Programming for Beginners

Lecture 3: control structures

Kai Lampka
Uppsala University

kai.lampka@it.uu.se

control structures

Two Basic techniques for computing something: Branching and Looping

<> The decision to branch or not to branch or to continue with a loop
depends on the value of a given expression.

<> As expression one may use whatsoever,
everything is evaluated in C, commonly from right to left
e.g., a = 10; evaluates to 10.

<> expressions can be combined via logical operators
AND, OR, XOR (&&, ||,)

<> Do not confuse:

<> The execution of each operator of an expression
gives a value, which serves only as intermediate results and
is discarded immediately after use (rvalues).

<> Other values, however, are of permanent nature. They are either in
memory or in a specially reserved registers of the processor saved.
Such values are denoted as lvalues and required by operators which
store a value or access the memory address of a value.

if-statement

The if statement can be used to test conditions so that we can alter
the flow of a program.

Syntax

1f (expression){ body of i1if-statement }

<> The body can be a single statement, than you do not need the
curly brackets

<> the expresion can be anything which evaluates to 0 or unequal O.

int mynumber;
scanf ("sd", &mynumber) ;

1f (mynumber == 10) {
printf ("is equal 10\n");
printf ("closing program\n") ;

}

The & operator susedabove (&mynumber) saysthat we passingin the address
where variable mynumber is stored.

if-then-else-statement

An if statement can be extended with an else-statement. In case the
expression of the if-statement is O, the body of the else is executed.

Syntax

1f (expression){ body of i1f-statement }
else { body of 1f-statement }

<> The body can be a single statement, than you do not need the
curly brackets

<> An else-statement always refers to the previous if-statement,
curly brackets improve readability!

int mynumber = scanf ("%d", &mynumber) ;

if (mynumber == 10) {
printf ("is equal 10\n");
printf ("closing program\n");
return 0O;

}

else printf("is not equal 10\n");

if-then-else-statement

const int MYONE 7;

int main () {
//read inputs
int mynumber;
scanf ("sd", &mynumber) ;

// 1f my special number was given exit programme
if (mynumber == MYONE) {

printf ("Is equal\n");

printf ("Closing program\n") ;

return 0O;

}

else{ // print message and continue
printf ("Not equal\n");
printf ("Closing program\n") ;

}

<> Comments helps with the understanding and remembering of the functionality of
the program, please use them

<> The placement of the curly brackets and how the indentations are placed, this is
all done to make reading easier and to make less mistakes in large programs.

nesting of if-statement

< Youusean “if statement” in an “if statement”
in an “if-statement”..itis called nesting.

<> Nesting “1f statements” can make a program very complex,
but sometimes there is no other way.

#include<stdio.h>
int main () {
int grade;
scanf ("%d", &passedAssignments) ;
1f (passedAssignments <= 3) {
printf ("YOU DID NOT STUDY.\n");
printf (“TRY HARDER NEXT TIME ! \n");
} //if closes
else/{
1if (passedAssignments >= 5) {
printf ("YOU PASSED THE ASSIGNMENTS! \n");
if (passedAssignments ==)
printf (YEXCELLENT JOB! \n");
else
printf (“WELL DONE! \n");
} //if closes
} // else closes
return 0;} //main closes

if-then-else-statement (more)

Elseif-statement.
<> Does not exists in C, instead one may sue else if { .. }.
<> This works as the if-statement and its body is seen as single line.

1f(expressionl)
statementl;

else if (expression2)
statement?;

else if (expression3)
statement3;

else
statementN;

<> An else-statement always refers to the previous if-statement,

curly brackets improve readability! int p = 0
1f(0)

if (1) p = 5;
else p = 1;

?-statement

if-then-else can be replaced with a single statement
Syntax
result = test-expression ? valuel : valueZ;

If test-expression evaluates to true result is assigned the
value valuel, otherwise result is assigned the value value?.

int mynumber = scanf ("%d", &mynumber) ;
1f (mynumber == 10)

printf ("is 10\n");
else

printf ("is not 10\n");

int mynumber = scanf ("%d", &mynumber), c;
c = (mynumber != 10) ? printf("is not 10\n") : printf("is 10\n");

// another example
int max;
max = (vl > v2) 2?2 vl : v2;

switch-statement

<> The switch statement can have many conditions. You start the switch
statement with a switch-expression which is evaluated.

< Ifone of the case expressions equals the value of the expression, the
instructions are executed until a break is encountered.

< If none of the case expressions equalsthe switch expression the default

is executed
int main() {

char myinput;

printf (“Choose: \t a) Program 1 \t Db)

scanf ("%c", &myinput);

Program 2\n") ;

switch (myinput){ // variables are evaluated

case 'a': //compare value to case-expression
printf ("Run program 1\n");
break; €

case 'b’:

printf ("Run program 2\n");
printf ("Please Wait\n");
break,; €

default:

printf ("Invalid choice\n");

break; ¢
}

return 0;}

The break-statements are
required to exit the switch
statement, otherwise
everything behind will be
executed as well, until the
next break or the end of the
switch —no re-testing of the
variable again!

Loops

somewhere in a program somewhere in a program

statementl; l l

statementl; execute loop-head @
linebyline |{ // body with evaI?ua:ctes loopheadto _
(linear statementl; true? If'yes, execute

statmentN; flow) e

l ;EatmentN . @ line by line of body

| @ Go back to loop headv

R —

for-Loop

for (pre-loop statement; loop-condition; post-loop statement)

{
// loop body
} // brackets can be omitted for a single statement

<> The pre-loop statement is executed before the first loop entry.
<> The loop condition is the expression which tells us if we can enter (again).
<> post-loop statement is executed after each loop iteration.

#include<stdio.h>

int main () {
int 1i;
for (1 = 0; 1 < 10; i++)/{
printf ("Hello World: %d\n”,i);
}

return 0;

Be aware of endless loops and that variables have always the intended value.

while-Loop
while (loop-condition)

{
// loop body
} // brackets can be omitted for a single statement

<> The loop condition is the expression which tells us if we can enter (again).
<> No pre- and post-loop statements

#include<stdio.h>

int main () {

int 1, howmuch;

scanf ("%sd", &howmuch) ;

1= 0;

while (i < howmuch) printf ("Hello World: %d\n”,++i);
return O;

}

Be aware of endless loops and that variables have always the intended value.

do-while-Loop
<> The “do while loop” is almost the same as the while loop. But loop-condition is tested
after the body!.
<> The “do while loop” has the following form:
do
{
// loop body
} // brackets can be omitted for a single statement
while (loop-condition);

#include<stdio.h>

int main () {

int 1, howmuch;

scanf ("%sd", &howmuch) ;

i = 0;

do {

printf ("Hello World: %d\n”,++1i);

} while (1 < hownmuch) ;

return O;

}

Be aware of endless loops and that variables have always the intended value.

pre-mature leave or re-entering of a loop

<> With a break-statement the loop is left immediately
<> with a continue-statement one directly jumps to the loop-head and tests the loop
condition again (for and while loop)

#include<stdio.h>
int main () {

int 1i;

for (1 = 0; 1 < 10; 1i++){
1f(!'(1 % 5)) continue;

printf ("Hello World: %d\n”,1i);

}

return 0;}

#include<stdio.h>
int main () {

int 1, p;

printf (”\nGive a number to be tested for being prime\n”);
scanf ("%d", &p);

for (int 1 = 2; 1 < p; 1i++){
if (p $ 1 == 0) break;
}
if (i == p) printf (”%d is a prime \n”,p);

else printf (”%d is not a prime \n”,p);
return 0;}

Recursion

Recursion is a special form of branching: a function calls itself with modified

input parameters until a return-value has been computed. This give the

following two ingredients:

<> Re-invocation of itself, but with modified input parameters

<> Test for ending recursion, test must include either one of the modified input
parameters

#include<stdio.h>
int factorialRec(int n) {

if (n == 0) //termination testing
return 1;
else

return(n * factorialRec(n-1)); // recursive call

int main () {
int n = 32,
return (factorialRec (n)) ;

Iteration

Instead of recursion one may use another scheme for successively computing an
output. The function calls a helper function until the iteration criterion is
satisfied. Notice: this is what you implement with a loop anyway.

#include<stdio.h>
int factorial (int n) {

int res = n;
while (n >= 0)
res *= factorialHelper(n--);

return (res) ;

}
int factorialHelper (int k) {

1if(k == 0)
return 1;

else
return (k) ;

}

int main() {int n = 32; return(factorial(n)) ;)

// This saves stack space as only one function factorialHelper
// is allocated at a time!!!

