GPU Architecture and Programming with OpenCL

David Black-Schaffer david.black-schaffer@it.uu.se Room 1221

Today's Topic

- GPU architecture
 - What and why
 - The good
 - The bad
- Compute Models for GPUs
 - Data-parallel
- OpenCL
 - Programming model
 - Memory model
 - Hello World
- Ideas for Ph.D. student projects

GPU Architecture: Why?

Answer: Triangles

Real Answer: Games

Really Real Answer: Money

GPUs: Architectures for Drawing Triangles Fast

Images from caig.cs.nctu.edu.tw/course/CG2007

- Basic processing:
 - Project triangles into 2D
 - Find the pixels for each triangle
 - Determine color for each pixel
- Where is most of the work?
 - 10k triangles (30k vertices)
 - Project, clip, calculate lighting
 - 1920x1200 = 2.3M pixels
 - 8x oversampling = 18.4M pixels
 - 7 texture lookups
 - 43 shader ops
 - @ 60fps
 - Compute: 47.5 GOPs
 - Memory: 123GB/s
 - Intel Nehalem: 106 GFLOPs, 32GB/s

Example Shader: Water

```
source
                                                                                   Water
float4 main ( PS INPUT i ) : COLOR
  // Load normal and expand range
                                                                                  Shader
  float4 vNormalSample = tex2D( NormalSampler, i.vBumpTexCoord );
  float3 vNormal = vNormalSample * 2.0 - 1.0;
  float ooW = 1.0f / i.W; // Perform division by W only once
  float2 vReflectTexCoord, vRefractTexCoord;
  float4 vN; // vectorize the dependent UV calculations (reflect = .xy, refract = .wz)
  vN.xv = vNormal.xv;
  vN.w = vNormal.x:
  vN.z = vNormal.y;
  float4 vDependentTexCoords = vN * vNormalSample.a * q ReflectRefractScale;
  vDependentTexCoords += ( i.vReflectXY vRefractYX * ooW );
  vReflectTexCoord = vDependentTexCoords.xy;
  vRefractTexCoord = vDependentTexCoords.wz;
  float4 vReflectColor = tex2D( ReflectSampler, vReflectTexCoord ) * vReflectTint; // Sample reflection
  float4 vRefractColor = tex2D( RefractSampler, vRefractTexCoord ) * vRefractTint; // and refraction
  float3 vEyeVect = texCUBE( NormalizeSampler, i.vTangentEyeVect ) * 2.0 - 1.0;
  float fNdotV = saturate( dot( vEyeVect, vNormal ) ); // Fresnel term
  float fFresnel = pow( 1.0 - fNdotV, 5 );
  if ( g bReflect && g bRefract ) {
     return lerp( vRefractColor, vReflectColor, fFresnel );
  else if ( bReflect ) {
     return vReflectColor;
  } else if g bRefract ) {
     return vRefractColor;
     return float4( 0.0f, 0.0f, 0.0f, 0.0f);
```


- Vectors
- Texture lookups
- Complex math
- Function calls
- Control flow
- No loops

GPGPU: General Purpose GPUs

- Question: Can we use GPUs for non-graphics tasks?
- Answer: Yes!
 - They're incredibly fast and awesome
- Answer: Maybe
 - They're fast, but hard to program
- Answer: Not really
 - My algorithm runs slower on the GPU than on the CPU
- Answer: No
 - I need more precision/memory/synchronization/other

Why Should You Care?

Intel Nehalem 4-core

130W, 263mm²
32 GB/s BW, 106 GFLOPs (SP)
Big caches (8MB)
Out-of-order
0.8 GFLOPs/W

AMD Radeon 5870

188W, 334mm²
154 GB/s BW, 2720 GFLOPs (SP)
Small caches (<1MB)
Hardware thread scheduling
14.5 GFLOPs/W

GPU Design

1) Process pixels in parallel

- Data-parallel:
 - 2.3M pixels per frame
 - => lots of work
 - All pixels are independent
 - => no synchronization
 - Lots of spatial locality
 - => regular memory access
- Great speedups
 - Limited only by the amount of hardware

GPU Design

- 2) Focus on throughput, not latency
- Each pixel can take a long time......as long as we process many at the same time.
- Great scalability
 - Lots of simple parallel processors
 - Low clock speed

CPU vs. GPU Philosophy: Performance

4 Massive CPU Cores: Big caches, branch predictors, out-of-order, multiple-issue, speculative execution, double-precision... About 2 IPC per core, 8 IPC total @3GHz

8*8 Wimpy GPU Cores: No caches, inorder, single-issue, single-precision...

About 1 IPC per core, 64 IPC total @1.5GHz

Example GPUs

Nvidia G80 AMD 5870

Instructions

g= f+1 f=ld(e) d= d+1 e=ld(d) c= b+a b= a+1

Instructions

+

ld/st

Instructions

```
g= f+1

f=ld(e)

d= d+1

c= b+a
```

```
+
b= a+1
```

```
ld/st
e=ld(d)
```

Instructions

Memory access will take ~100 cycles...

Instructions

Instructions

b= a+1

Instructions

Instructions

+

ld/st

L1 Cache

Instructions

Instructions

Instructions

L1 Cache L2 Cache

Instructions

- Big caches + instruction window + out-oforder + multiple-issue
- Approach
 - **Reduce** memory latencies with caches
 - Hide memory latencies with other instructions

+ ld/st
g= f+1
d= d+1
e=ld(d)
c= b+a
b= a+1

Cycle 25

 As long as you hit in the cache you get good performance

Instructions

+

ld/st

Instructions

```
g= f+1
f=ld(e)
d= d+1
e=ld(d)
c= b+a
```

```
+
b= a+1
```

ld/st

Instructions

ld/st

b= a+1

Instructions

Solution: Give Up

| ld/st | e=ld(d) No cache ~ 100+ cycles

Memory

Instructions

```
g= f+1
f=ld(e)
d= d+1
e=ld(d)
c= b+a
b= a+1
```

+ ld/st

e=1d(d)

Memory

Instructions

```
g= f+1
f=ld(e)
d= d+1
e=ld(d)
c= b+a
```

```
+
b= a+1
```

Memory

Instructions

Memory

Cycle 4

c= b+a

Instructions

g= f+1 f=ld(e) d= d+1 g= f+1 f=ld(e) d= d+1

Memory

+ ld/st e=ld(d)

c= b+a

b= a+1

c= b+a b= a+1

Cycle 5

Instructions

```
g= f+1
f=ld(e)
d= d+1
e=ld(d)
c= b+a
b= a+1
```


+ ld/st

e=ld(d)

Memory

c= b+a b= a+1

Instructions

+ ld/st

e=ld(d)

Instructions

First load ready!

Instructions

+

ld/st

First load ready!

Instructions

Memory

Cycle 103

Instructions

Cycle 104

- Thousands of hardware threads
- 1 cycle context switching
- Hardware thread scheduling
- As long as there is enough work in other threads to cover latency you get high throughput.

Notes:

- GPUs have caches for textures
- •GPUs will soon have data caches

GPU Instruction Bandwidth

GPU compute units fetch 1 instruction per cycle...

...and share it with 8 processor cores.

What if they don't all want the same instruction? (divergent execution)

Divergent Execution

Divergent execution can dramatically hurt performance. Avoid it on GPUs today.

Divergent Execution for Real

Per-pixel Mandelbrot calculation:

```
while (x*x + y*y <= (4.0f) && iteration < max_iterations) {
  float xtemp = x*x - y*y + x0;
  y = 2*y*x + y0;
  x = xtemp;
  iteration++;
}
color = iteration;</pre>
```

Color determined by iteration count...

...each color took a different number of iterations.

Every different color is a divergent execution of a work-item.

Instruction Divergence

- Some architectures are worse...
 - AMD's GPUs are 4-way SIMD
 If you don't process 4-wide vectors you lose.
 - Intel's Larabee is(was?) 16-way SIMD Theoretically the compiler can handle this.
- Some architectures are getting better...
 - Nvidia Fermi can fetch 2 instructions per cycle
 - But it has twice as many cores
- In general:
 - Data-parallel will always be fastest
 - Penalty for control-flow varies from none to huge

CPU and GPU Architecture

- GPUs are throughput-optimized
 - Each thread may take a long time, but thousands of threads
- **CPUs** are latency-optimized
 - Each thread runs as fast as possible, but only a few threads
- **GPUs** have hundreds of wimpy cores
- **CPUs** have a few massive cores
- **GPUs** excel at regular math-intensive work
 - Lots of ALUs for math, little hardware for control
- **CPUs** excel at irregular control-intensive work
 - Lots of hardware for control, few ALUs

OpenCL

What is OpenCL?

Low-level language for high-performance heterogeneous data-parallel computation.

- Access to all compute devices in your system:
 - CPUs
 - GPUs
 - Accelerators (e.g., CELL)
- Based on C99
- Portable across devices
- Vector intrinsics and math libraries
- Guaranteed precision for operations
- Open standard

What is OpenCL Good For?

- Anything that is:
 - Computationally intensive
 - Data-parallel
 - Single-precision*

Note: I am going to focus on the GPU

*This is changing, the others are not.

Computational Intensity

- Proportion of math ops: memory ops Remember: memory is slow, math is fast
- Loop body: Low-intensity:

```
A[i] = B[i] + C[i] 1:3

A[i] = B[i] + C[i] * D[i] 2:4

A[i] +  1:2
```

Loop body: High(er)-intensity:

```
Temp+= A[i]*A[i] 2:1
A[i] = exp(temp)*erf(temp) X:1
```

Data-Parallelism

- Same independent operations on lots of data*
- Examples:
 - Modify every pixel in an image with *the same* filter
 - Update every point in a grid using the same formula

*Performance may fall off a cliff if not exactly the same.

Single Precision

32 bits should be enough for anything...

Single Precision

Double Precision

This is changing. Expect double precision everywhere in 2 years.

OpenCL Compute Model

- Parallelism is defined by the 1D, 2D, or 3D global dimensions for each kernel execution
- A work-item is executed for every point in the global dimensions

Examples

1k audio: 1024 work-items

HD video: 1920x1080 2M work-items

3D MRI: 256x256x256 16M work-items

HD per line: 1080 1080 work-items

HD per 8x8 block: 240x135 32k work-items

Local Dimensions

- The global dimensions are broken down into local work-groups
- Each work-group is logically executed together on one compute unit
- Synchronization is only allowed between work-items in the same work-group
 This is important.

Local Dimensions and Synchronization

Global domain: 20x20

Work-group size: 4x4

Work-group size limited by hardware. (~512)

Implications for algorithms: e.g., reduction size.

Synchronization Example: Reduction

Synchronization Example: Reduction

Synchronization Example: Reduction

Why Limited Synchronization?

- Scales well in hardware
 - Only work-items within a work-group need to communicate
 - GPUs run 32-128 work-groups in parallel

Choosing Local and Global Dimensions

Global dimensions

- Natural division for the problem
- Too few: no latency hiding
- Too many: (too little work each) too much overhead
- In general:
 - **GPU:** >2000
 - CPU: ~2*#CPU cores

Local dimensions

- May be determined by the algorithm
- Optimize for best processor utilization (hardware-specific)

OpenCL Memory Model

OpenCL Memory Model

OpenCL Memory Model

Moving Data

- No automatic data movement
- You must explicitly:
 - Allocate global data
 - Write to it from the host
 - Allocate local data
 - Copy data from global to local (and back)
- But...
 - You get full control for performance! (Isn't this great?)

OpenCL Execution Model

Memory Objects

Devices

Your Application

OpenCL Execution Model

- Devices
 - CPU, GPU, Accelerator
- Contexts
 - A collection of devices that share data
- Queues
 - Submit (enqueue) work to devices
- Notes:
 - Queues are asynchronous with respect to each other
 - No automatic distribution of work across devices

OpenCL Kernels

- A unit of code that is executed in parallel
- C99 syntax (no recursion or function ptrs)
- Think of the kernel as the "inner loop"

```
Regular C:

void calcSin(float *data) {
  for (int id=0; id<1023; id++)
    data[id] = sin(data[id]);
}</pre>
```

```
OpenCL Kernel:

void kernel calcSin(global float *data) {
  int id = get_global_id(0);
  data[id] = sin(data[id]);
}
```

An OpenCL Program

- 1. Get the devices
- 2. Create contexts and queues
- 3. Create programs and kernels
- 4. Create memory objects
- 5. Enqueue writes to initialize memory objects
- 6. Enqueue kernel executions
- 7. Wait for them to finish
- 8. Enqueue reads to get back data
- 9. Repeat 5-8

OpenCL Hello World

- Get the device
- Create a context
- Create a command queue

This example has no error checking. This is very foolish.

OpenCL Hello World

- Create a program with the source
- Build the program and create a kernel

Create and initialize the input

Note that the buffer specifies the **context** so OpenCL knows which devices may share it.

- Set the kernel arguments
- Enqueue the kernel

Local dimensions are NULL. OpenCL will pick reasonable ones automatically. (Or so you hope...)

Read back the results

The CL_TRUE argument specifies that the call should block until the read is complete. Otherwise you would have to explicitly wait for it to finish.

The Demo

More OpenCL

- Querying Devices
- Images
- Events

Querying Devices

- Lots of information via clGetDeviceInfo()
 - CL_DEVICE_MAX_COMPUTE_UNITS*

 Number of compute units that can run work-groups in parallel
 - CL_DEVICE_MAX_CLOCK_FREQUENCY*
 - **CL_DEVICE_GLOBAL_MEM_SIZE***Total global memory available on the device
 - CL_DEVICE_IMAGE_SUPPORT
 Some GPUs don't support images today
 - CL_DEVICE_EXTENSIONS
 double precision, atomic operations, OpenGL integration

*Unfortunately this doesn't tell you how much memory is available right now or which device will run your kernel fastest.

Images

■ 2D and 3D Native Image Types

- R, RG, RGB, RGBA, INTENSITY, LUMINANCE
- 8/16/32 bit signed/unsigned, float
- Linear interpolation, edge wrapping and clamping

Why?

- Hardware accelerated access on GPUs
- Want to enable this fast path
- GPUs cache texture lookups today

■ But...

- Slow on the CPU (which is why Larabee does this in HW)
- Not all formats supported on all devices (check first)
- Writing to images is not fast, and can be very slow

Events

- Subtle point made earlier:
 - Queues for different devices are asynchronous with respect to each other
- Implication:
 - You must explicitly synchronize operations between devices

(Also applies to out-of-order queues)

Events

- Every clEnqueue() command can:
 - Return an event to track it
 - Accept an event wait-list

- Events can also report profiling information
 - Enqueue->Submit->Start->End

Event Example

- Kernel A output -> Kernel B input
- Kernel A runs on the CPU
- Kernel B runs on the GPU
- Need to ensure that B waits for A to finish

Performance Optimizations

- Host-Device Memory (100x)
 - PCIe is slow and has a large overhead
 - Do a lot of compute for every transfer
 - Keep data on the device as long as possible
- Memory Accesses (~10x)
 - Ordering matters for coalescing
 - Addresses should be sequential across threads
 - Newer hardware is more forgiving
- Local Memory (~10x)
 - Much larger bandwidth
 - Must manually manage
 - Look out for bank conflicts
- Divergent execution (up to 8x)
- Vectors (2-4x on today's hardware)
 - On vector HW this is critical (AMD GPUs, CPUs)
 - OpenCL will scalarize automatically if needed
- Math (2x on intensive workloads)
 - fast_ and native_ variants may be faster (at reduced precision)

Debugging (Or Not)

- Very little debugging support on GPUs
- Start on the CPU
 - At least you can use printf()...
- Watch out for system watchdog timers
 - Long-running kernels will lock the screen
 - Your kernel will be killed after a few seconds
 - Your app will crash
 - Your users will be sad

GPU Projects

Approaches

- Data-parallel
 - Simplest mapping
 - Just need right compute-to-memory ratio
- Thread-parallel
 - Generally a bad mapping
 - Threads that don't do the same thing pay a big penalty
 - Only cheap local synchronization
- Reduction
 - Require synchronization between stages
 - Tricky across work-groups
- Scan-based
 - Handles variable length data
 - Brute-force, but fully data-parallel

Scan Algorithms

Simple Scan

- Produces all sums of the elements
- Also works with min, max, or, etc.
- Log scaling with the number of elements
- Data-parallel
- Can do conditional operations too
 - Pass in a second array of flags
 - Conditionally propagate data based on flags
 - Allows for data-parallel execution of variable-length operations (this is awesome)

Project Ideas

- JPEG zero-run encoding performance for varying sizes
 - 64 quantized coefficients; need to count zeros and then Huffman encode
 - Parallel scan vs. serial for RLE
- Variable length processing
 - Serial scan has nearly 2x the data bandwidth
 - But it's fully parallel
 - At what level does it make sense?
 - Local memory
 - Global memory