total}") # Output: P(S|P=8,C=10) = 0.33685



Bibliography

[1] David Barber. Bayesian reasoning and machine learning. Cambridge University Press, 2012.

[2] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[3] Kevin B Korb and Ann E Nicholson. Bayesian artificial intelligence. CRC press, 2010.

[4] Steffen L Lauritzen and David J Spiegelhalter. Local computations with probabilities on graphical structures and their
application to expert systems. Journal of the Royal Statistical Society: Series B (Methodological), 50(2):157–194,
1988.

[5] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Version: September 16, 2019


