Programming for Beginners

Lecture 2: Diving into C

Material from: http://www.codingunit.com/

Kai Lampka
Uppsala University

kai.lampka@it.uu.se

Structure of a C program

ﬁ
declare some #include <stdio.h> s Tell pre-processor to load
(module) global #include myHeader.h these header files
variables (scope
“const double tax = 0.2;

m le gl I - - '
oduegOba) int price, 1i1tems;

int price(int items)

define { .
function — statement 1;
named price statement 2; =, function
return ((l+tax)* items), bod
) B Y
int main (void)
1 —

fat - Function Body,
. Statemenm ’ . .
define - int pay; This is the scope of
pay = price(5):[* function.-local o
return 1; declarations (binding of

! - names)!

function main

Comments in C

<>Example
/* This is and example of a comment
put into a C program */

< begin with /* and end with */ indicating that
these two lines are a comment.

<>You insert comments to document programs
and improve program readability.

<-Comments do not cause the computer to
perform any action when the program is run.
(They are removed by the pre-processor).

built-in data types in C

The most important base data types in C can be grouped into
character, integer and floating point data types

Character data types

Name Range Size Application
char Alpha-numeric 1 Byte | characters are put in quotes
character chara="‘a’;
char -128 to 127 1 Byte | we store integer values
char a=128; (??)
unsigned 0to 255 1 Byte | positive integer values
char char a = 256; (??)

Remember: size of a Byte is fixed (8 Bits). Size of a word depends on the
architecture. 64-Bit architecture has words of 8 Bytes

integers

Name Range? Size
short int -32768 to 32767 2 Byte
int architecture dependent
unsigned int architecture dependent
long int -2,147,483,648 to 2,147,483,647 4 Byte
unsigned long int [0to 4,294,967,295 4 Byte
long long int -9,223,372,036,854,775,808 to 8 Byte

-9,223,372,036,854,775,8087
unsigned long 0 to 8,446,744,073,709,551,615 8 Byte
long 1nt

int and unsigned int have architecture dependent sizes. For a 64-Bit

architecture size is 8 Byte.

floating point

Name Range! Size Precision
float 1.18 * 1038t0 3.4 * 1038 4 Byte 7 digits
double 2.23 ¥ 103%8t0 1.79 * 10308 8 Byte 15 digits
long double 3.37 * 10493210 1.18 * 104932 16 Byte | 33 digits

long long int -9,223,372,036,854,775,808 to | 8 Byte
-9,223,372,036,854,775,8087

unsigned long 0 to 8,446,744,073,709,551,615 | 8 Byte
long int

Implementation of 1long double isarchitecture dependent

Remarks

<> For the non-signed data types one my use the keyword sign to
emphasize the signed character. But one does not need to do

this (and nobody actually does)

<> For short, long, signed andunsigned int, the
keyword int can be omitted

< function sizeof (xyz) gives you the number of byte of
data type xyz

variables

<> Variables refer to locations in memory where a value is stored. --We see
later how we can reference the address an get access to this location.

<> Syntax: data_type identifier;

<> ldentifiers: consist of letters, digits (cannot begin with a digit) and
underscores()

<> Identifier are case sensitive
<> Declarations appear before executable statements

< If an executable statement references and undeclared variable it will
produce a syntax (compiler) error

<> Assignments to variables are done with operator =

Syntax Example
data typeA name; char a;
data typeA namel, nameZ2; char a, b;
data typeA namel = value; char a = ‘b’;
data typeA namel = expression; char a = 255/2;

> <%

constants

A constant is a variable which does not change its value

we can only assign a value once to a constant, namely upon
declaration

during the life time of the program, we can only read from this
memory location

Syntax: const data_type identifier;
Name convention of identifier as before

one may also use a macro definition (preprocessor directive)
to define constants (#define tax 0.2). But this is not the same
and should be avoided. By using a constant of a data type via
keyword const you allow the compiler to do type checking.
Incase of a macro this is not possible.

Syntax Example

const data typeA name = expression; const double PI = 3.14;

#include <stdio.h>
#include myHeader.h

const double tax = 0.2;

int price(int items)

{

return ((l+tax)* items);
}
int main (void)
{

int pay;

pay = price(5);

printf (“You need to pay:%d”,

return 1;

pay) ;

Example

Operators
The distinguish between

<> unary, one operand, e.g. negation !A
<> binary, two operands, e.g., addition a+a,

<> ternary operator a?b:c; (if a is true give b else c)

S

Arithmetic operators

Operator Example Remark
Addition: + b =a+ a; first addition than
assignment to variable
C
Subtraction: - b =a - a; as expected
Multiplication: * b =a* a; as expected
Division: / b = a/ a; as expected
Modulo: % (division with |b = a % a; as expected (gives 0).
remainder)
hortforms (combined with assignment)
Operator Example Remark
Increment: ++ b++; gives b = b+l;
Decrement: -- b--; gives b = b-1;
Addition to a variable b +=a; gives b = b +
ay
Subtraction, multiplication, a —-= a*= b; as expected
division and modulo to and with |a /= a%=b;
a variable

Relational operators

Operator Example Remark
smaller: < b < c evaluates to true, 1.e.
1, 1f and only if
variable b 1s smaller
than variable c
larger : > b > c as expected
smaller equal: >= b >= c as expected
larger equal : =< b =< c as expected
equal: == b == c as expected
not equal: != b !=c as expected

Logical operators

Operator Example Remark
and: && a == 5 && b == evaluates to true, i1.e. 1,
if and only if variable a
is 5 and b is 3
or: || a == || b == as expected
not: ! I (a == 5) evaluates to true if a 1is

not 5.

Bit operators

Operator Example Remark

let a = 0011 and b = 1001
and: & c =a & b; c 1s
or: | c =a | b; Cc 1s
xor: * c =a " b; C 1S
left shift << c = a << b; c 1s
right shift >> | c = a >> b; Cc 18
bitwise c = ~b; C 1S
negation: = ~

Short forms

Operation short
version

long version

Remark
let a = 0011

a is

a 1s

Conversion of data types

In case one uses different data types implicit type conversion

rules apply. This may yield:

<> loss of bit positions or

<> precision of the floating point

To avoid implicit conversion, one can do an explicit type

conversion denoted cast

Operation short version

Remark

int i = 5;

double Db (double) 1i;

The value of wvariable 1 1is
converted into a double and
assigned to variable Db

double a = 3.2, b = 4.5;
double ¢ = (double) ((int)
+ (int) b))

a

b 1s

Functions

For making programmes
<> Readable

<> Re-useable (sub parts)
<> Isolation of errors

it is highly recommend to partition the programme code into
subprogrammes, respectively functions.

Definition of a function.

Data-type-of-return-value Name-of-Function (Parameters)
{ //Body of Function starts here

statement 1;

statement 2;

statement ..

return value;
} //End of function

// Example
int add (int a, int b) { return(a+b);}

Functions

For making programmes
<> Readable

<> Re-useable (sub parts)
<> Isolation of errors

it is highly recommend to partition the programme code into
subprogrammes, respectively functions.

Syntax of the definition of a function.

Data-type-of-return-value Name-of-Function (Parameters)
{ //Body of Function starts here

statement 1;

statement 2;

statement ..

return value;
} //End of function

// Example
int add (int a, int b) { return(a+b);}

Functions

Parameters:

<> data_type identifier, e.g., int a, int b, double c
<> entries are separated by komma.

Parameters are function local variable:

<> identifier is only visible within function

<> the actual passed in variable is a copy, i.e., any manipulation is
not made to the original variable but the copied input
parameter.

int addAndAssign (int a, 1int b)
{

a += b; //value of a here?
return (a) ;

}

//somewhere in main ()
int a = 10;
addAndAssign(a, 5); //value of a here?

Functions

Parameters:

<> data_type identifier, e.g., int a, int b, double c
<> entries are separated by komma.

Parameters are function local variable:

<> identifier is only visible within function

<> the actual passed in variable is a copy, i.e., any manipulation is
not made to the original variable but the copied input
parameter.

int addAndAssign (int a, 1int b)
{

a += b: return (a) ; Remember parameters are copies. One uses new
} variables here, named a and b. They have the
value which is passed in by the function call

call by value

//somewhere in main ()
int a = 10;
addAndAssign(a, 5); //value of a here?

Functions

<> Think of functions as keywords not built in to the programming language.
<> All library functions one uses are functions implemented that way.
<> There is a large set of functions provided by libraries, using these functions:
<> reduces errors and
<> increase efficiency

as they are well tested and highly optimized.

functions can be stored

<> in the same file with main, or

<> in a separate file

#include precompiler directive or with

extern Function-Definition

This is why you need to include the pre-defined functions at the top of your
main.c file.

Functions

//main.c
#include myTest.h

//myTest.c
#include myTest.h

//myTest.c
#ifndef MYTEST
#define MYTEST

int main () { int add(int a, int Db) {
return (Add (10, 5)); return (a+b) ; int add(int a, int Db);
} }
#endif
//main.c //myTest.c
#include myTest.h
fextern int Add(int a, int b);
int add(int a, int Db) {
int main () { return (a+b) ;
return (Add (10, 5)); }
}

Functions

Some final remarks:

<> Functions are called by their name and the parameters filled in correctly

<> The number and types of parameters must macth, otherwise the compiler
will issue an error or a warning

<> the return value of a function can be used in an assignment or an
expression

< if the function is defined to give a return value, there must at least be one
return statement in the definition.

<> There might be more than one return statement in the function

<> To actually use a function, it must have been declared, most likely via
include of the respective header file

Functions
®

execute

line by line | Main programme (main.c)

l statement;

@ execute [a = myfunction(..); function (some_file.c)
function ‘\\\\i;z\\ =
statement; by -
CD type myfunction(..)
continue { ©
line by line statement 1; :meﬁﬂe
unction
l C) line by

HneJl
N\\r;turn() ()

} execute
return

Reading from STDIN

<> Function int getchar (void) reads characters from STDIN
(here keyboard), reading starts as soon as +! is pressed.

<> The return value corresponds to the ASCll-value of the supplied
character (you find the Tabelle on the web).

<> Library: stdio.h / Prototype: int getchar(void); /Syntax: ch =
getchar();

#include <stdio.h>
#define RETURN '\n’
// \n == return in UNIX \r == return in DOS * /

int main () {
int count=0;
puts ("Please enter some text.");

// Count the letters in the 'stdin’ buffer.
while (getchar () != RETURN) count++;

printf ("You entered %d characters\n", count);
return 0O;

Writing to STDOUT

<> Function int putchar (int c) writes a character (an
unsigned char) specified by the argument c to stdout.

<> The return value corresponds to the ASCll-value of the written
character c (you find the Tabelle on the web).

<> Library: stdio.h / Prototype: int putchar(int c);
<> Syntax: ch = putchar(c);

#include <stdio.h>

int main ()

{

char ch;

for(ch = "A'" ; ch <= '2'" ; ch++) {
putchar (ch) ;
}

return (0) ;

function printf()

<> The printf function is another useful function from the
standard library

< Syntax: printf (“expression”, variable 1, ..);

< expresion istext mixed with format specifiers for the
variables

< the format specifiers are mapped to the variables 1:1 in the
order of appearance

%i or %d int

%c char

%f %f float (see also the note
next page)

%s string string

function printf()

%f stands for float but.....

<> Default argument promotions happen in variadic functions.
Variadic functions are functions (e.g. printf) which take a variable
number of arguments. When a variadic function is called, after
lvalue-to-rvalue, array-to-pointer, and function-to-pointer
conversions, each argument that is a part of the variable
argument list undergoes additional conversions known as default
argument promotions:

* float arguments are converted to double as in floating-point promotion
* bool, char, short, and unscoped enumerations are converted to int or
wider integer types as in integer promotion
<> So for example, float parameters are converted to doubles, and
char’s are converted to int’s. If you actually needed to pass, for

example, a char instead of an int, the function would have to
convert it back.

function printf()

#include<stdio.h>

main () {
int a,b;
float c¢,d;
a = 15;
b =a/ 2;
printf ("%d\n",Db);
printf ("%$3d\n",b);
printf ("$03d\n",b); Useful special signs to be used
in the expression passed to printf():
c - 15.37 \n (newline)
d=c / 3;
printf ("$3.2f\n",d) ; \t (tab)
) \Vv (vertical tab)
\f (new page)
\b (backspace)

\r (carriage return)
\n (newline)

function printf()

include<stdio.h>

main () {
int F;

for (F = 0; F <= 300; F += 20)
printf (Y"Fahrenheit:%3d Celsius:%06.3f\n", F, (5.0/9.0)*(F-32));
}

<> As you can see we print the Fahrenheit temperature with a width of 3 positions.

<> The Celsius temperature is printed with a width of 6 positions and
a precision of 3 positions after the decimal point.

<> Examples of format specifiers
%d (print as a decimal integer)
%6d (print as a decimal integer with a width of at least 6 wide)
%f (print as a floating point)
%4f (print as a floating point with a width of at least 4 wide)
%.4f (print as a floating point with a precision of four characters after the decimal point)
%3.2f (print as a floating point at least 3 wide and a precision of 2)

function scanf()

<> The scanf () function is another useful function from the standard library
and it reads formatted input from stdin.

< scanf (const char *format, wvariable 1, ..);

<> format is the C string that contains one or more of the following items:
Whitespace character, Non-whitespace character and format specifiers.
Format specifier is as before:

[=%[*] [width] [modifiers]type=] see below:

* This is an optional starting asterisk indicates that the data is to be read from the
stream but ignored, i.e. it is not stored in the corresponding argument.

width This specifies the maximum number of characters to be read in the current
reading operation

modifiers Specifies asize different from int (in the case of d, i and n), unsigned int (in the
case of o, u and x) or float (in the case of e, f and g) for the data pointed by the
corresponding additional argument: h : short int (for d, i and n), or unsigned
short int (for o, uand x) | : long int (for d, i and n), or unsigned long int (for o, u
and x), or double (for e, fand g) L : long double (for e, f and g)

type A character specifying the type of data to be read and how it is expected to be
read. See next table

function scanf()

#include <stdio.h>
int main ()
{
char strl1[20], str2[30];

printf ("Enter name: ");
scanf ("%s", &strl);

printf ("Enter your website name: ");
scanf ("%s", &str2);

printf ("Entered Name: %$s\n", strl);
printf ("Entered Website:%s", str2);

return (0) ;

Types

X, X

function scanf()

Single character: Reads the next character. If a width different from 1 is
specified, the function reads width characters and stores them in the
successive locations of the array passed as argument. No null character is
appended at the end.

Decimal integer: Number optionally preceeded with a + or - sign

Floating point: Decimal number containing a decimal point, optionally
preceeded by a + or - sign and optionally folowed by the e or E character
and a decimal number. Two examples of valid entries are -732.103 and
7.12e4

Octalinteger:

String of characters. This will read subsequent characters until a
whitespace is found (whitespace characters are considered to be blank,
newline and tab).

Unsigned decimal integer.

Hexadecimal Integer

char*

int *

float*

int*

char *

unsigned
int *

int *

The data type * saysthat we actually referring to the address where the resp.
data is stored, we come back to this.

