Programming for Beginners

Lecture 4: introduction to arrays & pointers

Kai Lampka
Uppsala University

kai.lampka@it.uu.se

Arrays

<> In C one may define a matrix of elements of a specific data
type.

<> Such matrices are denoted as multi-dimensional arrays or in
case of a

<> vector as array.

<> We access the individual elements of the array by an index
which is just another (counting) variable

<> The index start with value 0 and range up to n-1 if n is the
number of elements of the array

<> to each element of the array one may apply mathematical
operations suitable for the type of the element.

int n = 10;
int al[n];
for(int 1 = 0; 1 > n; i++) al[n] = 1i;

Arrays

Syntax

<~ At first you give the type of the elements, in the example they are integers

<> the data type is followed by the identifier of the array

<> the identifier is followed by the number of elements you want to store in the
array in []-brackets. This number is fixed throughout the life time of the
array!

<> One may also give a list of initial values, where the first value is assigned to
position 0 in the array, etc.

< If there is no initial value given, the array element is initialized, i.e, it has a

random value

int n = 10;
int a[n] = {3,5,7,11,13,17,19,23, 27, 31};

// initialization of some elements is also possible
int b[n] = {3,5,7};

// If all elements are initialized,
// the compiler figures out how many there are
int c¢[] = {3,5,7,11,13,17,19,23, 27, 31};

Arrays

#include<stdio.h>

int main ()
int al4
int 1i;

{

17

for (1 = 0; 1 < 4; 1i++)
ali]

for (1 = 0;

1 < 4; 1i++)
printf ("a[%d]

= %d\n"/ 1 ’ a[i]);

return 0;

Arrays

#include<stdio.h>
int main () {

int a[l0];
int 1i;
char in;

for (i = 0; i < 10; i++){
printf (“Please gilve a number”);
scanf (“sc”, &c);
ali] = atoi(&c);
}
for (1 = 0; 1 < 10; i++)
printf ("a[%d] = %d\n", 1 , alil);

return 0;

Important remark:

<>

<>
<>
<>

From Arrays to Pointer

the elements of an array are stored sequential in the memory, one-by-
another and neighboring.

the identifier of the array in fact refers to the address of the first element
This way one may actually compute the position (address) of each element
and access the address directly.

With the asterix (*) we tell the compiler that we want to access the actual
contents stored at the specified address.

int n = 10;
int a[n] = {3,5,7,11,13,17,19,23, 27, 31};

for(int 1 = 0; 1 > n; 1i++)
printf (“Element %d of %d: %d\d”,
i, n, *(a+1i);

Pointer

<> for each built-in or self-defined data type one can allocate arrays

< the identifier of an array is actually a pointer to the starting address of the
first element of the array.

<> Instead of defining a whole array we may simply define pointers which point
to some entry in the array including the first element.

<> When iterating over an array one may need to access different
elements, pointers are an efficient way to do so

<> The size of an array may change over a programmes lifetime, with
pointers one can easily organizing the re-allocation of arrays

<>The empty pointer is defined NULL

<> Operators to pointers:
* . the asterix gives the contents of a pointer, e.g., in case of an array, it

returns the respective element the pointer is pointing to.

&: the ampersant returns the address of a pointer, i.e., the location there
the pointer is actually stored

Pointer

int main () {
int n = 10, max = 0, 1i;
int aln] = {3,5,7,11,13,17,19,23,27,31};
for (i = 1 < n; 1++)

0;
printf (“Element %d of %d: %d\d”,i, n, *(a+i);

for(i = 0; 1 < n; i++){
if (max <= al[i]) continue;
else max = al[i]l;

for(int *b = a; b < (a+n-1); b++){
1f (max <= (*b)) continue;
else max = (*b);

}

return 0;

<> Operators to pointers:
* . contents of a pointer

&: address of a pointer

Pointer

int n = 10;
int al[3] = {3,5,7};

e

*(a+1)
(contens of a plus one
times size of element)

3 5 7
d >
(starting \ a+1
address) (address of a plus one times
* 5 size of element (here 32 bit))

(contens of a)

Pointer

short int *p; // declares a pointer of type short int
short int m, n = 10; //variables of type short int

p = &n // the memory address of n is stored in p
m = *p // the contents of variable m is the value of
// of the memory cell referenced by p

pointer p ——| . def pointer p ——» &n
variable m variable m
variable n \ *pisn \
T 10 undef T 10 undef
&n =

p=&n; >
(address of n) &m/ &m/

(address of m) (address of m)

Pointer

Important remark:

<> for a pointer one does not allocate memory space to store a
valuel!l!l

<> you only allocate space for the pointer

pointer p ——| . def pointer p ———> &n
variable m m = *p;
variable n ~, *pisn ™~
T 10 undef T 10 10

&n > _Qn.
p - &n) >
(address of n) &m/ &m/

(address of m) (address of m)

Pointer

int *p; // This is commonly a mistake,
*p = 17; // rather than wanted!

<> The above statement does not produce an error, but it is
incorrect: we did not allocate space for storing an integer value

<> p is undefined, i.e., it has an arbitrary value and therefore
points to an arbitrary memory location

<> the 17 will therefore be written to that (arbitrarily picked)
location

int *p, n = 10;
p = &n; // What do we see here?

*p = 17;

Multi-dimenisonal Arrays

Arrays can have multiple dimensions (n x m)

#include<stdio.h>

int main (

) {
int af[4]

(4], 1 , 37
for (1 = 0; 1 < 4; 1i++)/{
for (J = 0; j < 4; J++){
ali]l (3] = 0;
printf ("a[%d] [%d] = %d \n", i, J, alill3j]);

char days[][10] = {

"Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday",

"Friday", "Saturday"

/* in Tuesday */

}s;

days[2] [3] == ’s’;
Slulnldlaly
Mlolnldlaly
Tlulel=sldlaly
Wleldlnlels|dlaly
Tlahlulrleldlaly
Flolaildlaly
Slaltlulc]ldla }’/I

char *days[] = {
"Sunday", "Monday", "Tuesday",

"Wednesday", "Thursday",
"Friday", "Saturday"

I;
days[2] [3] == ’s’; /% in Tuesday */
-__‘..-——_w
Slulnldla vlgdrd ol n
dlaly Tlulels]dla
Y Wleldlnlel=s] dla
Y Tihlulcl=ldlaly
// Flrolildlaly S|la
~ tlulxldlaly
\\

