GPU Architecture and
Programming with OpenCL

David Black-Schaffer
david.black-schaffer@it.uu.se
Room 1221

GPU Architecture: Why?

= Answer: Triangles

m Real Answer: Games

= Really Real Answer: Money

Today’s Topic

GPU architecture
What and why
The good
The bad

Compute Models for GPUs
Data-parallel

OpenCL
Programming model
Memory model
Hello World

Ideas for Ph.D. student projects

GPUs: Architectures for Drawing
Triangles Fast

® Basic processing:
Project triangles into 2D
Find the pixels for each triangle
Determine color for each pixel

m Where is most of the work?
10k triangles (30k vertices)
= Project, clip, calculate lighting
1920x1200 = 2.3M pixels
= 8x oversampling = 18.4M pixels
= 7 texture lookups
m 43 shader ops
@ 60fps
s Compute: 47.5 GOPs
= Memory: 123GB/s
m Intel Nehalem: 106 GFLOPs, 32GB/s

Images from caig.cs.nctu.edu.tw / course/ CG2007

Example Shader: Water GPGPU: General Purpose GPUs

Water Question: Can we use GPUs for non-graphics tasks?
Shader

Answer: Yes!
They’re incredibly fast and awesome
Answer: Maybe
They're fast, but hard to program
et R) Answer: Not really
Vectors My algorithm runs slower on the GPU than on the CPU

Texture lookups Answer: No

o it { oo e I need more precision/memory /synchronization/other
Function calls

n |vhairagi€ol Control flow
eeturn [fleatd(0,02, 0.02, 0.02, 0.0F);

. No loops

}
From http:/ /www2.ati.com/developer/gdc/D3DTutorial10_Half-Life2_Shading.pdf

; vEafleotColor, f¥resnel);

Why Should You Care? GPU Design

otel Nenalem dcore 1) Process pixels in parallel

Memory Controller

m Data-parallel:

2.3M pixels per frame
=> |ots of work

Shared L3 Cache P e e e e s e All pixels are independent
=>no synchronization

Lots of spatial locality

=> regular memory access
130W, 263mm? 188W, 334mm?

32 GB/s BW, 106 GFLOPs (SP) 154 GB/s BW, 2720 GFLOPs (SP) - Gusatopredips

Big caches (SMB) Small caches (<1MB) Limited only by the amount of hardware
Out-of-order Hardware thread scheduling

0.8 GFLOPs/W 14.5 GFLOPs/W

GPU Design

2) Focus on throughput, not latency

m Each pixel can take a long time...
...as long as we process many at the same time.

m Great scalability

Lots of simple parallel processors

Low clock speed

Latency-optimized (fast, serial) Throughput-optimized (slow, parallel)

CPU vs. GPU Philosophy:
Performance

L2

LM i)

L2

BP L1 BP EI L1

T

Fixed-function Logic

Lots of Small Parallel Processors
- Limited Interconnect
1] [I;_imited]l\ﬂemﬁ)lfyj [T

Lots of Memory Controllers
Very Small Caches

Nvidia G80

Fixed-function Logic

. Lots of Smﬂl lg |
| Limited llxjc_gnnecg’

Lin}?e! Eemnry =

Zam 2

Lots of Memory Controllers
Very Small Caches

N I

AMD 5870

4 Massive CPU Cores: Big caches, branch
predictors, out-of-order, multiple-issue,

speculative execution, double-precision...
About 2 IPC per core, 8 IPC total @3GHz

8*8 Wimpy GPU Cores: No caches, in-
order, single-issue, single-precision...

About 1 IPC per core, 64 IPC total @1.5GHz

CPU Memory Philosophy

Instructions

g= f+1
f=1d (e)

d= d+1
e=1d (d)
c= b+a
b= a+l

CPU Memory Philosophy CPU Memory Philosophy

Instructions Instructions

g= f+1 g= f+1
f= [f= e
d="d+1 d=

e= el
c—15¥a
= a+1

1d/st

CPU Memory Philosophy CPU Memory Philosophy

Instructions Instructions

Memory access will take ~100 cycles...

CPU Memory Philosophy CPU Memory Philosophy

Instructions Instructions

CPU Memory Philosophy CPU Memory Philosophy

Instructions Instructions

CPU Memory Philosophy

Instructions

CPU Memory Philosophy

CPU Memory Philosophy

Instructions

Instructions

L1
Cache

Miss!

Hit!

Now we stall the processor for
20 cycles waiting on the L2...

CPU Memory Philosophy

Instructions

CPU Memory Philosophy

Instructions

Cycle 25

CPU Memory Philosophy

Instructions

Big caches + instruction window + out-of-
order + multiple-issue
Approach

Reduce memory latencies with caches

Hide memory latencies with other
instructions

As long as you hit in the cache you get
good performance

CPU Memory Philosophy

Instructions

+ 1d/st

£ -e
= d+1
e= d
c= b+a
= a+l

Cycle 25

GPU Memory Philosophy

Instructions

g= f+1
£=1d (e)

d= d+1
e=1d (d)
c= b+ta
o= cipil

1d/st

GPU Memory Philosophy

Instructions

g= f+1
f=1d (e)

d= d+1
e=1d (d)

c=bb¥a |

1d/st

GPU Memory Philosophy

Instructions

Solution: Give Up

No cache ~ 100+ cycles

> Memory

GPU Memory Philosophy

Instructions

g= f£+1
f=1d (e)

d= d+1
e=1d(d)

+ 1d/st

Cycle 1

GPU Memory Philosophy

Instructions

g= f+1

£f=1d (e)

d= d+1

e=1d(d) (o= £+1]
c= b+a f=1d (e)
o= cipil d= d+1

1d/st

Memory

GPU Memory Philosophy

Instructions

g= f+1
f=1d (e)
d= d+1
e=1d (d)

c=bb¥a

GPU Memory Philosophy

Instructions

g= f+1

£=1d (e)

d= d+1
[le=tday]

f=1d (e)
d= d+1

1d/st

GPU Memory Philosophy

Instructions

g= f+1
£=1d (e)

d=nd¥d’

1d/st
e=1d(d)

g= f+1
£=1d (e)
d= d+1

— > Memory

1d/st

Memory

GPU Memory Philosophy

Instructions

g= f+1
[£=1d(e)|
d= d+1
e=1d (d) g= f+1
c= bta f=ld(9)ﬂ

b= a+1 [] dSNa

1d/st

=), Memory

[o] -1

b= a+l

GPU Memory Philosophy

Instructions

g= f+1
f=1d (e)

d= d+1 g= f+1
e=1d (d) f=1d (e),

c=bra | d= d+1]

1d/st

) Memory

c= b+a

b= a+l

GPU Memory Philosophy

Instructions

g= f+1
f=1d (e)

d= d+1

—==
o= ba 1

—

First load
ready!

ﬁ:::j£U

=) Memory

b= art -]
_::::;j

Cycle 103

GPU Memory Philosophy

Instructions

g= f+1
[£=1d(e)]
d= d+1
e=1d (d)
c= bta

1d/st

Cycle 102

g= f+1

f=1d (e) | |
d= da+1 4]
_@jj

First load
ready!

Memory

GPU Memory Philosophy

Instructions

g= f+1
£f=1d (e)

d= d+1

1d/st

el

=

[e=1d(d)]_

First load
ready!

I Memory

c= b+a
b= a+l

Cycle 103

:b!h
_::::;j

GPU Memory Philosophy

Instructions

g= f+1
f=1d (e)

d= d+1

St ﬁi

£=1di(e)

20 [Ta7EE (o1d(a)
—

e=1d (d)
c= b+a
b= a+l

Cycle 104

GPU Instruction Bandwidth

» GPU compute units fetch 1 instruction per
cycle...

...and share it with 8 processor cores.

m What if they don’t all want the same instruction?
(divergent execution)

LIVI

1d(d ‘
e Memory

GPU Memory Philosophy

Thousands of hardware threads (g= £4+1 |

1 cycle context switching S=Ldi(E)
, d= d+l
Hardware thread scheduling o=1d(d)]]

=)

As long as there is enough work in
other threads to cover latency you

get high throughput.
—h

Notes: =l
¢GPUs have caches for textures

¢ GPUs will soon have data caches

Divergent Execution

Thread

Instructions thread

ENET -~ = BRESSE

Divergent execution can dramatically hurt
performance. Avoid it on GPUs today.

t7 stalls

Divergent Execution for Real

Per-pixel Mandelbrot calculation:

while (x*x + y*y <= (4.0f) && iteration < max iterations) ({
float xtemp = x*x - y*y + x0;

y = 2*y*x + y0;

X = xtemp;

iteration++;

}

color = iteration;

Color determined by iteration count...

...each color took a different number of iterations.

o Every different color is a divergent

/"/ execution of a work-item.

‘o
-
1l

CPU and GPU Architecture

GPUs are throughput-optimized

Each thread may take a long time, but thousands of threads
CPUs are latency-optimized

Each thread runs as fast as possible, but only a few threads

GPUs have hundreds of wimpy cores
CPUs have a few massive cores

GPUs excel at regular math-intensive work
Lots of ALUs for math, little hardware for control
CPUs excel at irregular control-intensive work
Lots of hardware for control, few ALUs

Instruction Divergence

m Some architectures are worse...

AMD’s GPUs are 4-way SIMD
If you don’t process 4-wide vectors you lose.

Intel’s Larabee is(was?) 16-way SIMD
Theoretically the compiler can handle this.

m Some architectures are getting better...
Nvidia Fermi can fetch 2 instructions per cycle
But it has twice as many cores

= In general:
Data-parallel will always be fastest
Penalty for control-flow varies from none to huge

What is OpenCL?

Low-level language for high-performance
heterogeneous data-parallel computation.

Access to all compute devices in your system:
CPUs
GPUs
Accelerators (e.g., CELL)

Based on C99

Portable across devices

Vector intrinsics and math libraries
Guaranteed precision for operations
Open standard

What is OpenCL Good For?

= Anything that is:
Computationally intensive
Data-parallel
Single-precision’

Note: I am going to focus on the GPU

*This is changing, the others are not.

Computational Intensity

m Proportion of math ops: ops
Remember: memory is slow, math is fast

m Loop body: Low-intensity:
A =B +cC
A = B + C)
A ++

= Loop body: High(er)-intensity:
Temp+= A *A[i] 2:1
A = exp (temp) *erf (temp)

Data-Parallelism

m Same independent operations on lots of data”

s Examples:
Modify every pixel in an image with the same filter
Update every point in a grid using the same formula

*Performance may fall off a cliff if not exactly the same.

OpenCL Compute Model

» Parallelism is defined by the 1D, 2D, or 3D
global dimensions for each kernel execution

= A work-item is executed for every point in the global
dimensions

= Examples
1k audio: 1024 1024 work-items
HD video: 1920x1080 2M work-items
3D MRI: 256x256x256 16M work-items
HD per line: 1080 1080 work-items
HD per 8x8 block: 240x135 32k work-items

Single Precision

32 bits should be enough for anything...

Single Precision Double Precision

This is changing. Expect double precision everywhere in 2 years.

Local Dimensions

m The global dimensions are broken down into
local work-groups

» Each work-group is logically executed together on one
compute unit

m Synchronization is only allowed between
work-items in the same work-group

This is important.

Local Dimensions and Synchronization Example:

Synchronization Reduction

Synchronization OK.
Same work-group Global domain: 20x20

1 1st Reducti
Work-group size: 4x4 st Reduction

Input Data

=
m Work-group size limited by
hardware. (~512)

D 3rd Reduction

2nd Reduction

Implications for algorithms:

No Synchronization. ; :
e.g., reduction size.

Different work-groups

4th Reduction

[

Synchronization Example:
Reduction

InputData [1]2[8]4[5][6]7[8]9]0[1][2][3[4][5]6]

Synchronization Example:
Reduction

Work-group size = 4 Work-group size = 4
InputData 1]2[3[4[5]6[7[8]9]0[1][2][3[4[5]6

Thread Thread
E E Assignment E I E E E H Assignment
.4
Need a barrier to prevent 1 3 1
thread 0 from continuing
before thread 1 is done. n\ J
n Invalid Synchronization

Thread 2 is waiting for threads 4 and 5.
But 4 and 5 are in a different work-group.

Why Limited Synchronization? ChOOSlng.Localoand Global
Dimensions

m Global dimensions
Natural division for the problem

Too few: no latency hiding
Too many: (too little work each) too much overhead

m Scales well in hardware
Only work-items within a work-group need to communicate

GPUs run 32-128 work-groups in parallel

In general:
= GPU: >2000
m CPU: ~2*#CPU cores
m Local dimensions
May be determined by the algorithm
Optimize for best processor utilization
(hardware-specific)

OpenCL Memory Model

Device

OpenCL Memory Model

Device

i | Private Private

Private Private

Private Private Registers

Private Private

work | 7" | work i | work work
i iem i*~m

work |7 | work work |°" | work
item item item item item ifem cee i
Compute unit Compute unit]

16-32kB
Local ot 10x Global BW L 50-200GB/s

Global Memory 0.25-4GB Global Memory :
*]

PCle (slow) —— ~5GB/s
<

Host
+ v
Host Memory 1-16GB Host Memory

Compute unit

Compute unit

OpenCL Memory Model

Device

i | Private Private i | Private Private

I work |7 | work | work | """ | work
Liem 1 iteAn_ Ii\m_ ! 1tqu :

« Ompr.e unit iosoon
y g 1000GB

50-200GB /s |au¥

Your OpenCL
Computation

Your
Application

Moving Data

m No automatic data movement

= You must explicitly:

Allocate global data

Wirite to it from the host

Allocate local data

Copy data from global to local (and back)
= But...

You get full control for performance!
(Isn’t this great?)

OpenCL Execution Model

m Devices

CPU, GPU, Accelerator
m Contexts

A collection of devices that share data
® Queues

Submit (enqueue) work to devices

= Notes:
Queues are asynchronous with respect to each other
No automatic distribution of work across devices

OpenCL Kernels

= A unit of code that is executed in parallel
= C99 syntax (no recursion or function ptrs)
m Think of the kernel as the “inner loop”

Regular C:

void calcSin(float *data) {
for (int id=0; id<1023; id++)
|data[id] = sin(data[id]); |

}

OpenCL Kernel:

void kernel calcSin(global float *data) {
|int id = get _global id(0) ;|
data[id] = sin(data[id]);

}

OpenCL Hello World

m Get the device
m Create a context

m Create a command queue
clGetDeviceIDs (NULL,
1, &device, NULL);

context = clCreateContext (NULL,
NULL, NULL, NULL);

clCreateCommandQueue (context, device)

(cl command queue properties)0, NULL);

This example has no error checking. This is very foolish.

An OpenCL Program

Get the devices

Create contexts and queues

Create programs and kernels

Create memory objects

Enqueue writes to initialize memory objects
Enqueue kernel executions

Wait for them to finish

Enqueue reads to get back data

Repeat 5-8

N

OpenCL Hello World

= Create a program with the source
m Build the program and create a kernel

char *source = {

"kernel calcSin(global float *data) { \n”

" int id = get global id(0); \n”

" data[id] = sin(data[id]); \n”
"} \n"};

program = clCreateProgramWithSource (context, 1,

(const char**) NULL, NULL);

clBuildProgram (program, O,
NULL, NULL, NULL, NULL);

kernel = clCreateKernel (program, NULL) ;

OpenCL Hello World

= Create and initialize the input

clCreateBuffer (context, |[CL MEM COPY HOST PTR
sizeof (cl float)*10240,

NULL) ;

Note that the buffer specifies the context so OpenCL knows
which devices may share it.

OpenCL Hello World

m Read back the results

clEnqueueReadBuffer (queue, buffer,
CL_TRUE
0, sizeof(cl float)*LENGTH,
data, 0, NULL, NULL);

The CL_TRUE argument specifies that the call should block
until the read is complete. Otherwise you would have to
explicitly wait for it to finish.

OpenCL Hello World

= Set the kernel arguments
= Enqueue the kernel

clSetKernelArg (kernel, 0, sizeof (buffer), &buffer);
size t global_dimensions[] = {LENGTH,0,0};
clEnqueueNDRangeKernel (queue, kernel,

1, NULL, |global_dimensions, NULL,

0, NULL, NULL);

Local dimensions are NULL. OpenCL will pick reasonable
ones automatically. (Or so you hope...)

OpenCL Hello World

The Demo

More OpenCL Querying Devices

m Querying Devices m Lots of information via clGetDevicelnfo()

CL_DEVICE_MAX_COMPUTE_UNITS*
u Images Number of compute units that can run work-groups in parallel

m Events CL_DEVICE_MAX_CLOCK_FREQUENCY*

CL_DEVICE_GLOBAL_MEM_SIZE*
Total global memory available on the device

CL_DEVICE_IMAGE_SUPPORT
Some GPUs don’t support images today

CL_DEVICE_EXTENSIONS
double precision, atomic operations, OpenGL integration

*Unfortunately this doesn't tell you how much memory is available right
now or which device will run your kernel fastest.

Images Events

1 2Dsnd 5D Ly Lusge Ty pes = Subtle point made earlier:
R, RG, RGB, RGBA, INTENSITY, LUMINANCE

8/16/32 bit signed / unsigned, float Queues for different devices are asynchronous
Linear interpolation, edge wrapping and clamping with respect to each other

s Why? . .
Hardware accelerated access on GPUs - Impllcatlon:

it by woible iz fost puin You must explicitly synchronize operations
GPUs cache texture lookups today bk claviaas

m But...
Slow on the CPU (which is why Larabee does this in HW)

Not all formats supported on all devices (check first) .
Writing to images is not fast, and can be very slow (AISO apphes ({0) Out'Of'Order queues)

Events

» Every clEnqueue() command can:
Return an event to track it
Accept an event wait-list

clEnqueueNDRangeKernel (queue, kernel,
1, NULL, global dimensions, NULL,
[eventReturned);

Events can also report profiling information
m Enqueue->Submit->Start->End

Performance Optimizations

Host-Device Memory (100x)
PCle is slow and has a large overhead
Do a lot of compute for every transfer
Keep data on the device as long as possible
Memory Accesses (~10x)
Ordering matters for coalescing
Addresses should be sequential across threads
Newer hardware is more forgiving
Local Memory (~10x)
Much larger bandwidth
Must manually manage
Look out for bank conflicts
Divergent execution (up to 8x)
Vectors (2-4x on today’s hardware)
On vector HW this is critical (AMD GPUs, CPUs)
OpenCL will scalarize automatically if needed
Math (2x on intensive workloads)
fast_and native_ variants may be faster (at reduced precision)

Event Example

m Kernel A output -> input

m Kernel A runs on the CPU

n runs on the GPU

m Need to ensure that * waits for A to finish

clEnqueueNDRangeKernel (CPU_queue, kernell,
1, NULL, global dimensions, NULL,

0, NULL, |kernelA event);

clEnqueueNDRangeKernel (GPU_quegue, kernelB,
1, NULL, plobal dimensions, NULL,

1, &kernelA event,) NULL);

Debugging (Or Not)

m Very little debugging support on GPUs
= Start on the CPU

At least you can use printf()...

= Watch out for system watchdog timers
Long-running kernels will lock the screen
Your kernel will be killed after a few seconds
Your app will crash
Your users will be sad

Approaches

Data-parallel
Simplest mapping

G P U P ro j e C t S Th i ::tdrie;:rzi}:l compute-to-memory ratio

Generally a bad mapping
Threads that don’t do the same thing pay a big penalty
Only cheap local synchronization
Reduction
Require synchronization between stages
Tricky across work-groups
Scan-based
Handles variable length data
Brute-force, but fully data-parallel

Scan Algorithms Simple Scan

Produces all sums of the elements

Also works with min, max, or, etc.

Log scaling with the number of elements
Data-parallel

Can do conditional operations too
Pass in a second array of flags
Conditionally propagate data based on flags
Allows for data-parallel execution of variable-length
operations (this is awesome)

Image from http:/ /en.wi

http://mgarland.org/files/papers/nvr-2008-003.pdf
http://developer.download.nvidia.com/compute/cuda/sdk/website/projects/scan/doc/scan.pdf

Project Ideas

m JPEG zero-run encoding performance for
varying sizes
64 quantized coefficients; need to count zeros and
then Huffman encode
Parallel scan vs. serial for RLE

m Variable length processing
Serial scan has nearly 2x the data bandwidth
But it’s fully parallel

At what level does it make sense?
m Local memory
m Global memory

