C Programming Lab

Advanced Computer Science Studies in Sweden
Introduction to Studies in Embedded Systems
HT 2015

Kai Lampka
Philipp RUmmer

Two lab slots

* Thursday Sept 314, 8:00 — 12:00
 Tuesday Sept 8, 8:00 —12:00

* Both start with a lecture part, following by time to
work on the assignments

e Refresher!

 Not meant as a course for beginners
- we assume that you all had some
education in programming before

Assignments, Instructions

* Assignments to be solved individually,
or in groups of two people

» Deadline for submitting solutions:
Tuesday September 8th, 12:00

 Document contains assignments in
order of increasing difficulty
— At least 4 assignments have to be solved to
pass the lab

http://www.it.uu.se/edu/course/homepage/avandatintrois/nt15/c-lab/assignments.pdf

http://www.it.uu.se/edu/course/homepage/avandatintrois/ht15/c-lab/assignments.pdf

#include <stdio.h>
#include myHeader.h

const double tax = 0.2;

int price(int items)

{

return ((l+tax)* items);
}
int main (void)
{

int pay;

pay = price(5);

printf (“You need to pay:%d”,

return 1;

pay) ;

Example

Structure of a C program

ﬁ
declare some #include <stdio.h> s Tell pre-processor to load
(module) global #include myHeader.h these header files
variables (scope
“const double tax = 0.2;

m le gl I - - '
oduegOba) int price, 1i1tems;

int price(int items)

define { .
function — statement 1;
named price statement 2; =, function
return ((l+tax)* items), bod
) B Y
int main (void)
1 —

fat - Function Body,
. Statemenm ’ . .
define - int pay; This is the scope of
pay = price(5):[* function.-local o
return 1; declarations (binding of

! - names)!

function main

built-in data types in C

The most important base data types in C can be grouped into
character, integer and floating point data types

Character data types

Name Range Size Application
char Alpha-numeric 1 Byte | characters are put in quotes
character chara="‘a’;
char -128 to 127 1 Byte | we store integer values
char a=128; (??)
unsigned 0to 255 1 Byte | positive integer values
char char a = 256; (??)

Remember: size of a Byte is fixed (8 Bits). Size of a word depends on the
architecture. 64-Bit architecture has words of 8 Bytes

integers

Name Range? Size
short int -32768 to 32767 2 Byte
int architecture dependent
unsigned int architecture dependent
long int -2,147,483,648 to 2,147,483,647 4 Byte
unsigned long int [0to 4,294,967,295 4 Byte
long long int -9,223,372,036,854,775,808 to 8 Byte

-9,223,372,036,854,775,8087
unsigned long 0 to 8,446,744,073,709,551,615 8 Byte
long 1nt

int and unsigned int have architecture dependent sizes. For a 64-Bit

architecture size is 8 Byte.

floating point

Name Range! Size Precision
float 1.18 * 1038t0 3.4 * 1038 4 Byte 7 digits
double 2.23 ¥ 103%8t0 1.79 * 10308 8 Byte 15 digits
long double 3.37 * 10493210 1.18 * 104932 16 Byte | 33 digits

long long int -9,223,372,036,854,775,808 to | 8 Byte
-9,223,372,036,854,775,8087

unsigned long 0 to 8,446,744,073,709,551,615 | 8 Byte
long int

Implementation of 1long double isarchitecture dependent

Remarks

<> For the non-signed data types one my use the keyword sign to
emphasize the signed character. But one does not need to do

this (and nobody actually does)

<> For short, long, signed andunsigned int, the
keyword int can be omitted

< function sizeof (xyz) gives you the number of byte of
data type xyz

Operators
The distinguish between

<> unary, one operand, e.g. negation !A
<> binary, two operands, e.g., addition a+a,

<> ternary operator a?b:c; (if a is true give b else c)

S

Arithmetic operators

Operator Example Remark
Addition: + b =a+ a; first addition than
assignment to variable
C
Subtraction: - b =a - a; as expected
Multiplication: * b =a* a; as expected
Division: / b = a/ a; as expected
Modulo: % (division with |b = a % a; as expected (gives 0).
remainder)
hortforms (combined with assignment)
Operator Example Remark
Increment: ++ b++; gives b = b+l;
Decrement: -- b--; gives b = b-1;
Addition to a variable b +=a; gives b = b +
ay
Subtraction, multiplication, a —-= a*= b; as expected
division and modulo to and with |a /= a%=b;
a variable

Relational operators

Operator Example Remark
smaller: < b < c evaluates to true, 1.e.
1, 1f and only if
variable b 1s smaller
than variable c
larger : > b > c as expected
smaller equal: >= b >= c as expected
larger equal : =< b =< c as expected
equal: == b == c as expected
not equal: != b !=c as expected

Logical operators

Operator Example Remark
and: && a == 5 && b == evaluates to true, i1.e. 1,
if and only if variable a
is 5 and b is 3
or: || a == || b == as expected
not: ! I (a == 5) evaluates to true if a 1is

not 5.

Bit operators

Operator Example Remark

let a = 0011 and b = 1001
and: & c =a & b; c 1s
or: | c =a | b; Cc 1s
xor: * c =a " b; C 1S
left shift << c = a << b; c 1s
right shift >> | c = a >> b; Cc 18
bitwise c = ~b; C 1S
negation: = ~

Short forms

Operation short
version

long version

Remark
let a = 0011

a is

a 1s

Conversion of data types

In case one uses different data types implicit type conversion

rules apply. This may yield:

<> loss of bit positions or

<> precision of the floating point

To avoid implicit conversion, one can do an explicit type

conversion denoted cast

Operation short version

Remark

int i = 5;

double Db (double) 1i;

The value of wvariable 1 1is
converted into a double and
assigned to variable Db

double a = 3.2, b = 4.5;
double ¢ = (double) ((int)
+ (int) b))

a

b 1s

Functions

Parameters:

<> data_type identifier, e.g., int a, int b, double c
<> entries are separated by komma.

Parameters are function local variable:

<> identifier is only visible within function

<> the actual passed in variable is a copy, i.e., any manipulation is
not made to the original variable but the copied input
parameter.

int addAndAssign (int a, 1int b)
{

a += b; //value of a here?
return (a) ;

}

//somewhere in main ()
int a = 10;
addAndAssign(a, 5); //value of a here?

Comments in C

<>Example
/* This is and example of a comment
put into a C program */

< begin with /* and end with */ indicating that
these two lines are a comment.

<>You insert comments to document programs
and improve program readability.

<-Comments do not cause the computer to
perform any action when the program is run.
(They are removed by the pre-processor).

if-then-else-statement

An if statement can be extended with an else-statement. In case the
expression of the if-statement is O, the body of the else is executed.

Syntax

1f (expression){ body of i1f-statement }
else { body of 1f-statement }

<> The body can be a single statement, than you do not need the
curly brackets

<> An else-statement always refers to the previous if-statement,
curly brackets improve readability!

int mynumber = scanf ("%d", &mynumber) ;

if (mynumber == 10) {
printf ("is equal 10\n");
printf ("closing program\n");
return 0O;

}

else printf("is not equal 10\n");

if-then-else-statement (more)

Elseif-statement.
<> Does not exists in C, instead one may sue else if { .. }.
<> This works as the if-statement and its body is seen as single line.

1f(expressionl)
statementl;

else if (expression2)
statement?;

else if (expression3)
statement3;

else
statementN;

<> An else-statement always refers to the previous if-statement,

curly brackets improve readability! int p = 0
1f(0)

if (1) p = 5;
else p = 1;

?-statement

if-then-else can be replaced with a single statement
Syntax
result = test-expression ? valuel : valueZ;

If test-expression evaluates to true result is assigned the
value valuel, otherwise result is assigned the value value?.

int mynumber = scanf ("%d", &mynumber) ;
1f (mynumber == 10)

printf ("is 10\n");
else

printf ("is not 10\n");

int mynumber = scanf ("%d", &mynumber), c;
c = (mynumber != 10) ? printf("is not 10\n") : printf("is 10\n");

// another example
int max;
max = (vl > v2) 2?2 vl : v2;

switch-statement

<> The switch statement can have many conditions. You start the switch
statement with a switch-expression which is evaluated.

< Ifone of the case expressions equals the value of the expression, the
instructions are executed until a break is encountered.

< If none of the case expressions equalsthe switch expression the default

is executed
int main() {

char myinput;

printf (“Choose: \t a) Program 1 \t Db)

scanf ("%c", &myinput);

Program 2\n") ;

switch (myinput){ // variables are evaluated

case 'a': //compare value to case-expression
printf ("Run program 1\n");
break; €

case 'b’:

printf ("Run program 2\n");
printf ("Please Wait\n");
break,; €

default:

printf ("Invalid choice\n");

break; ¢
}

return 0;}

The break-statements are
required to exit the switch
statement, otherwise
everything behind will be
executed as well, until the
next break or the end of the
switch —no re-testing of the
variable again!

while-Loop
while (loop-condition)

{
// loop body
} // brackets can be omitted for a single statement

<> The loop condition is the expression which tells us if we can enter (again).
<> No pre- and post-loop statements

#include<stdio.h>

int main () {

int 1, howmuch;

scanf ("%sd", &howmuch) ;

1= 0;

while (i < howmuch) printf ("Hello World: %d\n”,++i);
return O;

}

Be aware of endless loops and that variables have always the intended value.

do-while-Loop
<> The “do while loop” is almost the same as the while loop. But loop-condition is tested
after the body!.
<> The “do while loop” has the following form:
do
{
// loop body
} // brackets can be omitted for a single statement
while (loop-condition);

#include<stdio.h>

int main () {

int 1, howmuch;

scanf ("%sd", &howmuch) ;

i = 0;

do {

printf ("Hello World: %d\n”,++1i);

} while (1 < hownmuch) ;

return O;

}

Be aware of endless loops and that variables have always the intended value.

for-Loop

for (pre-loop statement; loop-condition; post-loop statement)

{
// loop body
} // brackets can be omitted for a single statement

<> The pre-loop statement is executed before the first loop entry.
<> The loop condition is the expression which tells us if we can enter (again).
<> post-loop statement is executed after each loop iteration.

#include<stdio.h>

int main () {
int 1i;
for (1 = 0; 1 < 10; i++)/{
printf ("Hello World: %d\n”,i);
}

return 0;

Be aware of endless loops and that variables have always the intended value.

pre-mature leave or re-entering of a loop

<> With a break-statement the loop is left immediately
<> with a continue-statement one directly jumps to the loop-head and tests the loop
condition again (for and while loop)

#include<stdio.h>
int main () {

int 1i;

for (1 = 0; 1 < 10; 1i++){
1f(!'(1 % 5)) continue;

printf ("Hello World: %d\n”,1i);

}

return 0;}

#include<stdio.h>
int main () {

int 1, p;

printf (”\nGive a number to be tested for being prime\n”);
scanf ("%d", &p);

for (int 1 = 2; 1 < p; 1i++){
if (p $ 1 == 0) break;
}
if (i == p) printf (”%d is a prime \n”,p);

else printf (”%d is not a prime \n”,p);
return 0;}

function printf()

<> The printf function is another useful function from the
standard library

< Syntax: printf (“expression”, variable 1, ..);

< expresion istext mixed with format specifiers for the
variables

< the format specifiers are mapped to the variables 1:1 in the
order of appearance

%i or %d int

%c char

%f %f float (see also the note
next page)

%s string string

function printf()

#include<stdio.h>

main () {
int a,b;
float c¢,d;
a = 15;
b =a/ 2;
printf ("%d\n",Db);
printf ("%$3d\n",b);
printf ("$03d\n",b); Useful special signs to be used
in the expression passed to printf():
c - 15.37 \n (newline)
d=c / 3;
printf ("$3.2f\n",d) ; \t (tab)
) \Vv (vertical tab)
\f (new page)
\b (backspace)

\r (carriage return)
\n (newline)

function scanf()

#include <stdio.h>
int main ()
{
char strl1[20], str2[30];

printf ("Enter name: ");
scanf ("%s", &strl);

printf ("Enter your website name: ");
scanf ("%s", &str2);

printf ("Entered Name: %$s\n", strl);
printf ("Entered Website:%s", str2);

return (0) ;

What is a pointer ?

* In C, a pointer variable (or just “pointer”) is
similar to a reference and it can contain the
memory address of any variable

— A primitive (int, char, float)

— An array

— A struct or union

— Dynamically allocated memory
— Another pointer

— A function

— There’s a lot of syntax required to create and use
pointers

1/14/10

Pointer Caution

 They are a powerful low-level device.
* Undisciplined use can be confusing and thus the
source of subtle, hard-to-find bugs.
— Program crashes
— Memory leaks
— Unpredictable results

1/14/10

Pointer Declaration

The declaration

int *intPtr;
defines the variable intPtr to be a pointer to a variable of
type int. intPtr will contain the memory address of some
int variable or int array. Read this declaration as

— “intPtr is a pointer to an int”, or equivalently
— “~intPtrisan int”

Caution -- Be careful when defining multiple variables on the
same line. In this definition

int *intPtr, intPtr2;

intPtr is a pointer to an 1nt, but intPtr2 is not!

1/14/10

Pointer Operators

The two primary operators used with pointers are
* (star) and & (ampersand)

— The * operator is used to define pointer variables and to
deference a pointer. “Dereferencing” a pointer means to
use the value of the pointee.

— The & operator gives the address of a variable.
Recall the use of & in scanf ()

1/14/10

Pointer Examples

int x =1, y =2, z[10];

int *ip; /* ip is a pointer to an int */

ip = &x; /* ip points to (contains the memory address of) x */
y = *ip; /* y is now 1, indirectly copied from x using ip */
ip = 0; / x is now 0 */

ip = &z[5]; /* ip now points to z[5] */

If ip points to x, then *ip can be used anywhere x can be used so in this
example *ip = *ip + 10; and x = x + 10; are equivalent

The * and & operators bind more tightly than arithmetic operators so

y = *ip + 1; takes the value of the variable to which ip points, adds 1
and assigns it to y

Similarly, the statements *ip += 1; and ++*ip; and (*ip)++; all increment
the variable to which ip points. (Note that the parenthesis are
necessary in the last statement; without them, the expression would
increment ip rather than what it points to since operators like * and
++ associate from right to left.)

1/14/10

NULL

« NULL is a special value which may be assigned to a pointer

 NULL indicates that this pointer does not point to any
variable (there is no pointee)

 Often used when pointers are declared
int *pInt = NULL;

« Often used as the return type of functions that return a
pointer to indicate function failure

int *myPtr;
myPtr = myFunction()
if (myPtr == NULL) {
/* something bad happened */

}

Dereferencing a pointer whose value is NULL will result in
program termination.

1/14/10

Pointers and Function Arguments

« Since C passes all primitive function arguments “by value”
there is no direct way for a function to alter a variable in the
calling code.

« This version of the swap function doesn’t work. WHY NOT?

/* calling swap from somewhere in main() */
int x = 42, y = 17;
Swap(x, y)

/* wrong version of swap */
void Swap (int a, int b)

{

int temp;
temp = a;
a =>b;

b = temp;

}
1/14/10

A better swap()

 The desired effect can be obtained by passing pointers to
the values to be exchanged.

« This is a very common use of pointers.

/* calling swap from somewhere in main() */
int x = 42, y = 17;
Swap (&x, &y);

/* correct version of swap */
void Swap (int *px, int *py)
{

int temp;
temp = *px;
*Px = *py;

*py = temp;
}
1/14/10

<> Operators to pointers:
* . contents of a pointer

&: address of a pointer

Pointer

int n = 10;
int al[3] = {3,5,7};

e

*(a+1)
(contens of a plus one
times size of element)

3 5 7
d >
(starting \ a+1
address) (address of a plus one times
* 5 size of element (here 32 bit))

(contens of a)

Exercises

1) Output 10) Malloc, sorting strings

2) Input 11) Sorting arrays in linear time
3) Conditionals 12) Recursion

4) Loops 13) Efficient Fibonacci

5) Loops Il 14) Cmdl. arguments, file I/O
6) Functions 15) Linked lists

/) Functions Il 16) Function pointers

8) Arrays 17) Hamming weight

9) Pointers and Strings 18) SCCs in graphs

