
Uppsala University
Department of Information Technology
Division of Systems and Control
DW/NW 2019-06
Last rev. October 16, 2019 by DW

Advanced Probabilistic Machine Learning

Instruction to the laboratory work

Unsupervised Learning with
Variational Autoencoders

Language: Python

Preparation:
Solve all preparatory exercises in Section 3

Reading instructions:

• Laboratory instructions: Section 1-3.

• Doersch, C. (2016). Tutorial on variational autoencoders. arXiv: 1606.05908
[stat.ML]

Name Assistant’s comments

Program Year of reg.

Date

Passed prep. ex. Sign

Passed lab. Sign

https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908

Contents

1 Introduction 1

2 PyTorch 2
2.1 Installation . 2
2.2 Comparison with TensorFlow . 2
2.3 Introduction . 3

3 Preparatory exercises 4
3.1 Principal component analysis . 4
3.2 Probabilistic principal component analysis 5
3.3 Variational autoencoder . 8

4 Laboratory session 10
4.1 MNIST data set . 10
4.2 Preparation . 11
4.3 Principal component analysis . 11
4.4 Probabilistic principal component analysis 11
4.5 Variational autoencoder . 12

1 Introduction

Unsupervised learning tries to find unknown patterns in unlabeled data. In the
lecture we have seen principal component analysis (PCA), probabilistic principal
component analysis (PPCA), and variational autoencoders as three examples of
unsupervised learning. In this lab we will try to find patterns in images of hand-
written digits and train a model that can generate similarly looking images.

This laboratory work is based on lectures 9 and 10 about unsupervised learning and
variational autoencoders. Therefore it is advisable to have the material from those
lectures fresh in mind before starting this laboratory work.

The goal of this laboratory work is to:

• Learn how to perform a PCA.

• Learn how to train a probabilistic PCA model.

• Learn how to train a variational autoencoder.

• Get a glimpse of a state-of-the-art machine learning framework.

Throughout the lab we will us a software library called PyTorch. This library is
introduced in Section 2. Section 3 contains the preparatory exercises, and Section 4
contains the instructions for the lab session.

Important: Read Section 2 and answer the preparatory exercises in Section 3 before
the lab session.

1

2 PyTorch

PyTorch is an open source software library for machine learning that is based on
the machine learning library Torch which is no longer actively developed. PyTorch
is developed primarily by Facebook’s artificial intelligence research group and used
by companies as well as academic research groups. It can be used for general
computations with multidimensional arrays on CPUs and GPUs, but it is tailored
especially to deep learning and neural networks.

PyTorch is natively written in Python and C++, and well documented APIs exist for
these languages. It is not the only deep learning framework, some other state-of-the-
art alternatives are TensorFlow and MXNet.

2.1 Installation

PyTorch is already installed on the Linux systems in the computer rooms where the
laboratory session is scheduled. You can either use these computers during the lab
or bring your own computer.

If you choose to use your own computer, you need to have PyTorch properly
installed before the lab. The lab assistants will not be able to assist you with the
installation process during the lab. Please consult the PyTorch documentation for
more information about the installation procedure.

Another option is to use Google Colab to work with PyTorch online. This cloud
platform also optionally provides access to GPUs which might speed up some
computations.

2.2 Comparison with TensorFlow

As PyTorch, TensorFlow contains support for GPUs and builds a computational
graph that is used for computing gradients via backpropagation. However, Tensor-
flow builds a static computational graph whereas PyTorch works with a dynamic
computational graph. In TensorFlow the graph is created once and then executed
multiple times, but in PyTorch every forward pass defines a new computational
graph. Thus in TensorFlow the computational graph can be optimized before run-
ning any actual computations. Even if this optimization might be computationally
expensive, it can pay off if the graph is run multiple times. On the other hand,
an advantage of using dynamic graphs is the increased flexibility with respect to
the control flow that they allow. Since the computational graph is rebuilt in each
forward pass, one can use regular if statements and for loops (even without fixed
numbers of iterations) and easily change the computations in different iterations of
the training loop.

2

https://pytorch.org/get-started/locally/
https://colab.research.google.com/

2.3 Introduction

A Jupyter notebook introduction.ipynb with an introduction to PyTorch can
be downloaded from the course homepage. Reading and running the notebook is
highly recommended, since it introduces important concepts and commands that
are required in the lab session.

The official PyTorch tutorials and the PyTorch documentation might be helpful
additional resources, in particular if you are looking for a more general introduction
to PyTorch. However, the introduction to PyTorch in the provided Jupyter notebook
covers everything you should know for the lab session.

3

http://www.it.uu.se/edu/course/homepage/apml/lab
https://pytorch.org/tutorials/
https://pytorch.org/docs/stable/index.html

3 Preparatory exercises

3.1 Principal component analysis

In the lectures the principal component analysis (PCA) was introduced as a method
for dimensionality reduction and feature extraction, i.e., to condense data by map-
ping it to a lower dimensional space of the most important features.

Let

X =

xᵀ
1
...

xᵀ
N

 ∈ RN×D

be a matrix of N data samples xn ∈ RD, which are centered around zero, i.e.,
1
N

∑N
n=1 xn = 0. We consider a PCA with M < D components.

To project the data points xn to the M -dimensional space that is defined by the
M principal components of X, the so-called principal subspace of X, we can use
the singular value decomposition of X. Let X = UΣVᵀ be the singular value
decomposition of the data matrix X with the singular values sorted in descending
order.1 Then the projection zn of data point xn to the principal subspace of X is
given by

zᵀn = xᵀ
n

[
v1 · · · vM

]
, (1)

where vi is the ith column of matrix V. The vector zn can be seen as an “encoding”
of the data point xn in a lower dimensional space that is constructed by the directions
for which the data shows the largest variations.

Ideally we would like to be able to recover (or “decode”) the original data from
the lower dimensional encodings as good as possible. With the help of the singular
value decomposition of X, we can compute reconstructions x̃n from the encodings
zn by

x̃ᵀ
n = zᵀn

 vᵀ
1
...

vᵀ
M

 . (2)

Since PCA can be seen as a mapping of the data from the original coordinate
system to the principal subspace, we can map also other data points to the principal
subspace that we have learnt from data set X.

Question 3.1: How can you map an arbitrary vector x ∈ RD to the principal
subspace of X with the help of U, Σ, and V? Just provide the mathematical
formula.

1The singular value decomposition of a matrix X ∈ RN×D is defined as a factorization of the
form X = UΣVᵀ where U ∈ RN×N and V ∈ RD×D are orthogonal matrices and Σ ∈ RN×D

is a rectangular diagonal matrix with non-negative numbers on the diagonal. The diagonal entries
of Σ are the so-called singular values of X. A common convention is to sort the singular values in
descending order, in which case the singular value decomposition of X is unique.

4

'

&

$

%

Answer:

Often the data X is not centered around zero, i.e., 1
N

∑N
n=1 xn 6= 0.

Question 3.2: How do you have to change the calculations in eqns. (1) and (2) and
Question 3.1 in such a case?'

&

$

%

Answer:

3.2 Probabilistic principal component analysis

In constrast to (regular) PCA, the so-called probabilistic PCA (PPCA) (Tipping
& Bishop, 1999) allows a probabilistic interpretation of the principal components.
The probabilistic formulation of PCA also allows us to extend the method and alter
its underlying assumptions quite easily, as we will learn during the course of this
laboratory.

As before, let x ∈ RD represent a data sample that we want to decode from a lower
dimensional representation z ∈ RM with M < D. The PPCA model assumes
that z is standard normally distributed and x can be decoded by a noisy linear
transformation of z. Mathematically, the model is given by

p(x | z) = N
(
x;Wz + µ, σ2ID

)
,

p(z) = N (z;0, IM),

with parameters W ∈ RD×M , µ ∈ RD, and σ2 > 0. Tipping and Bishop (1999)
showed that for σ2 → 0 the model recovers the standard PCA (but the components
of z might be permuted).

We assume that the data x1, . . . ,xN is identically and independently distributed
according to the PPCA model. In a maximum likelihood setting, one determines
the parameters W, µ, and σ2 that maximize the likelihood

p(x1, . . . ,xN ;W,µ, σ2) =
N∏

n=1

p(xn;W,µ, σ2),

5

or equivalently the log-likelihood

log p(x1, . . . ,xN ;W,µ, σ2) =

N∑
n=1

log p(xn;W,µ, σ2).

Question 3.3: Show that for the model of the probabilistic PCA

p(x) = N (x;µ,C),

where C = WWᵀ + σ2ID.

Tip 3.1 Use Corollary 2 in Lecture 2. ◦'

&

$

%

Answer:

The PPCA is defined as a model for how to decode a latent vector z to the observed
data x. Of course, as in the regular PCA, we would like to encode data x in the
lower dimensional latent space as well.

6

Question 3.4: Show that the distribution of the latent variable z conditioned on x
is Gaussian as well and given by

p(z |x) = N
(
z;M−1Wᵀ(x− µ), σ2M−1

)
,

where M = WᵀW + σ2IM .2

Tip 3.2 Use Corollary 1 in Lecture 2. ◦'

&

$

%

Answer:

2Note that eq. (12.42) in Bishop’s book is incorrect. In the original paper by Tipping and Bishop
(1999) the correct distribution is stated.

7

3.3 Variational autoencoder

Let us consider a more flexible nonlinear model that is given by

p(x | z) = N
(
x; f(z;φ), σ2ID

)
,

p(z) = N (z;0, IM),

where σ2 > 0 and f(·;φ) : RM → RD is a nonlinear function with parameters φ.
In this lab we will model f(·;φ) by a neural network with parameters φ, but other
models could be used equally well.

In the lab session we will discuss different training approaches for this model. One
approach involves defining an encoding distribution q(z;x, ζ) that may depend on
x and some parameters ζ, and estimating and maximizing the so-called evidence
lower bound (ELBO)

Ez∼q(z;x,ζ)

[
log p(x | z; ξ)

]
−KL

[
q(z;x, ζ)

∥∥ p(z; ξ)].
A common choice is to define q as a multivariate normal distribution with diagonal
covariance matrix, i.e., to set

q(z;x, ζ) = N (z;µ(x; ζ),diag(σ21(x; ζ), . . . , σ
2
M (x; ζ))), (3)

where µ(·; ζ) : RD → RM defines the mean of the normal distribution and σ2i (x; ζ)
(i = 1, . . . ,M) are the diagonal entries of the covariance matrix. We will model
these functions with a neural network, but, of course, other choices are possible
as well. For this particular choice of the encoding distribution q a closed-form
expression of the KL divergence term exists.

Question 3.5: Show that for the distribution p(z; ξ) = N (z;0, IM) of the nonlinear
model and the choice of distribution q(z;x, ζ) in eq. (3)

KL
[
q(z;x, ζ) ‖ p(z; ξ)

]
=

1

2

(
M∑
i=1

σ2i (x; ζ) + ‖µ(x; ζ)‖22 −M −
M∑
i=1

log σ2i (x; ζ)

)
.

8

'

&

$

%

Answer:

9

4 Laboratory session

This section contains instructions for the laboratory session. The main lab exercise is
to build and train models that generate images that look like hand-written digits. The
generation will be made possible by unsupervised learning of the most important
features of such images from a data set presented in Section 4.1.

4.1 MNIST data set

We consider the so-called MNIST data set, which is one of the most well-studied
data sets within machine learning and image processing.

The data set consists of 60 000 training data points and 10 000 test data points. Each
data point consists of a grayscale image with 28× 28 pixels of a hand-written digit.
The digit has been size-normalized and centered within a fixed-sized image. Each
image is also labeled with the digit (0, 1, . . . , 8, or 9) it is depicting. In Figure 1 a
batch of 25 data points from this data set is displayed.

Figure 1: Samples from the MNIST data set.

We consider each image as a vector x =
[
x1 · · · xp

]ᵀ, where each xj corre-
sponds to one of the p = 28× 28 = 784 pixels in the image. The value of each xj
represents the color of that pixel. The color value is within the interval [0, 1], where
xj = 0 corresponds to a black pixel and xj = 1 to a white pixel. Anything between
0 and 1 is a gray pixel with corresponding intensity.

10

https://en.wikipedia.org/wiki/MNIST_database

Based on a set of training data {xi}Ni=1 with images, the problem is to find a good
model that allows us to sample from the distribution

p(x)

of the images. Unfortunately, it is unclear what the best way is to model this
distribution of 784-dimensional vectors, since probably most of these vectors do
not even represent images of hand-written digits.

We approach the problem by trying to extract all important features of the images
and compress them to a low dimensional space, in such a way that we can reconstruct
the images reasonably well. Instead of generating new images by sampling 784-
dimensional vectors, we then try to sample a new set of low dimensional image
features and to construct a proper image from it.

4.2 Preparation

Download the file lab_code.zip from the course homepage and extract it. It
contains a set of Jupyter notebooks which we will work on in the laboratory session.

4.3 Principal component analysis

One of the most common tools for dimensionality reduction is PCA. We start by
performing a PCA on the MNIST data.

Task 4.1 Open the Jupyter notebook PCA.ipynb and work through it. ◦

Answer the following questions as part of Task 3 in the notebook.

Question 4.1: Which digits can be reconstructed and decoded quite well, and which
ones seem to be more challenging?'

&

$

%
Answer:

Question 4.2: What average squared reconstruction error do you get with PCA?'

&

$

%
Answer:

4.4 Probabilistic principal component analysis

Since we want to sample from the distribution of the low dimensional image features,
we move to a probabilistic setting and include a probabilistic description of these

11

http://www.it.uu.se/edu/course/homepage/apml/lab

encodings in our model.

Task 4.2 Open the the Jupyter notebook Probabilistic PCA.ipynb and
work through it. ◦

Answer the following question as part of Task 2 in the notebook.

Question 4.3: How were the parameters of the model initialized? For how many
iterations was the model trained?'

&

$

%
Answer:

Answer the following questions as part of Task 4 in the notebook.

Question 4.4: Compare the encoding of the MNIST data set with PCA and PPCA.
Can you explain the different ranges of the encodings?'

&

$

%
Answer:

Question 4.5: Which digits can be reconstructed and decoded quite well, and which
ones seem to be more challenging? Compare your answer with Question 4.1.'

&

$

%
Answer:

Question 4.6: What average squared reconstruction error do you get with PPCA?
Compare your answer with Question 4.2.'

&

$

%
Answer:

4.5 Variational autoencoder

Task 4.3 Open the Jupyter notebook VAE.ipynb and work through it. ◦

Answer the following question as part of Task 1 in the notebook.

Question 4.7: Have another look at the mean encodings of the digits 0, 1, . . . , 9
with PCA and PPCA. For which digits do you observe encodings close to each

12

other? Compare your answer with Questions 4.1 and 4.5.'

&

$

%
Answer:

Answer the following questions as part of Task 8 in the notebook.

Question 4.8: Compare the encoding of the MNIST data set with the VAE and
PPCA. What do you notice?'

&

$

%
Answer:

Question 4.9: Which digits can be reconstructed and decoded quite well, and which
ones seem to be more challenging? Compare your answer with Question 4.5.'

&

$

%
Answer:

Question 4.10: What average squared reconstruction error do you get with the
VAE? Compare your answer with Question 4.6.'

&

$

%
Answer:

13

References
Doersch, C. (2016). Tutorial on variational autoencoders. arXiv: 1606 . 05908

[stat.ML]
Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal component analysis.

Journal of the Royal Statistical Society: Series B (Statistical Methodology),
61(3), 611–622.

14

https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908

	Introduction
	PyTorch
	Installation
	Comparison with TensorFlow
	Introduction

	Preparatory exercises
	Principal component analysis
	Probabilistic principal component analysis
	Variational autoencoder

	Laboratory session
	MNIST data set
	Preparation
	Principal component analysis
	Probabilistic principal component analysis
	Variational autoencoder

