
C Programming Lab

1DT032: Advanced Computer Science Studies in Sweden
1DT086: Introduction to Studies in Embedded Systems

Uppsala University

September 3, 2015

Submitting Assignments, and
Requirements for Passing this Lab

Solutions can be done individually or in groups of two students. All solutions
have to be submitted via the following webpage:

http://logicrunch.it.uu.se:4096/~wv/c-lab/

The web service automatically checks whether uploaded code compiles cor-
rectly, and whether it passes a number of testcases.1 If your solution is
accepted you can continue with the next exercise, otherwise you will have
to revise your solution and upload a fixed version.

Whenever you submit a solution, make sure that you have spec-
ified the name and personal number of all authors on the website.

In order to pass the lab, you have to submit correct solutions for at least
4 of the exercises. Submission opens on Thursday September 3rd, 8:00
and closes at Tuesday September 8th, 12:00. The student or group
submitting the highest number of correct solutions earns eternal glory (and
a surprise present).

1Note: all submitted solutions are stored, and might manually be checked for correct-
ness or signs of cheating at a later point.

1

http://logicrunch.it.uu.se:4096/~wv/c-lab/

The Lab Computers

You’ll be working with the assignments in the Unix labs. If you are new to
Unix or working from a terminal, the following table can be used as a quick
reference. There are also many great resources online if you want to learn
more.

man <cmd> Shows a manual for the supplied command
ls List files and directories in current directory
pwd Show the working directory
cd <dir> Go to the given directory
cd .. Go back one directory
mv <file1> <file2> Move file1 to file2
rm <file> Remove a file
rm -r <dir> Remove a directory and all files within it. Be careful,

there is no undo button!

cp <file1> <file2> Copy file1 to file2
mkdir <dir> Create a directory
Ctrl+C Key combination to abort most commands
<command> & Run a command in the background
gcc file.c -o output Compile file.c into executable file output

gcc file.c -c -o file.o Compile file.c into object file file.o

emacs file.c & Open the editor emacs and load file.c

./program Run the executable file program in the current dir

Invoking the C Compiler

We will be using the GNU C Compiler (gcc). The manual for the compiler
is quite long (15000+ lines), so don’t worry about learning all of its features.
To get you started, we go over the creation, compilation and execution of
an example program.
First, we create a new directory to work in and step into that directory:

~]$ mkdir example

~]$ cd example

~/example]$

Then we create a C program file called example.c

~/example]$ emacs example.c

The file is edited to look as shown below:

/∗
∗ Author : Jonas Flodin
∗/

#include <s t d i o . h>

2

int main (int argc , char ∗∗ argv){
p r i n t f (”This t ex t i s p r in ted to the s c r e en \n”) ;
return 0 ;

}

The file is saved by pressing Ctrl+X followed by Ctrl+S. Then we exit
emacs by pressing Ctrl+X followed by Ctrl+C. (If you accidentally press
some other command, you can abort it by pressing Ctrl+G). It should be
noted that there are many editors other than emacs which you may prefer;
vim, pico, gedit and nedit to name a few. You are of course welcome to use
any editor of your choice.
We compile the program into an executable using gcc:

~/example]$ gcc -Wall example.c -o executable

The flag -Wall tells gcc to warn us about possible errors or design flaws that
it can discover. It is a good habit to use this flag. You may also consider
the -std=c99 flag, which enables some newer additions to the C language,
e.g., declaration of variables in the for loop header. Finally we list the files
to see that some output has been produced and then we run the executable
file.

~/example]$ ls

example.c executable

~/example]$./executable

This text is printed to the screen

~/example]$

Now we’ve created and executed a program.

Makefiles and Compilation Units

In practice, C programs are usually split into multiple files, compiled sepa-
rately, and in the end linked together to form a single executable. This way
it is only necessary to recompile the modified files when changes are made to
the program. Our example can be split into two files, one defining a function
printing to the console (printfun.c), and one containing the main function
(example2.c):

// example2 . c

#include ” pr in t fun . h”

int main (int argc , char ∗∗ argv){
pr in t fun () ;
return 0 ;

}

3

// pr in t f un . c

#include <s t d i o . h>

/∗∗
∗ Function implementation
∗/

void pr in t fun () {
p r i n t f (”This t ex t i s p r in ted to the s c r e en \n”) ;

}

The function defined in printfun.c has to be declared in a separate
header file, which is $included in example2.c:

// pr in t f un . h

/∗∗
∗ Function pro to type
∗/

void pr in t fun () ;

Compilation now requires three calls to gcc: two to compile the C files to
object files (with option -c), and one for the final linking to an executable:

~/example]$ gcc -Wall example2.c -c -o example2.o

~/example]$ gcc -Wall printfun.c -c -o printfun.o

~/example]$ gcc -Wall example2.o printfun.o -o example2

~/example]$./example2

This text is printed to the screen

~/example]$

Compilation is usually automated with the help of a build system, for
instance with the tool make. The compilation steps are defined in a file
named Makefile; for each file that is supposed to be generated through
compilation or linking (here, example2.o, printfun.o, and example2) a
set of commands is specified that produces the file. The Makefile also de-
fines dependencies between source and target files: for instance, example2.o
depends on example2.c and printfun.h, whenever any of the latter two
files change, also example2.o has to be recomputed:

Makef i l e

a l l : example2

example2 . o : example2 . c p r in t fun . h
gcc −Wall example2 . c −c −o example2 . o

p r in t fun . o : p r in t fun . c
gcc −Wall p r in t fun . c −c −o pr in t fun . o

example2 : example2 . o p r in t fun . o
gcc −Wall example2 . o p r in t fun . o −o example2

Compilation is now started with a simple call to make:

4

~/example]$ make

gcc -Wall example2.c -c -o example2.o

gcc -Wall printfun.c -c -o printfun.o

gcc -Wall example2.o printfun.o -o example2

~/example]$./example2

This text is printed to the screen

~/example]$

5

Exercises

Now that we know how to create and run a program, we move on to the
exercises. The solutions to (most of) the exercises will be provided after
the end of the lab. Please refer to the slides for more information on C
programming.

Exercise 1 Output

In the introductory program we include the library stdio.h, which con-
tains the function printf. This function is used to produce output in the
form of characters that are printed in the terminal. In its simplest form, the
function is called with a string as argument:

printf("This text is printed to the screen\n");

That is great, but we want our programs to output more than just the fixed
strings that the programmer writes in the program. To print the contents
of variables, we add format specifiers to the string and add the variables we
want to print as arguments:

int number;

char letter;

printf("%d is an integer and %c is a character\n", number, letter);

Different types of variables have different specifiers, all starting with a per-
centage sign. Common specifiers are %d for integers, %f for floats, %c for
characters and %s for strings. To output a percentage sign, we use %%.
Write a function that outputs:

a) The string: One half is 50%

b) two integers and their difference.

c) two floats and the result of dividing one with the other

Write a main function that calls your other functions. The output has to be
as follows:

[.../exercise]$./e1

One half is 50%

The difference between 10 and 3 is 7

1.000000 / 3.000000 is 0.333333

[.../exercise]$

Exercise 2 Input

For input we use the function scanf, also from the library stdio.h. The
scanf function takes a format string followed by references to where the
input should be stored. Example that reads an integer to a variable:

6

int number;

scanf("%d", &number);

Notice that the & character in front of the varable name. It means that
the variable is passed as reference to scanf. It allows scanf to update the
value of the variable. If & is not there, the program would likely crash at
that point. When reading a string, the & sign can be omitted:

char my_variable[100];

scanf("%s", my_variable);

Write functions that:

a) asks for two integers and outputs them and their sum.

b) asks for two floats and outputs their product.

c) asks for a word and prints it twice on the same row.

Write a main function that calls your other functions. The output has to be
as follows:

[.../exercise]$./e2

Give two integers: 12 5

You entered 12 and 5, their sum is: 17

Give two floats: 3.14 2

You entered 3.140000 and 2.000000, their product is: 6.280000

Give a word: Yey!

Yey! Yey!

[.../exercise]$

Exercise 3 Conditionals

If-else statements are used to make a program behave differently depending
on the program state or user input. As an example, one can use if-statements
to make sure that input is sane before performing an operation

int a;

int b;

...

if(b == 0){

printf("Error: Divide by zero!\n");

// Code for error handling.

...

}

else{

printf("Division evaluates to: %d\n", a/b);

}

7

Write functions that:

a) ask for an integer and output whether the entered number is zero or
not.

b) ask for two floats and outputs the largest of the inputs

c) ask for an integer and, if the number is divisible by two, divides it by
two, otherwise multiplies it by three and output the result. Here, the
modulo operator % is useful.

d) ask for three integers and output whether any of them are equal. Use
only one if-else-statement

Write a main function that calls your other functions. The output has to be
as follows:

[.../exercise]$./e3

Give an integer: 12

The number you entered does not equal zero

Give two floats: 13.4 20

20.000000 is the largest

Give an integer: 14

Result is: 7

Give three integers: 1 13 1

Some numbers are equal

[.../exercise]$./e3

Give an integer: 0

The number you entered equals zero

Give two floats: 13.2 -150

13.200000 is the largest

Give an integer: 7

Result is: 21

Give three integers: 2 5 13

All are unique

[.../exercise]$

Exercise 4 Loops

Loops are used to execute a statement or a block of code multiple times. A
loop will continue to execute as long as the loop condition is satisfied. These
two example loops will print the numbers 1 to 10 on one line and then 11
to 20 on the next line:

int i,j;

i = 1;

while(i < 11){

8

printf("%d ", i);

i=i+1;

}

printf("\n");

for(j=11;j<=20;j++){

printf("%d ", j);

}

printf("\n");

Write functions that:

a) print all even numbers between 0 and 40.

b) print all the numbers between 1 and 100, with 10 numbers on each
line. Use two for loops. All columns should be aligned.

c) ask for a number than prints the number squared. This repeats until
the 0 is entered.

Write a main function that calls your other functions. The output has to be
as follows:

[.../exercise]$./e4

Even numbers between 0 and 40:

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Numbers 1 to 100:

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Give a number: 2

The square of 2 is 4

Give a number: 5

The square of 5 is 25

Give a number: 9

The square of 9 is 81

Give a number: 0

You entered zero.

[.../exercise]$

9

Exercise 5 Loops II

a) Write a program that asks for a number. Then the program should
print 1 through the given number on separate lines.

b) Encapsulate your code in a while-loop that asks the user if he/she
would like to run the program again. Note that when reading a char-
acter from the input stream, the newline from the previous input is
still buffered and considered as input. To discard the newline, start
the scanf string with a space like this: scanf(" %c", &input);.

The output has to be as follows:

[.../exercise]$./e5

Give a number: 5

1

2

3

4

5

Run again (y/n)? y

Give a number: 2

1

2

Run again (y/n)? n

Exiting...

[.../exercise]$

Exercise 6 Functions

Functions are a great way to make code reusable, improve the structure of
the code and isolate errors. Write functions that:

a) take two floats as argument and returns the minimum of those.

b) take four floats as argument and returns the minimum. Make use of
the function defined in a).

c) are the same as in a) and b), but returns the maximum.

d) take four floats as argument and returns their sum.

Write a main function that asks the user for four floats and then outputs the
minimum, maximum, their sum and mean value. Use the functions from a)
- d) to implement this. The output has to be as follows:

10

[.../exercise]$./e6

Give four floats: 10.0 -2.3 13.2 20.4

min: -2.300000

max: 20.400000

sum: 41.299999

mean: 10.325000

[.../exercise]$

Exercise 7 Functions II

a) Write functions for the four basic mathematical operations addition,
subtraction, multiplication and division. Each function has two num-
bers as parameters and returns the result. Use integers. You do NOT
have to do rounding for the division.

b) Write a program that asks the user for numbers a and b, and then use
these numbers as arguments for your functions and print the result on
the screen.

The output has to be as follows:

[.../exercise]$./e7

Give a: 11

Give b: 5

11 + 5 = 16

11 - 5 = 6

11 * 5 = 55

11 / 5 = 2

[.../exercise]$

Exercise 8 Arrays

In this exercise we look at some basic operations on arrays. Write a C
function that:

a) counts the number of 0’s in an integer array. The number of 0’s is
returned by the function.

b) prints an array of integers. The integers are printed on one line, en-
closed in curly brackets and separated by commas.

c) triples the value of all elements in an array of integers.

All functions take two parameters, a pointer to the array of integers and the
number of elements in the array.

11

Write a main function that asks the user to input 10 integers and stores
them in an array. Use your other functions to print the initial array, the
number of zero-valued elements in the array and the contents of the array
when all elements have been tripled. The output has to be as follows:

[.../exercise]$./e8

Input 10 numbers: 1 2 3 0 -3 -2 -1 0 10 11

Initial array: { 1, 2, 3, 0, -3, -2, -1, 0, 10, 11 }

Number of 0’s: 2

Tripled array: { 3, 6, 9, 0, -9, -6, -3, 0, 30, 33 }

[.../exercise]$

Exercise 9 Pointers and Strings

In this exercise, you will practice how to program with pointers and
strings. Without using any library functions, write a C function

void append(char* str1, char* str2) { ... }

that takes as argument two strings str1, str2 and appends str2 to str1.
After calling append, the pointer str1 is supposed to point to the concate-
nation of (the original) str1 and str2. The caller of append has to make
sure that enough memory for the result of concatenation is available at the
memory address that str1 points to.

Example

char x[12] = { ’H’, ’e’, ’l’, ’l’, ’o’, ’ ’,

0, 1, 2, 3, 4, 5 };

char *y = "world";

append(x, y);

// now "x" contains the string "Hello world"

Your implementation needs to make sure that the output string (pointed
to by str1) remains a well-formed string. Recall that, by definition, a string
in C is an array of characters terminated with zero.

Write a main function that asks the user to input 2 words and stores
them in character arrays. Then use your append function to append the
second word to the first, and output the result. The output has to be as
follows:

[.../exercise]$./e9

Enter first word: Hello

Enter second word: World

Result of append: HelloWorld

[.../exercise]$

12

Bonus question: Is it possible that an invocation of append changes the
string that str2 points to? Argue why this is not possible, or give an
example program where this happens. In the latter case, make sure that
your implementation of append behaves in an acceptable manner also in
such situations (e.g, your program is not supposed to end up in an infinite
loop).

Exercise 10 Malloc and sorting strings

In this exercise we are going to implement an algorithm to alphabedically
sort character strings. The algorithm we are using is called bubble sort, which
is an easy, but inefficient sorting algorithm. The algorithm works as follows:

1 We are given an array of comparable elements.

2 We loop through the array, comparing the elements next to each other
in the array. If a pair is in the wrong order, we swap their position.

3 If any position was changed, go back to step 2. If we didn’t find a pair
in the wrong order, we are done.

Our program is going to operate on an input of unkown size, which means
that we have to do memory allocation dynamically using malloc and free

from stdlib.h.
When comparing strings we use strcmp from the library string.h. The

function strcmp considers the ASCII values of the characters when com-
paring, which means that numbers are considered smaller than uppercase
letters which are smaller than lowercase letters.

Write a program that asks the user for how many strings to input, what
the maximum string length is and then the actual strings. The program
should then output the same strings in alphabetical order (according to
strcmp). The program should be able to handle an arbitrary number of
strings of an arbitrary maximum length. Make sure to free up your allocated
memory.

The output has to be as follows:

[.../exercise]$./e10

Number of strings: 8

Maximum string length: 10

Give string 0: Hello

Give string 1: world!

Give string 2: Here

Give string 3: is

Give string 4: a

Give string 5: big

Give string 6: number:

13

Give string 7: 1234567890

Input when sorted:

1234567890

Hello

Here

a

big

is

number:

world!

[.../exercise]$

Exercise 11 Sorting arrays in linear time

Write the function threeColorsSort that takes as input an array of in-
tegers in the range of 0 and 2 (0, 1 and 2 only), and arranges them in an
increasing order:

void threeColorsSort(int * theArray, int arraySize)

Your solution should have linear runtime in the parameter arraySize.
Then, write a program that asks the user for how many numbers to

input, and then for the actual numbers. The program should then output
the same numbers in ascending order. Make sure to free up your allocated
memory.

The output has to be as follows:

[.../exercise]$./e11

Number of inputs: 5

Give number 0: 2

Give number 1: 1

Give number 2: 0

Give number 3: 1

Give number 4: 1

Input when sorted:

0

1

1

1

2

[.../exercise]$

Exercise 12 Recursion

The Fibonacci sequence is a sequence of numbers where the first two
numbers are 1 and 1 and the next number in the sequence is the sum of the

14

previous two numbers. The n’th number in the sequence can be calculated
as:
f(1) = 1
f(2) = 1
f(n) = f(n− 1) + f(n− 2)
See the example for the seven first numbers in the sequence.

a) Write a C function with a parameter n that returns the n’th Fibonacci
number. The function must be recursive, i.e., it should call itself.

b) Write a program that asks the user for a number n and then prints
the n first numbers in the Fibonacci sequence.

The output has to be as follows:

[.../exercise]$./e12

Give n: 7

1

1

2

3

5

8

13

[.../exercise]$

Exercise 13 Efficient Fibonacci numbers

Write a second function for computing the Fibonacci sequence that uses
a loop instead of recursion, and that has linear runtime in the given input.
The output has to be as follows (negative numbers occur as a result of
arithmetic overflow):

[.../exercise]$./e13

Give n: 100

1

1

2

3

5

8

13

[...]

708252800

-798870975

-90618175

15

-889489150

-980107325

[.../exercise]$

Exercise 14 Command line arguments and file I/0

Write a program that outputs a multiplication table. The program takes
2 optional (for the user, not for you) arguments: input file and output file.
They are specified with -in <filename> and -out <filename>. The order
should not matter. If no input file is specified, stdio is used as input. If no
output file is stdout is used for output. The user specifies number of rows
and columns, in that order, for the multiplication table with two integers.
The columns must be aligned for all values not exceeding 1000. Remember
to close any files that you opened.

The output has to be as follows:

[.../assignment3]$./a3e1

4 5

1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

4 8 12 16 20

[.../assignment3]$./a3e1 -in input.txt

1 2 3 4 5 6

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24

5 10 15 20 25 30

6 12 18 24 30 36

7 14 21 28 35 42

8 16 24 32 40 48

9 18 27 36 45 54

10 20 30 40 50 60

11 22 33 44 55 66

12 24 36 48 60 72

[.../assignment3]$ cat input.txt

12 6

[.../assignment3]$./a3e1 -out table1.txt

2 3

[.../assignment3]$ cat table1.txt

1 2 3

2 4 6

[.../assignment3]$./a3e1 -out table2.txt -in input.txt

[.../assignment3]$ cat table2.txt

1 2 3 4 5 6

16

2 4 6 8 10 12

3 6 9 12 15 18

4 8 12 16 20 24

5 10 15 20 25 30

6 12 18 24 30 36

7 14 21 28 35 42

8 16 24 32 40 48

9 18 27 36 45 54

10 20 30 40 50 60

11 22 33 44 55 66

12 24 36 48 60 72

[.../assignment3]$

Exercise 15 Doubly linked list

Write a program where you declare a structure for a doubly linked list.
The struct should contain a pointer to a string (name) as a key, a pointer to
the previous element, a pointer to the next element and a birthdate. Please
refer to the linked list C-code on the lecture slides for inspiration. Instantiate
a list with input from stdio. End with inputing Q as name. Then output
the list sorted alphabetically by name according to ASCII. Your solution
should work for an arbitrary number of elements, with a maximum name
length of at least 20 characters. Don’t forget to free everything you allocate.

The output has to be as follows:

[.../exercise]$./e15

Name (Q to quit): Felix

Birthdate: 20121224

Name (Q to quit): Erica

Birthdate: 19980613

Name (Q to quit): Dawn

Birthdate: 19831004

Name (Q to quit): Charles

Birthdate: 19670225

Name (Q to quit): Benny

Birthdate: 20010810

Name (Q to quit): Astrid

Birthdate: 19901105

Name (Q to quit): Greg

Birthdate: 19940423

Name (Q to quit): Q

Astrid, 19901105

Benny, 20010810

Charles, 19670225

17

Dawn, 19831004

Erica, 19980613

Felix, 20121224

Greg, 19940423

[.../exercise]$

Exercise 16 Function pointers

The general understanding of a pointer is the memory address of some
kind of data (integer, array, string, structure, etc . . .).
A pointer can be as well pointing to a function.

Example Imagine we need to perform several kind of arithmetic opera-
tions on integers, let say: multiplying by two, resetting to zero, inverting
the integer sign, etc . . .
Therefore we define the following functions

void op_double(int * a) {...}

void op_reset(int * a) {...}

void op_invert(int * a) {...}

Example of use of one of those functions:

int a;

a = 5;

op_double(&a);

/* now (a == 10) holds */

We can now define a general function pattern using function pointer defini-
tion:

void (* arithmeticFuncPtr) (int *);

Notice that the star is related to the function, not to the returned value. If
we consider an integer returning function, we would have the following:

int (* funcPtr) (int);

/* funcPtr is a pointer to a function that takes as argument

an integer an returns an integer.*/

(int *) funcPtr (int);

/* funcPtr is a function that takes as argument

an integer an returns a pointer to an integer.*/

(int *) (* funcPtr) (int);

/* funcPtr is a pointer to a function that takes as argument

an integer an returns a pointer to an integer.*/

18

The following code illustrates use of the previously defined arithmetic
pointer:

int a = 5;

// Assign the op_double function address to the

// function pointer.

arithmeticFuncPtr = &op_double;

// it also works to say: arithmeticFuncPtr = op_double

// Call of the op_double function using

// the arithmeticFuncPtr

(*arithmeticFuncPtr)(&a);

// it also works to say: arithmeticFuncPtr(&a)

// now (a == 10) is true

Thanks to their power, function pointers are used often in C libraries, frame-
works, and APIs.

Here is what you need to do in this assignment:

1. Write the arithmetic functions op_double, op_reset and op_invert.

2. Write the function applyTo that takes as input a function pointer
func, an array of integers tab and the array size size, and applies the
pointed function to all the elements of the array:

void applyTo(void (* func)(int *), int * tab, int size)

3. Write a main function that asks to user to input a number of integer
values, stores the values in an array, and then applies the functions
op_double, op_reset and op_invert to the array elements, with the
help of applyTo.

The output has to look as follows:

[.../exercise]$./e16

Number of inputs: 5

Give number 0: 10

Give number 1: 9

Give number 2: 8

Give number 3: -1

19

Give number 4: -3

Result of applying op_double: { 20, 18, 16, -2, -6 }

Result of applying op_reset: { 0, 0, 0, 0, 0 }

Result of applying op_invert: { -10, -9, -8, 1, 3 }

[.../exercise]$

Exercise 17 Hamming weight of integers

Write a program that reads an integer n as input, and outputs the num-
ber of bits that are set in the binary representation of n. Can you write this
program without using bit-shifts <<, >> (or multiplication/division by 2)?

The output has to look as follows:

[.../exercise]$./e17

Enter a number: 42

The number of bits set in 42 is 3

[.../exercise]$

Exercise 18 Strongly connected components

A finite directed graph is a tuple (V,E), where V is a finite set of nodes,
and E ⊆ V 2 a set of directed edges. A strongly connected component
(SCC) in a directed graph is a maximum subset C ⊆ V such that the graph
contains a path s0 → s1 → · · · → sn for any two nodes s0, sn ∈ C. Efficient
computation of SCCs is important in various application domains, and can
be used to reduce any graph to a directed acyclic graph (DAG).

Write a program that lets the user input a directed graph and computes
the SCCs of the graph; the SCCs have to be output sorted and in lexico-
graphic order. Can you write a program that runs in time linear in the size
of the graph?

The output has to look as follows:

[.../exercise]$./e18

Enter the number of nodes: 4

Graph contains nodes 0, 1, 2, 3

Enter the edges (-1 to terminate):

0 -> 1

1 -> 2

2 -> 1

2 -> 3

-1

The strongly connected components are:

{ 0 }

{ 1, 2 }

{ 3 }

[.../exercise]$

20

