Exercises 6

Variational inference & Expectation propagation

Exercise 6.1 (adapted from [2])
Consider the Kullback-Leibler divergence

= — xn@x
@@M%-/Mﬂpmd

Evaluate KL(p(x) || ¢(z)) where p(x) and ¢(x) are ....

a) ... two scalar Gaussians

p(z) :./\/(x; i, 02) and ¢(x) :N(I; m, 52)
b) ... two multivariate Gaussians
p(x) =N (x; p, ) and q(x) =N (x; m, S).

Exercise 6.2
Consider a distribution p(x) which we want to approximate with a scalar Gaussian

qit,a(x) =N ($§ iy 02)
by minimizing the Kullback-Leibler divergence

i, = arg min KL(p(z) || qu,a(ﬂﬁ))
o

Show that this results in moment matching

i =Ey[z]
52 = Eylw - )’

where E,[f(z)] = [ f(z)p(z)dz i.e. that i and 62 will be the mean and variance of p(z).
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Exercise 6.3
Consider two random variables x and y which are related as

t=x+v, v~ N(0, 1)

1t >0,
v= 0 otherwise

We also have prior information that x ~ N (0, 1) and we receive one measurement y = 1.
a) Draw a factor graph of the model

b) Use message passing with moment matching with pen and paper to compute p(z|y = 1).

Hint: The mean and variance for the half-normal distribution
HN (z;0°%) = 2N (m; 0, 02) , >0

are

i}/;’ Varle] = 02 (1 _ i)

¢) Write a program to verify the calculated distribution using importance sampling.

Efz] =

Exercise 6.4 a) Consider the variational linear regression example from the lecture,

p(y|w.B) =N (y: xw, 57'Ly)

where we in this problem also treat /3 as a random variable and use the following prior!

p(w, a, B) = p(w|a)p(a)p(B) = N (w; 0, a_l) Gam («; ag, bg) Gam (5; co, do)

where
1 a_a—1_—ba
Gam (o;a, b) = —=b%a* ‘e

I'(a) ’

Assume the factorized variational distribution g(w, o, 8) = q(w)q(a)q(8).

a € [0,00)

Use variational inference to derive the equations for updating the variational distribution ¢(w, c, ) approximating
the posterior p(w, «, 8ly).

b) Consider the case where w is a vector, i.e. the standard linear regression setting where we consider the likelihood

p(y|w) :N<y; Xw, B’lIN)

Consider a diagonal prior on w and as in (a) Gamma prior on « and 3

p(w, . 8) = p(wla)p(e)p(8) = A (w: 0, o~*T) Gam (a: ao, bo) Gam (5: o, do)
Consider the same factorization of the variational distribution q(w, ., 5) = q(w)q(a)q(5).
Hint: For a multivariate Gaussian distribution x ~ N (x; p, X) we have
Exx'] = pu' +X

You may also want to use that
Tr(AB) = Tr(BA)

where A and B are two matrices and where Tr(-) is the trace operator.

'In the conjugate prior for linear regression, we need to have ag = co. We are thus treating a more general problem, where the true posterior may not
have a closed-form expression.
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Exercise 6.5
Consider the dynamical model

Tpi1 = YTp + Un, Up ~ N (0, 183)
1
Yn = 5%n +en, en ~N (0, 03)

with the initial state and prior
zo ~ N (X0, Xo)
vy~ N (O7 0’3)
We observe y1, ..., yn and consider z1, ...,z N and y as our latent variables.
a) Derive an expression of the joint distribution

p(yI:N7 T1:N, 7)

b) Consider the variational approximation

N
n=0

Use Variational inference to derive the equations for estimating the posterior ¢(v) ~ p(v|y1, ..., yn)-
¢) We can also solve this problem without factorizing the terms z,,, i.e by considering
q(P)/u L1, ,I'N) = q(7>Q(x0n)

Use Variational inference to estimate the posterior of () & p(y|y1, - .., yn) using this variational approximation.
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Variational inference & Expectation propagation

Solution to Exercise 6.1 a)

KL(p || q) = — /'pu:) I g(z)dz + / p(2) In p(z)dz

The first term can be written as

—u)?2+2 _ 2,2
(@ —p)* +2z(p—m)+m u)dw

2 N2
- % <ln(27r82) n UJF(W) (18)

For the second term we get (by replacing m and s with ¢ and o in (18)) that

/p(x) Inp(z)dz = —% (1n(27r02) + 1)

which gives
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Solution to Exercise 6.2

fi, & = argmin KL(p(x) || g0 (x))

o

= argmin—/p(m) lnqu,g(x)da:—&-/p(x)lnp(x)da:

w,o
. 1 2
= argmm/p(:z:) <ln0+ ﬁ(x — 1) > dz

n,o
Ug + (u = Np)2>

202

= arg min (1110 +
o

For p this is minimized by /i = j,. What remains for o is

6 in |1 +012)
U—argomln no+53

————
f(o)
Setting the derivative equal to zero gives
d 1 o}
0=—flo)=——2L=0?=0
do (o) o o P
This is a minimum point since
d? 1 307 2
o2l =t =35>0
o o=0p O'p Up O'p

Solution to Exercise 6.3 a) The factor graph can be written as

x xt fty
f.@f.a\.@

where
fe(@) =N (z; 0, 1)
fot(zt) =N (t; z, 1)
fry(t,y) = 6(y — sign(t))

(Another equivalent factor graph is

fx )\ fozt Y Tty
—( O (O——0
Jo
with
fo(z) =N (z; 0, 1)
fo(v) =N (v; 0, 1)
Soat(v,2,t) = 0(t — v — )

fey(t,y) = 6(y — sign(t)).

Since we are not interested in v itself (we do not want to infer p(v | y), for instance), we opt for the other formulation, since it is
more compact and therefore requires fewer messages in the message passing. Both formulations will result in exactly the same

exspression for p(z | y).)
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b)
Hy— fiy (y) = 1[y:1]
if,—t(t) = Y 0(y — sign(t)) 1,y
Yy
= 1[t>0]

33

The message fif,,¢+(t) will result in a non-Gaussian marginal p(t) = py,, —¢(t)is,,—¢(t) and we need to do
moment-matching at this node. For this we need all incoming messages. To get (¢, ,+(t) we start from the left in

the graph
ff,—a(@) =N (2; 0, 1)
fz—s 1 (T) = pp, - (2) = N (25 0, 1)
[fi—t (1) :/fm(w,t)umfm(x)dmz /N(t; z, DN (z; 0, 1)dz =N (t; 0, 2)
So we have
p(tly =1) o< pig,, i (O, —e(t) = LpsopN (8 0, 2)

Following the hint, the mean and variance of this truncated Gaussian is

Vae o
B

Mt

and with moment matching the approximated marginal p(t) is
Bty =1) =N (& . oF)

X p(tly = 1)
() a—
/j’fty"t( ) ,Uffm—ﬁ(t)
N (b fuy, 62,) = N {6 e, o)
y Mty Yty N(t; Lt U%t)
where we from division of Gaussians get
11 11 11 (1-2) 1
67, ot o2 2(1-2) 2 2(1-2) 2(1-2) w-—2
N 0
~ ~2 e Hat vz _
Hty = ty(o_?_o,:%t>_(7r_2) 2(7%)_5 —\/7?

which gives the new approximated incomming message to ¢ as

fif,, (t) =N (t; Vm, ™ —2)

Now we can proceed propagating back to the node z
fit—s 1 () = /:Lfty—w(t) =N (t§ VT, = 2)
s () = [ Fat Oticsgma(Odt = [N (65 0 DN (8 VA 7 2)de

N (z; Vr, m—1)
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Finally, p(z|y = 1) is computed by multiplying the incomming messages

plaly =1) = pf, e (T)fif,,—a (1)
=N (z; 0, YN (t; V7, m—1)

:N(x; Lz ai)

where

Thus, we have

C) | import numpy as np
> import matplotlib.pyplot as plt
3 from scipy.stats import truncnorm
4 from scipy.stats import norm
hl
6 md = 0 # Mean of p(x)
7 s® = 1 # Variance of p(x)
8§ s = 1 # Variance of p(t]x)
9 yO@ = 1 # Measurement
10
11 # Analytical answer for x
12 px_m = 1/np.sqrt(np.pi)
13 px_s = 1-1/np.pi
14
15 # Analytical answer t
16 pt_m = 2/np.sqrt(np.pi)
17 pt_s = 2*(1-2/np.pi)
18
19
2

21

Importance sampler

= 100000 # number of samples

= np.random.normal (size=L)*np.sqrt(s®)+m® #draw from p(x)
np.random.normal (size=L) *np.sqrt(s)+x #draw from p(t]|x)
= np.sign(t)

= (y==y®)

22

23

S < X R
1

24
25
26 w = L*w/np.sum(w)

27

28 # plot a weighted histogram of x

29 plt.hist(x,weights=w,bins=150,density=True,label="Importance sampling")
30 Xv = np.linspace(-4,4,1000)

31 plt.plot(xv,norm.pdf(xv,px_m,px_s),label="Moment matching")

32 plt.x1lim((-4,4))

33 plt.xlabel("x™)

34 plt.legend ()

35 plt.show()

36

37 # plot a weighted histogram of t

38 plt.hist(t,weights=w,bins=150,density=True, label="Importance sampling")
39 Xv = np.linspace(-4,4,1000)

40 plt.plot(xv,norm.pdf(xv,pt_m,pt_s),label="Moment matching")

41 plt.xlim((-4,4))

42 plt.xlabel("t™)

43 plt.legend()

44 plt.show()

45

4 # Estimate mean and variance

47 est_mean = np.sum(x*w)/L

34
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48
49
0
1

w

W

W

w

4

est_var = np.sum(w*(est_mean-x)**2) /L

print (est_mean) # Output: 0.559303292236
print(px_m) # Output: 0.564189583548

3 print(est_var) # Output: 0.68086688604

print(px_s) # Output: 0.6816901138162093

Solution to Exercise 6.4 a) Variational approximation

q(w, a, B) = q(w)g(a)q(B)
The two equations we will iterate are
Ing(w) = Eg(a),a(8) [lnp(y,w, )] + const.
| Q(O{) = Eq(w)@(ﬁ)[lnp(y, w, Oé)] -+ const.
InG(8) = Egqw),q(a) I p(y, w, B)] + const.

The joint of distribution of y, w and « is
p(y,w,a, B) = p(y|w, B)p(w|a)p(a)p(B) =
Inp(y,w, a, ) = Inp(y|w, 8) + Inp(w|a) + Inp(a) + Inp(B)

where

Inp(y|w, 8) = % Inj3 — g(wx —y) " (wx — y) + const.

1
Inp(w|a) = 3 Ina — %wZ + const.

Inp(a) = (ap — 1) Ina — boax + const.
Inp(B) = (co — 1) In B — do8 + const.
where we have included everything in the constant terms that neither depends on w, « nor /3.

We start with §(«). These will be the same as in the lecture

Ing(a) = Eg(w),a(8) [lnp(y,w, a, 8)] + const.

= Ej(w),q(8)[Inp(y|w, B) + Inp(w|a) + Inp(a) 4+ Inp(B)] + const.

= Inp(a) 4+ Egqw) [Inp(w|a)] + const.
1
=(ag—1)Ina — bpa + 5 Ina — %]E@(w)[wz] + const.
We recognize this as a Gamma distribution

In§(e) = InGam (o;an, by) = (ay — 1) Ina — by

with
aN-::ao+-§,
1 2
by = by + 2]Eq(w)[ ]

Now we proceed with §(w).

In g(w ) Eg(a),q8) Inp(y, w, a, B)] + const.

Eg(a).q(8) [ p(y|w, 8) + Inp(wla) +Inp(a) + Inp(B)] + const.

= IEq(ﬁ) [l p(y|w, 8)] + Eg(a) [lnp(w|oz)] + const.

= _iEé(ﬁ)[ﬁ] (wx —y) (wx —y) — fE[a]w + const.

1
— —§(Eq(a)[ a) + Eg [ﬁ]x x)w + Eq8) [ﬁ}xTyw + const.
(w—mp)?

= ——5—— + const.
2
20%;

35
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where

ox = (Egq[a] + Eqp)[Bx"x) ™"
my = Eqg)[Bloxx"y

So we have §(w) = N (w; my, o%)
We proceed with ¢(3)

InG(B3) = Eg(w),4(a) [ p(y, w, o, B)] + const.
= Ej(w),4(a) I p(y|w, B) + In p(w|a) + Inp(a) + In p(3)] 4 const.
= Inp(B) + Eg(uw)[In p(y|w, 8)] + const.

N
=(co—1)Inp—dos+ 5 Ing— gIEq(w) [(wx —y) T (wx — y)] + const.
where

Eg(u [(wx — y) T (wx — y)] = Eg(u)[w?]x"x — 2Eg() [w]xy + y 'y

Tx —2myx'y+y'y

= [ly — mx|* + 03 x"x

= (my + ox)x

which inserted in (19) gives

Ing(8) = (co — Vg~ dof+ 5~

ly — mnx|]? + O'ZQVXTX> + const.

We recognize this also as a Gamma distribution

Ing(f) =InGam (B;cn, dy) = (ey — 1) Inf — dnf

with

CN =Co+ o

1

dy = do + 3 (Hy —muyx||? + O'JZVXTX)

Since
qA(a):Gam(a;aN, bN)a qA(/B):Gam(B’CN7dN)7 qA(w):N(w’ mny, U]2V)

we can compute

an CN

Bywlol =75 Eaglfl=5°  Eiw) [w?] = m + %

Now we can state the equations we need to iterate.

Solution: Iterate the following three steps until convergence

e Compute

an :a0+§,

1
bN = bo + 5(77%?\] + 0’]2\,)
e Compute

CN:CO+E7

1
dy = dy + 3 (||y —myx||? + O']QVXTX)
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e Compute

b) Variational approximation

The two equations we will iterate are

The joint of distribution of y, w and « is

Py, w,a, ) =
= Inp(y|w, 8) + Inp(w|a) + Inp(a) + Inp(B)

Inp(y,w,a, )

where

Inp(y|w, B) =

np(wla)

Inp(a) =
Inp(B) =

q(w,a, B) = q(w)q(a)q(B)

=Ej(a),q(3) Inply, w,a)] + const.
= Ej(w),q(3) [In p(y, w,a)] + const.
= Eg(w),q(e) Inp(y, w, B)] + const.

p(ylw, B)p(wla)p(a)p(B) =

N
5 Ing— g(XW — )" (Xw —y) + const.

Y e - Y wTw + const
= 9 no 2WW const.

(ap — 1) Ina — bgax + const.
(co —1)In B — do3 + const.

where M is the dimension of w and where we have included everything in the constant terms that neither depends on
w, o nor f3.
We start with §(«). These will be the same as in the lecture (but now multivariate)

InG(a) = Eg(w),q8) [Inp(y, w, a, B)] + const.
= Eqw).as) mp(y|w, ) + Inp(wla) + Inp(e) + np(B)] + const.

= Inp(a) + Egew) [Inp(w|a)] + const.

M
=(ap— 1) Ina—bya + > Ino — g]Eq(w) [wTw] 4 const.

2
We recognize this as a Gamma distribution

In§(a) = InGam (o;an, by) = (ay — 1) Ina — by
with
M
an = ap + 50
1
by =bo + EEq(w) [wTw]
Now we proceed with §(w).
InG(w) = Eg(a),q08) [0 p(y, w, o, B)] + const.
= Ej(a),q3) [Inp(y|w, 8) + Inp(w|a) + Inp(a) + Inp(B3)] + const.
= Eq(p) [Inp(y|w, B)] + Ej(a)[Inp(w|a)] + const.
1 1
= 7§EQ(5) B(Xw —y)T(Xw —y) — iE[a]w W + const.
1
= 7§WT(E4(O¢) [a]Ipr + E(j(ﬁ) [ﬂ]XTX)W + EQ(@) [6}WTXTy —+ const.
1

= ——(w—my)'Sy (W — my) + const.

2
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This results in:

SN = (Eg(ay[a]Tas + Eg(e) [B1XTX) 7!
my = Ey5 [fSvX "y

So we have ¢(w) = N (w; my, Sy)

)
We proceed with ¢(3)
n.4(8) = Eq(w),q(e [ p(y, W, @, B)] + const.
= Eg(w).q() [np(y|w, ) + Inp(w|a) + Inp(a) + Inp(B)] + const.
=Inp(B) + Egjw) [lnp(y|w B)] + const.

=(co—1)InB —dof+ = lnﬁ B Ejw) [(Xw —y) T (Xw — y)] + const.

where
d(w )[WTXTXW ow' Xy +yTy]

iow) [Tr(WTXTXw) — 2w X Ty] + y'y
a(w) [Tt (X' Xww') — 2w X Ty]
= Tr(X T XEgw) [WwW']) — 2B W' | Xy +y'y
= Tr(X"X(mym} +Sy) —2mi X"y +yTy
=myX ' Xm} - 2m Xy + Tr(X"XSy) +y'y
= |ly = Xmy|* + Tr(X"XSy)

Eqw) [(Xw —y)T(Xw — y)] = E,
-E
—E

where we have used
]Eq(w) [WWT] = mNm]TV + SN
which inserted in (19) gives

InG(B) = (co—1)In g —doff + %mﬂ - g (Hy — Xmy||? + Tr(xszN)) + const.

We recognize this also as a Gamma distribution

Ing(8) =InGam (B;cn, dy) = (ey — 1) In S — dnf

with
N
CN = Co + o
1
dy =do+ 5 (Ily — Xmy|? + Tr(XTXSN))
Since

¢(a) = Gam (a;an, by), 4(B) = Gam (B;cn, dn), Gg(w) =N (w; my, Sy)

we can compute

an en
Eg(ala] = I E;(s) 0] = Iy Egew)[W'w] = mmy + Tr(Sy)

Now we can state the equations we need to iterate.

Solution: Iterate the following three steps until convergence

e Compute

aN:(IO‘f'?y

by = by + 2(mNmN + TI‘(SN))

38

19)
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e Compute
CN = Co + o
1
dn =do + 3 (Ily — Xmy|? + Tr(XTXSN))
e Compute

—1
Sy = (‘“VIN + CNXTX>

bn dn
my = ﬂSNXTy
by
Solution to Exercise 6.5 a)
N
PN, 1N, 7) = p(V)p(@o) [ [ p@nlzn—1,7)p(Ynl2n)
n=1
where
p(xo) =N<£Eo; 1o, ﬁ&l)
ply) =N (3 0, 5
P(TnlTn_1,7) =N<afn; VEn—1, By 1)
p(yn|xn) :N<yn; T, Be_l>

b) First specify the mean field equations

Ing(7) = Egyx Ip(yrn, oy, )] + const.

n=1

Inq(zm) = Ey 14,1, ID(Y1:8, T0:v, )] + const.

First, start with q(v)

Ing(v) =Egq v Ip(yi:n, zo:v, )] + const.

n=

N
Bo
=lnp(y) — 7E{qn}£’:0 Z Inp(xn|Tn_1,7)| + const.
n=1

N
=Inp(y) — Bo Z (—29’6,@”,17 + ‘”3%172) + const.

2
Th-1

N _ _ 2
=Inp(y) - b Z z2_, <’yz - xnxn—1> + const.

2
N o
zlnp(y)—l-ZlnN (’y; - —, (5@1’%_1)1> + const.

where
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This gives
() =N(v; Y ﬁ;l)

where

N
ﬂ’y:ﬂ’yO‘FBvZK

n=1
N _ _ N
— 1 LTpnTn—1 2 _ ﬁv _
Y= E —5 ﬂvxn_l — ﬂi Tndn—1
v n=1 Tn-1 R n=1

Proceed similarly to derive the update equations for In g(x,, ).

¢) The update equations for g(y) will be the same except that we need to replace T, Z,_1 with T,Z,_1 =
E{an”— 1 } [I’"In_l} .
The update equations for In ¢(x,,, ) will result in a Kalman smoother (not in this course, but you might familiar with it
if you know some time-series modeling or control theory). By considering an augmented system Z,, = [z, Zn_1]
to run the Kalman smoother on, we can get the expressions required above.
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