
What is Virtualized
System Development?
Dan Ekblom, PhD

Senior Application Engineer

Virtutech Simics

� Full system simulation
� Complete machines, networks, backplanes
� System-level from the beginning

� Runs complete software stack
� Firmware, device drivers, OS, hypervisor, etc…

� Very high performance

2 Copyright ©2009. Virtutech, Inc. All rights reserved.

� Typically 100s of MIPS
� Multiple GIPS top benchmark

Backplane

CPU

RAM

Device

FLASH

Device

DSP

Device

CPU

RAM

Device

FLASH

Device

Enet

Device

Enet

Development
Hardware

Virtual Development
Platform

Simics Model

CPU

RAM

Device

FLASH

Device

DSP

Device

CPU

RAM

Device

FLASH

Device

Enet

Device

Enet

Backplane

Traditional System Development

�Software development methodology
creates production binary

�Production binary runs on the real
hardware

Hardware-sensitive
software

Application stack

Operating system

Actual hardware

3 Copyright ©2009. Virtutech, Inc. All rights reserved.

Virtualized System Development

�Same binary runs inside virtualized system
development environment

The software can’t

Hardware-sensitive
software

Application stack

Operating system

Virtual HW

The software can t
tell the difference

4 Copyright ©2009. Virtutech, Inc. All rights reserved.

What is modeled in VSD?

Operating system

User program

MiddlewareDBServer
Complete
production

Identical build
tools chain

Runs binaries
from real target

Hardware

CPU

p g y

RAM

FLASH

p
software

LCD

ASICROM

PCI

I2C

Bus
CPU

Drivers Firmware

Network netDisk
Simulated
hardware

Disk
Ctrl

5 Copyright ©2009. Virtutech, Inc. All rights reserved.

Virtualized System Development: Enables Changes!

Hardware Development

Coding, Integration & Test

Application Stack

6

Hardware Development

Virtualized
Software Development

�������	
����
�������
�
�����
��

�����������
��

Copyright ©2009. Virtutech, Inc. All rights reserved.

Customer Experience

“Simulation is the key to advanced microprocessor development, and Simics is by
far the most advanced realization of this technology available. Our vision is to
eventually simulate the entire code stack from firmware up, and Virtutech’s
Simics will be the cornerstone of this development.”
Kevin Collins, Director, Global Firmware Development, IBM

“Debug with Simics is 4-8 times faster than with hardware”
Tracy Bashore, Manager SLIC storage management development, IBM

“Simics is really the only way to develop multi-core software”Simics is really the only way to develop multi-core software
Tomas Evensen, CTO, WindRiver

“The processing potential of multi-core devices remains untapped because
multicore systems are only as effective as software’s ability to handle
parallelism”
Chekib Akrout, VP & GM Networking System Division, Freescale

“Simics allows us to test our software and validate it while the underlying
hardware design is being”
Gerry Vossler, VP, Advanced Marketing & Technology

7 Copyright ©2009. Virtutech, Inc. All rights reserved.

In the virtual world, anything is possible

Synchronous stop
for entire system

Determinism and
repeatability

Reverse execution

8

Unlimited and powerful
breakpoints

Trace anything Insight into all devices

�������	�
	

��
	
�

�������������

�������	�����������
�

Copyright ©2009. Virtutech, Inc. All rights reserved.

SYSTEM STOP

The entire system can be stopped, inspected
d d b d t tiand debugged at any time

9 Copyright ©2009. Virtutech, Inc. All rights reserved.

Traditional debug: A Single Component may stop …

Identical
platforms

Interfaces:

� Backplane

� RapidIO

� PCI-express

� shared memory

Chassis and Racks

Connection
to the World

Multicore Boards

Network hubs &
switches

Mixed
Architectures

Dedicated
Subsystems

… but the rest of the system
continues to run

10 Copyright ©2009. Virtutech, Inc. All rights reserved.

VSD debugging: Synchronized System Stop

Identical
platforms

Interfaces:

� Backplane

� RapidIO

� PCI-express

� shared memory

Chassis and Racks

Connection
to the World

Multicore Boards

Network hubs &
switches

Mixed
Architectures

Dedicated
Subsystems

… the whole system freezes in
an operational state

11 Copyright ©2009. Virtutech, Inc. All rights reserved.

SYSTEM CHECKPOINTS

A virtual system can be frozen, captured, and
t d t ti l ti trestored at any time, location or computer

… without replication errors

12 Copyright ©2009. Virtutech, Inc. All rights reserved.

Taking a Check Point

Identical
platforms

Interfaces:

� Backplane

� RapidIO

� PCI-express

� shared memory

Chassis and Racks

Connection
to the World

Multicore Boards

Network hubs &
switches

Mixed
Architectures

Dedicated
Subsystems

13 Copyright ©2009. Virtutech, Inc. All rights reserved.

Sending the Check Point

14 Copyright ©2009. Virtutech, Inc. All rights reserved.

Restore the checkpoint and resume

Restore and Run

Restore the checkpoint and resume
• At any time
• In any location
• On any computer

15 Copyright ©2009. Virtutech, Inc. All rights reserved.

Restore and Run

16 Copyright ©2009. Virtutech, Inc. All rights reserved.

Restore and Run

Identical
platforms

Interfaces:

� Backplane

� RapidIO

� PCI-express

� shared memory

Chassis and Racks

Connection
to the World

Multicore Boards

Network hubs &
switches

Mixed
Architectures

Dedicated
Subsystems

17 Copyright ©2009. Virtutech, Inc. All rights reserved.

RUN TO RUN REPEATABILITY

The “path” taken through code execution is

18

p g
repeated on every run (determinism)

… until stimuli are specifically modified

Copyright ©2009. Virtutech, Inc. All rights reserved.

Run 1

Repeatability - Traditional Hardware

Copyright ©2009. Virtutech, Inc. All rights reserved.19

• Physical systems are not wholly predictable or controllable
• The system will usually follow a slightly different path from
start to finish
• Some runs will hit bugs, others will not.

Run 2

Repeatability - Traditional Hardware

Copyright ©2009. Virtutech, Inc. All rights reserved.20

• Physical systems are not wholly predictable or controllable
• The system will usually follow a slightly different path from
start to finish
• Some runs will hit bugs, others will not.

Run 3

Repeatability - Traditional Hardware

Copyright ©2009. Virtutech, Inc. All rights reserved.21

• Physical systems are not wholly predictable or controllable
• The system will usually follow a different path from start to finish
• Some runs will hit bugs, others will not.

Run 1

Repeatability – Virtual Hardware

Copyright ©2009. Virtutech, Inc. All rights reserved.22

• Simics virtual platforms are predictable and controllable
• The system will follow exactly the same path from start to finish

• Every developer will precisely duplicate every execution step

Run 2

Repeatability – Virtual Hardware

Copyright ©2009. Virtutech, Inc. All rights reserved.23

• Simics virtual platforms are predictable and controllable
• The system will follow exactly the same path from start to finish

• Every developer will precisely duplicate every execution step

Run 3

Repeatability – Virtual Hardware

Copyright ©2009. Virtutech, Inc. All rights reserved.24

• Simics virtual platforms are predictable and controllable
• The system will follow exactly the same path from start to finish

• Every developer will precisely duplicate every execution step

Run 4 (new stimuli)

Repeatability – Virtual Hardware

Copyright ©2009. Virtutech, Inc. All rights reserved.25

• New stimuli can be injected to ensure different paths
• Random paths can be generated

DEBUGGING THE SYSTEM

Physical systems can only run forward
… requires traditional iterative debug approaches

26 Copyright ©2009. Virtutech, Inc. All rights reserved.

Iteratively Converging on the Problem
Traditional Hardware Debug

1. Guess where to set a break point
2. Inspect stack
3. Move break point
4. Restart or reboot
5. Repeat

27 Copyright ©2009. Virtutech, Inc. All rights reserved.

Iteratively Converging on the Problem
Traditional Hardware Debug

1. Guess where to set a break point
2. Inspect stack
3. Move break point
4. Restart or reboot
5. Repeat

28 Copyright ©2009. Virtutech, Inc. All rights reserved.

Iteratively Converging on the Problem
Traditional Hardware Debug

1. Guess where to set a break point
2. Inspect stack
3. Move break point
4. Restart or reboot
5. Repeat

29 Copyright ©2009. Virtutech, Inc. All rights reserved.

Iteratively Converging on the Problem
Traditional Hardware Debug

1. Guess where to set a break point
2. Inspect stack
3. Move break point
4. Restart or reboot
5. Repeat

30 Copyright ©2009. Virtutech, Inc. All rights reserved.

Iteratively Converging on the Problem
Traditional Hardware Debug

1. Guess where to set a break point
2. Inspect stack
3. Move break point
4. Restart or reboot
5. Repeat

31 Copyright ©2009. Virtutech, Inc. All rights reserved.

Iteratively Converging on the Problem
Traditional Hardware Debug

1. Guess where to set a break point
2. Inspect stack
3. Move break point
4. Restart or reboot
5. Repeat

32 Copyright ©2009. Virtutech, Inc. All rights reserved.

Iteratively Converging on the Problem
Traditional Hardware Debug

1. Guess where to set a break point
2. Inspect stack
3. Move break point
4. Restart or reboot
5. Repeat

33 Copyright ©2009. Virtutech, Inc. All rights reserved.

REVERSE EXECUTION

A system runs backwards, through every
ti d b k i t l thoperation and breakpoint along the way

A new paradigm to debug and investigate problems

34 Copyright ©2009. Virtutech, Inc. All rights reserved.

Linearly Converging on the Problem
VSD Debug

G G G G G G B B B B B
Stack

Stack is now at the last known bad point
• Begin after the problem occurs
• Set breakpoint on OS kill signal
• Run in reverse up to breakpoint

Reverse & Stop

35 Copyright ©2009. Virtutech, Inc. All rights reserved.

Linearly Converging on the Problem
VSD Debug

G G G G G G G B B B B
Stack

Stack is known bad at this point

While observing the stack, run in
reverse, stopping at breakpoints
along the way

36 Copyright ©2009. Virtutech, Inc. All rights reserved.

Linearly Converging on the Problem
VSD Debug

G G G G G G G G B B B
Stack

Stack is known bad at this point

While observing the stack, run in
reverse, stopping at breakpoints
along the way

37 Copyright ©2009. Virtutech, Inc. All rights reserved.

Linearly Converging on the Problem
VSD Debug

G G G G G G G G G B B
Stack

Stack is known bad at this point

While observing the stack, run in
reverse, stopping at breakpoints
along the way

38 Copyright ©2009. Virtutech, Inc. All rights reserved.

Linearly Converging on the Problem
VSD Debug

G G G G G G G G G G B
Stack

Now, set a watchpoint on the corrupt variable and
resume reverse execution.

This is where the first bad
stack frame appears

39 Copyright ©2009. Virtutech, Inc. All rights reserved.

Linearly Converging on the Problem
VSD Debug

G G G G G G G G G G G
Stack

• Watchpoint triggers & execution stops
• Debugger points to offending line of source code.

40 Copyright ©2009. Virtutech, Inc. All rights reserved.

Virtual Systems Development - Summary

�Reduces the risk in software projects, decouples hardware
and software devlopment

�Very efficient platform for full system multisystem/multicore
debug

41 Copyright ©2009. Virtutech, Inc. All rights reserved.

Virtual Systems Development - Summary

�Reduces the risk in software projects, decouples hardware
and software devlopment

�Very efficient platform for full system multisystem/multicore
debug

�Also possible to use Simics for architectural exploration:

42 Copyright ©2009. Virtutech, Inc. All rights reserved.

Virtual Systems Development - Summary

�Reduces the risk in software projects, decouples hardware
and software devlopment

�Very efficient platform for full system multisystem/multicore
debug

�Also possible to use Simics for architectural exploration:
�Adding more cores
�Comparing different architectures
�Adding cache models
�The limit is the sky…

43 Copyright ©2009. Virtutech, Inc. All rights reserved.

Cache Modeling in Simics

1 CPI
Processor Memory

Basic model
1 instr = 1 cycle
No cache, perfect memory
100+ MIPS speed

44

x CPI
Processor MemoryCaches

Cache model
Compute instr = 1 cycle
Memory instr = cache time
Cache statistics & traces
1+ MIPS speed

Copyright ©2009. Virtutech, Inc. All rights reserved.

What is Virtualized
System Development?
Dan Ekblom, PhD

Senior Application Engineer

