Multiprocessors and
Coherent Memory

Erik Hagersten
Uppsala University

Goal for this course

m Understand how and why modern computer systems are designed the way the are:
= pipelines
v memory organization
v virtual/physical memory ...

U A
UMNIVERSITET

m Understand how and why multiprocessors are built
#» Cache coherence
» Memory models
#» Synchronization...

m Understand how and why parallelism is created and
» Instruction-level parallelism
» Memory-level parallelism
» Thread-level parallelism...

m Understand how and why multiprocessors of combined SIMD/MIMD type are built
» GPU
» Vector processing...

m Understand how computer systems are adopted to different usage areas
+ General-purpose processors
» Embedded/network processors...

m Understand the physical limitation of modern computers
» Bandwidth
» Energy
» Cooling...

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

Schedule in a nutshell

1. Memory Systems (~Appendix C in 4th Ed)
Caches, VM, DRAM, microbenchmarks, optimizing SW

2. Multiprocessors
TLP: coherence, memory models, synchronization

3. Scalable Multiprocessors
Scalability, implementations, programming, ...

4. CPUs

ILP: pipelines, scheduling, superscalars, VLIWs, SIMD instructions...

5. Widening + Future (~Chapter 1 in 4th Ed)

Technology impact, GPUs, Network processors, Multicores (!!)

Dept of Information Technology| www.it.uu.se 3 © Erik Hagersten| user.it.uu.se/~eh

The era of the "Rocket Science
Supercomputers” 1980-1995

m The one with the most blinking lights wins
m The one with the niftiest language wins
m The more different the better!

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

Multicore: Who has not got one?

Mem

I/F
Mem Fse Mem
<] /][] |
\ |l e ¢« ||| @O —
$1I$||$||% ©O©OO [3]

—— || ——]
Cel fel fel [| |Ce] [el||Ce] e HHHHE%
D

AM Intel Core2 IBM Cell

Dept of Information Technology| www.it.uu.se 5 © Erik Hagersten| user.it.uu.se/~eh

MP Taxonomy

/ (more later...)

SIMD MIMD

/ N\

Message- Shared
passing Memory

AN

Fine- Coarse- | UMA NUMA COMA For now!
grained grained

Dept of Information Technology| www.it.uu.se 6 © Erik Hagersten| user.it.uu.se/~eh

UNIVERSITET

Models of parallelism

m Processes (fork or & in UNIX)

» A parrallel execution, where each process
has its own process state, e.g., memory
mapping

m Threads (thread chreate in POSIX)

» Parallel threads of control inside a process

#» There are some thread-shared state, e.qg.,
memory mappings.

m Sverker will tell you more...

Dept of Information Technology| www.it.uu.se 7

© Erik Hagersten| user.it.uu.se/~eh

Programming Model:

Shared Memory

CEOOOEE s

Dept of Information Technology| www.it.uu.se 8 © Erik Hagersten| user.it.uu.se/~eh

Adding Caches: More Concurrency

Shared Memory

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

¥ Caches:
g8 Automatic Replication of Data

Shared Memory

S&E

Read A Read B
Read A Read A

Read A
Read A

10

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

The Cache Coherent Memory System

A: B: I

Shared Memory

INV - INV

Read A Read B

Read A Read A
Read A
Write A

11

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

The Cache Coherent 2

L] \LA
UMNIVERSITET

A: B: N

Shared Memory

SEE

Read A Read B

Read A Read A
Read A

Write A

Read A

12

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

Summing up Coherence
Ther copies of a

datu e value

There is a single global order of
value changes to each datum

13

Dept of Information Technology| www.it.uu.se

© Erik Hagersten| user.it.uu.se/~el

Implementation options for memory
coherence

m Two coherence options

» Snoop-based (“broadcast”)

* Directory-based (“point to point”)
m Different memory models

m Varying scalability

14

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

Snoop-based Protocol Implementation

Shared Memory

A |}
\ BUS snoop Per-cache-line "state” info
\ Cache

Bus ' A-tag |S] ‘ Data
transaction \

\

\

\
CPU access) «-—-...____ .
-2 "State machines”
CPU
Dept of Information Technology| www.it.uu.se 1 5 © Erik Hagersten| user.it.uu.se/~el

Snoop-based Protocol Implementation

Shared Memory
!!BUS!! I

Cache

Data A-tag | State

Bus
transaction
CPU access CPU access
CPU CPU
Dept of Information Technology| www.it.uu.se 1 6 © Erik Hagersten| user.it.uu.se/~eh

Example: Bus Snoop MOSI

BUSrts

BUSrtw BUSrts
BUSinv BUSwb
BUSwb BUSrtw BUSinv

BUSrts: ReadtoShare (reading A (s) <

the data with the intention to

read it)
BUSrtw
BUSrtw, ReadToWrite (reading BUSrtw/Data
the data with the intention to BUSinv
modify it)
BUSwb: Writing data back to) BUSts/Data o o USrts/Data
memory < 3@

BUSinv: Invalidating other
caches copies

17

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

Snoop-based Protocol Implementation

Shared Memory

BUS |
Cache
Data A-tag | State

Bus

transaction

CPU CPU

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

Example: CPU access MOSI

CPUwrite: Caused by a store miss

CPUread Caused by a loadmiss

CPUrepl: Caused by a replacement CPUrepl/-
CPUread/-
CPUread/BUSrts Gj?
CPUwrite/ CPUwrite/BUSinv
BUSItw CpUrepl/
BUSwb
\ CPUrepl/BUSwb

CPUread/- / \
CPUwrite/ CPUwrite/BUSinv CPUread/-
N (D=

Dept of Information Technology| www.it.uu.se 19 © Erik Hagersten| user.it.uu.se/~eh

"Upgrade” in snoop-based

UFFSALA
UMNIVERSITET

BusINV

& 1 I
1 . .

v My Have to
2, INV INV

Read A Read B

Read A Read A
Read A
Write A

20

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

A New Kind of Cache Miss

m Capacity - too small cache
m Conflict - limited associativity
m Compulsory - accessing data the first time

m Communication (or “"Coherence”) [Jouppi]
Caused by downgrade (modified>shared)
"A store to data I had in state M, but now it’s in state S” ®

» Caused my invalidation (shared->invalid)
"A load to data I had in state S, but now it's been

invalidated” ®

21

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

Why snoop?

m A "bus”: a serialization point helps coherence
and memory ordering

m Upgrade is faster [producer/ consumer and
migratory sharing]

m Cache-to-cache is much faster [i.e.,
communication...]

m Synchronization, a combination of both

m ...but it is hard to scale the bandwidth®

Dept of Information Technology| www.it.uu.se 22 © Erik Hagersten| user.it.uu.se/~eh

Update Instead of Invalidate?

m Write the new value to the other caches
holding a shared copy (instead of invalidating...)

m Will avoid coherence misses
m Consumes a large amount of bandwidth
m Hard to implement strong coherence

m Few implementations: SPARCCenter2000,
Xerox Dragon

Dept of Information Technology| www.it.uu.se 23 © Erik Hagersten| user.it.uu.se/~eh

o B: I
| BusUpdate -
[| . i
! Have to
7, Update Update

Read A Read B

Read A Read A
Read A
Write A

Read A > HIT

Dept of Information Technology| www.it.uu.se 24 © Erik Hagersten| user.it.uu.se/~eh

Implementing Coherence
(and Memory Models...)

Erik Hagersten
Uppsala University
Sweden

Snoop-based Protocol Implementation

Shared Memory
!!BUS” I

ﬁ BUS snoop

Cache

Data

Bus
transaction

CPU access

CPU

Dept of Information Technology| www.it.uu.se 26 © Erik Hagersten| user.it.uu.se/~el

| Common Cache States

= M - Modified

My dirty copy is the only cached copy
m E - Exclusive

My clean copy is the only cached copy
m O - Owner

I have a dirty copy, others may also have a copy
m S - Shared

I have a clean copy, others may also have a copy
m I - Invalid
I have no valid copy in my cache

Dept of Information Technology| www.it.uu.se 27

© Erik Hagersten| user.it.uu.se

il Some Coherence Alternative

m MSI
» Writeback to memory on a cache2cache.
m MOSI

» Leave one dirty copy in a cache on a
cache2cache

m MOESI

The first reader will go to E and can later
write cheaply

Dept of Information Technology| www.it.uu.se 28 © Erik Hagersten| user.it.uu.se/~eh

The Cache Cohe

A:

rent Memory System

Shared Memory

Upgrade - the requesting CPU

CPUwrite: Caused by a store miss

CPUread Caused by a loadmiss

CPUrepl/-

CPUrepl: Caused by a replacement
CPUread/-

N

BUSrts: ReadtoShare (reading
the data with the intention to
read it)

the data with the intention to
modify it)

BUSwb: Writing data back to
memory

BUSinv: Invalidating other

LYLLUY caches copies
2010

Dept of Information Technology| www.it.uu.se

BUSrtw, ReadToWrite (reading

Upgrade - the other CPUs

BUSrts

BUSrtw BUSrts
BUSinv BUSwb
BUSwb BUSrtw BUSinv

N ON

BUSrtw

BUSrtw/Data
BUSinv

BUSrts/Data

USrts/Data
M p»{ O

31 © Erik Hagersten| user.it.uu.se/~eh

INV -—-INV
- BUSinv CPUread/BUSrts
Snoop> A 4 : -
CPUwrite/ /7 CPUwrite/BUSinv
% Cache BUSItw CpUrepl/
» [EESOM Data
. BUSwb y
¢ \ , CPUrepl/BUSwWb
CPUread/-
Store CPUnnite) X I \
Read A Read B _ M e CPUwrite/BUSinv 4@<%Uread/-
Read A Read A © -
Read A
Write A
Dept of Information Technology| www.it.uu.se 29 © Erik Hagersten| user.it.uu.se/~eh Dept of Information Technology| www.it.uu.se 30 © Erik Hagersten| user.it.uu.se/~eh
BUSinv

Modern snoop-based architecture
-- dual tags

Ui
UNIVERSITET

Shared Memory
|

Snoop Tag (Obligatrion state)
(possibly time-sliced access
to cache tags)

BUS snoop

Access Tag (Permission sate)
(possibly time-sliced access

transaction

to cache tags) Cache

S\ |

8

=y A-tag(Stat Data

(1]

o

(2]

[2]

(1]

(7]

(7]

Dept of Information Technology| www.it.uu.se 3 2 © Erik Hagersten| user.it.uu.se/~eh

"Upgrade” in snooped-based

Shared Memory

= =’BUSINV = = |- = — _

\k\

|

\ > ; From
— - earlier
trans-

actions
bh] I NV”

CPU: storé™ |

33 o

Dept of Information Technology| www.it.uu.se

The Cache Coherent Cache-to-cache

UFFSALS
UMNIVERSITET

A: B: I

Shared Memory

SEE

Read A Read B
Read A Read A
Read A
Write A
Read A 34
Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

Cache2cache - the requesting CPU

CPUwrite: Caused by a store miss
CPUread Caused by a loadmiss

CPUrepl: Caused by a replacement CPUrepl/-
CPUread/-

r\.BUSrts

CPUwrite/
BUSttw CPUrepl/

CPUwrite/BUSinv

BUSwb
\ CPUrepl/BUSwb
CPUread/- \
CPUwrite/ CPUwrite/BUSinv CPUread/-
e (D=

35

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

BUSrts

Cache-to-cache -
the other CPU

BUSrts

BUSrtw BUSrts
BUSinv BUSwb
BUSwb BUSrtw BUSinv

BUSrts: ReadToShare (reading
the data with the intention to
read it)

BUSrtw, ReadToWrite (reading
the data with the intention to
modify it)

BUSwb: Writing data back to
memory

I)T (sji

BUSrtw/Data

BUSrtw/Data
BUSinv

BUSrts/Data BUSrts/Data

BUSinv: Invalidating other

LAYLLUS caches copies
2010

Dept of Information Technology| www.it.uu.se 36 © Erik Hagersten| user.it.uu.se/~eh

Cache-to-cache in snoope-based

Shared Memory

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

BUSrts

Yet Another Cache-to-cache

BUSinv: Invalidating other

LALLUS caches copies
2010

Dept of Information Technology| www.it.uu.se 38

Cache
%0 - BUSrts
Dat

o g‘dg?tw BUSrts

: iny BUSwb

- BUSwb BUSrtw BUSinv v
BUSrts: ReadtoShare (reading A S
the data with the intention to
read it)

. BUSrtw/Data
BUSrtw, ReadToWrite (reading Eggttw/Data
the data with the intention to v
modify it)
USrts/Data

BUSwb: Writing data back to I » 0
memory

© Erik Hagersten| user.it.uu.se/~eh

All the three RISC CPUs in a MOSI shared-memory sequentially consistent multiprocessor
executes the following code almost at the same time:

while(A != my id){};

B := B + A * 2;

A := A + 1; /* this is a primitive kind of unlock */

while (A != 4) {}; /* this is a primitive kind of barrier*/

<after a long time>

<some other execution replaces A and B from the caches, if still
present>

/* this is a primitive kind of lock */

Initially, CPU1 has its local variable my_id=1, CPU has my_id=2 and CPU3 has my_id=3 and the globally
shared variables A is equal to 1 and B is equal to 0. CPU2 and 3 are starting slightly ahead of CPU1 and
will execute the first while statement before CPUI. Initially, both A and B only reside in memory.

The following four bus transaction types can be seen on the snooping bus connecting the CPUs:
¢ RTS: ReadtoShare (reading the data with the intention to read it)

¢ RTW, ReadToWrite (reading the data with the intention to modify it)

¢ WB: Writing data back to memory

¢ INV: Invalidating other caches copies

Show every state change and/or value change of A and B in each CPU’s cache according to one possible
interleaving of the memory accesses. After the parallel execution is done for all of the CPUs, the cache lines
still in the caches will be replaced. These actions should also be shown. For each line, also state what bus
transaction occurs on the bus (if any) as well as which device is providing the corresponding data (if any).

39

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

Example of a state transition sheet:

Bus State/value after the CPU action
CPU action Transactio

n (if any)

CPUIL CPU2 CPU3
A B A B A
Initially 1 1 1 1 1
CPUI:LD A RTS(A) S/
CPU2: LD B RTS(B) S/0
...some time
elapses .
CPUI: replace A - 1
CPU2: replace B - 1
Dept of Information Technology| www.it.uu.se 40

Data is provided by
[CPU 1,23 or
Mem]

(if any)

Mem

© Erik Hagersten| user.it.uu.se/~eh

False sharing

Cache Line

alelclolefF[e[H

Communication misses even though
the threads do not share data
"the cache line is too large”

Read A
Write A

Read E

Write E

;'\-’;ead A
41

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

Memory Ordering
(aka Memory Consistency)
-- tricky but important stuff

Erik Hagersten
Uppsala University
Sweden

4 Memory Ordering

m Coherence defines a per-datum
valuechange order

m Memory model defines the valuechange
order for all the data.

Initially A=B =0

A:=1
\] While (A==0) {}
B:=1
\1 While (B=5
Print A

43

Q: What
value will
get printed?

Read A

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

Dekker’s Algorithm

Initially A=B =0
“fork!!

7N

A:=1 B:=1

if (B== 0) print(“A won”) if (A ==0) print(“B won”)

Q: Is it possible that both A and B win?

44

Dept of Information Technology| www.it.uu.se

© Erik Hagersten| user.it.uu.se/~el

Memory Ordering

m Defines the guaranteed memory
ordering

m [s a “contract” between the HW and SW
guys

m Without it, you can not say much about
the result of a parallel execution

Dept of Information Technology| www.it.uu.se 45 © Erik Hagersten| user.it.uu.se/~eh

L. & In which order were these
B threads executed?

(A’ denotes a modified value to the data at addr A)

Thread 1 Thread 2
(LD A happend before ST A")
LD AT T STA
sT B >7 LD B’
LD | 1T STC
STD' T ° o
>17 STE'

LD E | |

Dept of Information Technology| www.it.uu.se 46 © Erik Hagersten| user.it.uu.se/~eh

One possible Another possible

observed order observed order
Thread 1 Thread 2

Thread 1 Thread 2

LD At

. STBT

LD A+ 1
orp T STA LDC sraA
bl LDB - LD B’
+sTC T sTC
- LD D - LD D

ST D] ST D"
LDEH srE LDE L sre

47

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

“The intuitive memory order”
Sequential Consistency (Lamport)

Shared Memory

wds, stores
AAAAaAATrer
» Global order achieved by interleaving all memory

accesses from different threads

» "Programmer’s intuition is maintained”
= Store causality? Yes
= Does Dekker work? Yes

eI3LM « Unnecessarily restrictive ==> performance penalty

Dept of Information Technology| www.it.uu.se 48 © Erik Hagersten| user.it.uu.se/~eh

Dekker’s Algorithm

Initially A=B =0
“fOI'k”

N

A:=1 B:=1
if (B== 0) print(“A won”) if (A ==0) print(“B won”)

Q: Is it possible that both A and B win?

Dept of Information Technology| www.it.uu.se 49 © Erik Hagersten| user.it.uu.se/~eh

Pl Sequential Consistency (SC) Violation
=l > Dekker: both wins

Acess graph

c a
: =VO: Value = PO: Program
A:=B:=0 y order:c<d p orderra<b
(i.e., c happened before (the order specified
d in the global order) by the program)
IAZ=1 IB:=1 A:=B:=0
I (B == 0) (A== 0) / \
rint “Left wins” print “Right wins”
| I s] A, 1 STB, 1
\ J Voo
LDE>0 Tbaao

Both Left and Right wins =
LALZINS SC violation

Cyclic access graph = Not SC
éghere is no global order)

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

SC is OK if one thread wins

Only Right wins =& SC is OK

L

ha=1 e STA 1 STB.1
| | Pt

If (B == 0) If (A ==0) P e, l
| Print “Left wins® | print'Rightwins” | pg°y 1 LDA=0

\ \

Not cyclic graph =& SC

One global order:
STB <LDA <STA <LDB

© Erik Hagersten| user.it.uu.se/~eh

Dept of Information Technology| www.it.uu.se 51

SC is OK if no thread wins

No thread wins = SC is OK

A=B:=0
/ \ A:=B:=0

I A=1 I B:=1
| I STA 1 _STB.1
If (8 == 0) If (A == 0) T
I print “Left wins” | print‘Rightwins” | o™ e .
LDB=>1 LDA=1

Not cyclic graph =& SC

Four Partial Orders, still SC
STB<LDA; STA<LDA; STB<LDB; STA<LDA

Dept of Information Technology| www.it.uu.se 52 © Erik Hagersten| user.it.uu.se/~eh

One implementation of SC in dir-based

(....without speculation)
ho has
a copy

A:

ho has
a copy \

Read X Dot

ReadA? Read X must complete before starting Read A
Read A

Write A

Read C ? Must receive all ACKs before continuing

Dept of Information Technology| www.it.uu.se 3 © Erik Hagersten| user.it.uu.se/~eh

“Almost intuitive memory model”
Total Store Ordering [TSO] (P. Sindhu)

|1

stores

:)Jﬂ a’

IFFSALA
UMNIVERSITET

Shared Memory

» Global interleaving [order] for all stores from different
threads (own stores excepted)
» "Programmer’s intuition is maintained”
= Store causality? Yes
= Does Dekker work? No

PIELM « Unnecessarily restrictive =

=> performance penalty

Dept of Information Technology| www.it.uu.se 54 © Erik Hagersten| user.it.uu.se/~eh

TSO HW Model

CPU CPU

= Stores are moved off the critical path
Coherence implementation can be the same as for SC

Dept of Information Technology| www.it.uu.se 55 © Erik Hagersten| user.it.uu.se/~eh

m Flag synchronization works

A := data while (flag '= 1) {3};
flag:=1 X:=A

m Provides causal correctnes

Initially A=B=0

A:=1
\‘l While (A==0) {}
B:=1
\l While (B==0

Dept of Information Technology| www.it.uu.se 56

Q: What
value will
get printed?

Read A

© Erik Hagersten| user.it.uu.se/~eh

Dekker’s Algorithm, TSO

Initially A=B =0

“fork!!
Does the write /
become globally
visible A:=1 B:=1
bef ; == f g ”
trfeorreead - N if (B== 0) print(“A won”) if (A == 0) print(“B won”)

performed?

Q: Is it possible that both A and B wins?

Left: The read (i.e,, test if B==0) can bypass the store (A:=1)
Right: The read (i.e,, test if A==0) can bypass the store (B:=1)
= both loads can be performed before any of the stores

= yes, it is possible that both wins

= => Dekker’s algorithm breaks

Dept of Information Technology| www.it.uu.se 57 © Erik Hagersten| user.it.uu.se/~eh

Dekker’s Algorithm for TSO

U A
UMNIVERSITET

Initially A=B =0
“fork”

N

A:=1 B:=1
Membar #StoreLoad
if (A ==0) print(“B won”)

Membar #StoreLoad
if (B== 0) print(“A won”)

Q: Is it possible that both A and B win?
Membar: The read is stared after all previous stores have been ”globaly ordered”
=>behaves like SC
=> Dekker’s algorithm works!

Dept of Information Technology| www.it.uu.se 58 © Erik Hagersten| user.it.uu.se/~eh

Weak/release Consistency
(M. Dubois, K. Gharachorioo)

Shared Memory

A A A
loads
stores
.... ECNURS SRR S
Threi..Threé; .Threc.._Thread‘_:-‘

» Most accesses are unordered

* “"Programmer’s intuition is not maintained”
= Store causality? No
= Does Dekker work? No

» Global order only established when the

programmer explicitly inserts memory barrier
instructions

++ Better performance!!
--- Interesting bugs!!

Dept of Information Technology| www.it.uu.se 59

© Erik Hagersten| user.it.uu.se/~eh

Weak/Release consistency

m New flag synchronization needed

A := data; while (flag '= 1) {3};
membarrier; membarrier;
flag := 1; X:=A;

m Dekker’s: same as TSO
m Causal correctness provided for this code

Dept of Information Technology| www.it.uu.se

Initially A=B =0 Q: What
T Read A value will
While (A==0) {} g et pri nted?
\l membarrier Answer: 1
B:=1 While (B==0) {}
\] membarrier
Print A

© Erik Hagersten| user.it.uu.se/~eh

Examplel: Causal Correctness Issues

A: B: I

Shared Memory

What is the
value of A?

Read A Write B Read A

A:=1
While (A==0) {} While (B==0) {}
B:=1 Print A

61

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

Examplel: Causal Correctness Issues

U A
UMNIVERSITET

A: B: I

Shared Memory

S&E

Read A Write B Read A

A:=1
While (A==0) {} While (B==0) {}
B:=1 Print A

62

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

Examplel: Causal Correctness Issues

A: B: I
Shared Memory
L mmE R EEE >INV
- -
7
: :
Read A Write B Read A
A:=1
While (A==0) {} While (B==0) {}
B:=1 Print A
63

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

Examplel: Causal Correctness Issues

A: B: N

Shared Memory

Read A Write B Read A
A:=1
While (A==0) {} While (B==0) {}
B:=1 Print A
64

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

Examplel: Causal Correctness Issues

A: B:
Shared Me mory
———————— NV~
:
Write B Read A
While (A==0) {} While (B==0) {}
B:=1 Print A
65 © Erik Hagersten| user.it.uu.se/~eh

Dept of Information Technology| www.it.uu.se

Examplel: Causal Correctness Issues

A: B: I

Shared Memory

NV — -

—————— =
-

Read A Write B Read A
A:=1
While (A==0) {} While (B==0) {}
B:=1 Print A
66 © Erik Hagersten| user.it.uu.se/~eh

Dept of Information Technology| www.it.uu.se

Examplel: Causal Correctness Issues

A: B: I

Shared Memory

————————— >-|NV————>—-

N

A: if store causality = “1” will be printed

@ @ Thread | What is the

value of A?
, It depends...
Read A Write B Read A
A:=1

While (A==0) {} While (B==0) {}
B:=1 Print A

Dept of Information Technology| www.it.uu.se 67 © Erik Hagersten| user.it.uu.se/~eh

Dekker’s Algorithm

Initially A=B =0
“fork!!

Does the write / \

become globally

visible =A== B:=1

bef P — Py »
the read is = if (B== 0) print("A won”) if (A ==0) print(“B won")
performed?

Q: Is it possible that both A and B win?

A: Only known if you know the memory model

Dept of Information Technology| www.it.uu.se 68 © Erik Hagersten| user.it.uu.se/~eh

.4 Learning more about memory

A

Shared Memory Consistency Models: A Tutorial
by Sarita Adve, Kouroush Gharachorloo
in IEEE Computer 1996 (in the “Papers” directory)

RFM: Read the F*****n Manual of the system you are
working on!

(Different microprocessors and systems supports
different memory models.)

Issue to think about:
ey What code reordering may compilers really do?
Ll Have to use “volatile” declarations in C.

69 © Erik Hagersten| user.it.uu.se/~eh

Dept of Information Technology| www.it.uu.se

UMNIVERSITET

X86's new memory model

m Processor consistency with causual
correctness for non-atomic memory ops

m TSO for atomic memory ops

m Video presentation:
http://www.youtube.com/watch?v=WUfvvFD5tAA&hl=sv

m See section 8.2 in this manual:
http://developer.intel.com/Assets/PDF/manual/253668.pdf

Dept of Information Technology| www.it.uu.se 70 © Erik Hagersten| user.it.uu.se/~eh

* PC: The stores from a processor appears to others in program
order

» Causal correctness (often added to PC): if a processor observes a
store before performing a new store, the observed store must be
observed before the new store by all processors

> Flag synchronization works.
INY\:14 > No causal correctness issues

Dept of Information Technology| www.it.uu.se 71 © Erik Hagersten| user.it.uu.se/~eh

Synchronization

Erik Hagersten
Uppsala University
Sweden

Execution on a sequentially
consistent shared-memory
machine:

S
e

PSEUDO ASM CODE
LOOP:

LD R1, N
LD R2, sum
SUB R1, R1, R2
BGZ R3, CONT:
ADD R2, R2, #1
ST R2, sum

BR LOOP:

‘ CONT:

while (sum < IJ ‘ \
while (sum < IJ ‘

sum := § lJ
while (sum <

sum = §)
cEm 9s g while (sum < N)
— sum := sum + 1

How many addition What value will be

will get executed? printed?
A: any value between printf (sum) A: any value between
Nand N * 4 NandN + 3

Dept of Information Technology| www.it.uu.se 73 © Erik Hagersten| user.it.uu.se/~eh

Need to introduce synchronization

UFFSALS
UMNIVERSITET

m Locking primitives are needed to ensure that only
one process can be in the critical section:

LOCK (lock variable) /+ uait for your turn */
if (sum > threshold) { Critical Secti
sum := my sum + sum ‘ritical Section

}
UNLOCK (lock variable) /+ release the lock+/

if (sum > threshold) {

LOCK (lock variable) /+ wait for your turn *
sum := my sum + sum j Critical Section

UNLOCK (lock variable) /+ release the lock+/
74

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

Components of a Synchronization Event

m Acquire method

#» Acquire right to the synch (enter critical section, go past
event

m Waiting algorithm
* Wait for synch to become available when it isn‘t

m Release method
» Enable other processors to acquire right to the synch

Dept of Information Technology| www.it.uu.se 75 © Erik Hagersten| user.it.uu.se/~eh

Atomic Instruction to Acquire

Atomic example: test&set "“TAS” (SPARC: LDSTB)
The value at Mem(lock_addr) loaded into the specified register
Constant “1” atomically stored into Mem(lock_addr) (SPARC: "FF")
Software can determin if won (i.e., set changed the value from 0 to 1)
Other constants could be used instead of 1 and 0

* % % »

Looks like a store instruction to the caches/memory system

Implementation:
1. Get an exclisive copy of the cache line
2. Make the atomic modification to the cached copy

Other read-modify-write primitives can be used too
* Swap (SWAP): atomically swap the value of REG with Mem(lock_addr)
» Compare&swap (CAS): SWAP if Mem(lock_addr)==REG2

Dept of Information Technology| www.it.uu.se 76 © Erik Hagersten| user.it.uu.se/~eh

Waiting Algorithms
Blocking
» Waiting processes/threads are de-scheduled
» High overhead
* Allows processor to do other things

Busy-waiting

* Waiting processes repeatedly test a lock_variable until it changes
value

» Releasing process sets the lock_variable

= Lower overhead, but consumes processor resources

» Can cause network traffic

AVDARK

seoray Hybrid methods: busy-wait a while, then block

Dept of Information Technology| www.it.uu.se 77 © Erik Hagersten| user.it.uu.se/~eh

U A
UMNIVERSITET

Release Algorithm

m Typically just a store "0”

m More complicated locks may require a
conditional store or a "wake-up”.

Dept of Information Technology| www.it.uu.se 78 © Erik Hagersten| user.it.uu.se/~eh

A Bad Example: "POUNDING"”

proc lock(lock_variable) {

while (TAS[lock_variable]==1) {} /* bang on the lock until free */
b

proc unlock(lock_variable) {
lock_variable := 0

}
Assume: The function TAS (test and set)

-- returns the current memory value and atomically
writes the busy pattern “"1” to the memory

Generates too much traffic!!
-- spinning threads produce traffic!

Dept of Information Technology| www.it.uu.se 79 © Erik Hagersten| user.it.uu.se/~eh

Optimistic Test&Set Lock "spinlock”

proc lock(lock_variable) {

while true {
if (TAS[lock_variable] ==0) break; /* bang on the lock once, done if TAS==0 */
while(lock_variable '= 0) {} /* spin locally in your cache until “0” observed*/

H
>

proc unlock(lock_variable) {
lock_variable := 0

Much less coherence traffic!!
-- still lots of traffic at lock handover!

Dept of Information Technology| www.it.uu.se 80 © Erik Hagersten| user.it.uu.se/~eh

It could still get messy!

l Interconnect |
=1 (ol ol os] [[Of o ~ [Q
l Interconnect ‘
o [o [D) [- [
N reads l Interconnect |
L=0 |L=0 |[L=0] | | |L=0| [L=0] |L=0] - =0

© Erik Hagersten| user.it.uu.se/~eh

...messy (part 2)

UMNIVERSITET

N-1 Test&Set l Interconnect |

(e, Nwrites) T&s T&s | | T&y &y &y -

| Interconnect ‘
L=1 cs] O lo] o) b =g - L=

potentially: ~N*N/2 reads :-(

Problem1: Contention on the interconnect slows down the CS proc
Problem?2: The lock hand-over time is N*read_throughput
Fix1: Some back-off strategy, bad news for hand-over latency

A\égi\gK Fix1: Queue-based locks

Dept of Information Technology| www.it.uu.se 82 © Erik Hagersten| user.it.uu.se/~eh

Could Get Even Worse on a NUMA

m Poor communication latency

m Serialization of accesses to the same cache
line

m WF: added hardware optimization:
TAS can bypass loads in the coherence protocol
==>N-2 loads queue up in the protocol
==> the winner’s atomic TAS will bypass the loads
==>the loads will return “busy”

Dept of Information Technology| www.it.uu.se 83 © Erik Hagersten| user.it.uu.se/~eh

Ticket-based queue locks: "ticket”

proc lock(Istruct) {
int my_num;
my_num := INC(Istruct.ticket) /* get your unique number*/
while(my_num != Istruct.nowserving) {} /* wait here for your turn */

}

proc unlock(Istruct) {

Istruct.nowserving++ /* next in line please */

Less traffic at lock handover!

Dept of Information Technology| www.it.uu.se 84 © Erik Hagersten| user.it.uu.se/~eh

Ticket-based back-off "TBO”

proc lock(Istruct) {
int my_num;
my_num := INC(Istruct.ticket) /* get your number*/

while(my_num != Istruct.nowserving) { /* my turn ?*/
idle_wait(Istruct.nowserving - my_num) /* do other shopping */

proc unlock(lock_struct) {

lock_struct.nowserving++ /* next in line please */}

Even less traffic at lock handover!

Dept of Information Technology| www.it.uu.se 85 © Erik Hagersten| user.it.uu.se/~eh

Py
\n

“Initially, each process owns one global cell, pointed to by private *I and *P
Another global cell is pointed to by global *L “lock variable”

1) Initialize the *I flag to busy (= "1”)

2) Atomically, make *L point to “our” cell and make “our” *P point where *L's cell
3) Wait until *P points to a “0”

.- B Queue-based lock: CLH-lock

proc lock(int **L, **I, **Pp)
{ **I =1; /*initialized “our” cell as “busy”*/
atomic_swap {*P =*L; *L=*P}
/* P now stores a pointer to the cell L pointed to*/
/* L now stores a pointer to our cell */

while (**P != 0){} }/* keep spinning until prev owner releases lock*/

proc unlock (int **I, **P)
{ **I =0; /* release the lock */

*I =*p; } /* next time *I to reuse the previous guy’s cell*/

86

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

CLH lock

L:

proc lock(int **L, **I, **P)

{ **I =1 /* init to “busy”*/
atomic_swap {*P =*L; *L=*P}
/* *L now points to our I* */
while (**P != 0){} }

/* spin unit prev is done */

Dept of Information Technology| www.it.uu.se 87 © Erik Hagersten| user.it.uu.se/~eh

proc lock(int **L, **I, **P)
{ **I =1 /* init to “busy”*/

atomic_swap {*P =*L; *L=*P}
/* *L now point to our I* */
while (**P != 0){} }

/* spin unit prev is done */

Dept of Information Technology| www.it.uu.se

© Erik Hagersten| user.it.uu.se/~eh

proc lock(int **L, **I, **P)
{

proc lock(int **L, **I, **P)

**I =1 /* init to “busy”*/ { **I =1 /* init to “busy”*/

atomic swap {*P =*L; *L=*P} atomic_swap {*P =*L; *L=*P}

/* *L now point to our I* */

while (**P '= 0){} };

/* *L now point to our I* */

while (**P != 0){} };

/* spin unit prev is done */ /* spin unit prev is done */

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

proc lock(int **L, **I, **P) proc lock(int **L, **I,6 **P)

**I =1 /* init to “busy”*/ **I =1 /* init to “busy”*/

atomic swap {*P =*L; *L=*P} atomic swap {*P =*L; *L=*P;}

/* *L now point to our I* */

while (**P != 0){} };

/* *L now point to our I* */

while (**P 1= 0){} };

/* spin unit prev is done */ /* spin unit prev is done */

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

proc lock(int **L, **I, **P)
**I =1 /* init to “busy”*/
atomic_swap {*P =*L; *L=*P;}

/* *L now point to our I* */

P:

while **P... while (**P != 0){} };
T

/* spin unit prev is done */

Dept of Information Technology| www.it.uu.se 93 © Erik Hagersten| user.it.uu.se/~eh

Dept of Information Technology| www.it.uu.se

roc unlock (int **I, **p)

{

**I = 0;
/* release the lock */

*I = *p; }

© Erik Hagersten| user.it.uu.se/~eh

proc unlock (int **I, **P)

(**kT = 0;

/* release the lock */

*I = *P; }

/* reuse the previous guy’s *P*/

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

while **P...
X

Dept of Information Technology| www.it.uu.se

96

proc unlock (int **I, **P)
{ **T = 0;
*I = *p; }

© Erik Hagersten| user.it.uu.se/~eh

Minimizes traffic at lock handover!
May be too fair for NUMAs

proc unlock(int **I, **P)
{ **I = 0;
*I = *pP; }

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

E6800 locks 12 CPUs

60,000
£ 50,000 |
> 000 —e—POUND
8™ —= SPIN
g 30,000 TICKET
[
£ 20,000 | —*—TBO
> CLH
Z 10,000
0 1 ye ye ye —Fe——0uye ye Pl
1 2 3 4 5 6 7 8 9 10 11 12
#Contenders
Dept of Information Technology| www.it.uu.se 98 © Erik Hagersten| user.it.uu.se/~eh

E6800 locks (exluding POUND)

3,000
§ 2500 A »\‘/e\’/o—o
8 2000 - & - _| |—e—SPIN
= W\M TICKET
2 1,500 4
g TBO
= 1,000 —=—CLH
2
Z 500
0 T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12
Contenders
Dept of Information Technology| www.it.uu.se 99 © Erik Hagersten| user.it.uu.se/~eh

UFFSALA
UMNIVERSITET

NUCA:
Non-uniform
Comm Arch.

Switch

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

(round robin scheduling)

0,50

.- M Trad. chart over lock performance
on a hierarchical NUMA

Benchmark:

fori = 1 to 10000 {
lock(AL)

0,45 | e/ S

0,40 Sy e

0,35 --n-mmmmmmmmemeoe]

0,20 -

Time/Processors

0,15 -

0,10 A

0,05 A

0,00 -+

W‘,
—#= spin_exp|
- MCS-queue}
—®= CLH-queue
L

0,30 o-m -

0,25 -mmmmmm e

A:=A+1;
unlock(AL)

0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Dept of Information Technology| www.it.uu.se

Processors

101

© Erik Hagersten| user.it.uu.se/~eh

Benchmark:

fori =1 to 10000 {

lock(AL)
0,50
° _ A:=A+1;
0,45 iy, St Tosoin e inlock(AL)
—#= spin_ex
0,40 - —*= MCS-aueue ----
—=— CLH-queue 5
0,35 f---=mmmmmmmmmmmemme —* RH-locks -/

0,30 +

0,25 1

0,20 -

Time/Processors

0,15

0,10 4

0,05 4

0,00 —&—

0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Dept of Information Technology| www.it.uu.se

Processors

102

© Erik Hagersten| user.it.uu.se/~eh

RH locks: encourages unfairness

Time per lock handover

0,50
0,45 f---====mmmmmmmme o= TS
— Spin
-3 spin_ex
0,40 F--=m=mmmmmmm oo pin_exp

Time/Processors [seconds]

0,00

-4 MCS-aueue
—+ CLH-queue E
0,35 -] -® RH-locks

Processors

Dept of Information Technology| www.it.uu.se

0 2 4 6 8 101214 16 18 20 22 24 26 28 30 32

103

100

Node-handoffs [%]

90

80 +-

70 4

60 4

Node migration (%)

~ spin
+ spin_exp
% MCS-aueue
,,,,,,,,,,,,,,, .
-

CLH-queue
RH-locks

e e LA s s S s |
0 2 4 6 8 101214 16 18 20 22 24 26 28 30 32

Processors

© Erik Hagersten| user.it.uu.se/~eh

Ex: Splash Raytrace Application Speedup

~

\

Speedup
K\\\

\/EH;J

0 4 8 12

16 20 24

Number of Processors

Dept of Information Technology| www.it.uu.se

104

28

HBO@HPCA 2003
RH@SC 2002

-8 SPIN
—A- SPIN_EXP
~X— MCS
—%— CLH
— RH

© Erik Hagersten| user.it.uu.se/~eh

Barriers: Make the first threads wait for the
Performance under contention last thread to reach a point in the program
9 " TestAndSet 1. Software algorithms implemented using locks,
o I TestAndSet ExpBackoff flags, counters
£ 1
g |
£ || 2. Hardware barriers
5'5’ | Wired-AND line separate from address/data bus
2 | Set input high when arrive, wait for output to be high to
§ : Queuebased leave
2] > (In practice, multiple wires to allow reuse)
'3 / Difficult to support arbitrary subset of processors
_E = even harder with multiple processes per processor
RH # Difficult to dynamically change number and identity of
. , participants
~2 Contention = e.g. latter due to process migration
Dept of Information Technology| www.it.uu.se 105 © Erik Hagersten| user.it.uu.se/~eh Dept of Information Technology| www.it.uu.se 106 © Erik Hagersten| user.it.uu.se/~eh
A Centralized Barrier
Centralized Barrier Performance
BARRIER (bar_name, p) { = Latency
int loops; " . .
loops = 0; » Want short critical path in barrier
» Centralized has critical path length at least proportional to p
local_sense = !(local_sense); /* toggle private sense variable = Traffic
each time the barrier is used */
LOCK(bar_name.lock); » Barriers likely to be highly contended, so want traffic to scale well
bar_name.counter++; /* globally increment the barrier count *, ; ; ;
if (bar_name.counter == p) { % everybody here yet ? %/ = About 3p bus transactions in centralized
bar_name.flag = local_sense; /* release waiters*/ m Storage Cost
> UNLOCK(bar_name.lock) + Very low: centralized counter and flag
else m Key problems for centralized barrier are latency and traffic
{ UNLOCK(bar_name.lock); ; ; b :
¢ /% wait for the last guy %/ » Especially with distributed memory, traffic goes to same node
if (loops++ > UNREASONABLE) report_warning(pid)}
] =>» Hierarchical barriers
Dept of Information Technology| www.it.uu.se 107 © Erik Hagersten| user.it.uu.se/~eh Dept of Information Technology| www.it.uu.se 108 © Erik Hagersten| user.it.uu.se/~eh

.4l New kind of synchronization:
B Transactional Memory (TM)

m Traditional critical section: lock(ID); unlock(ID)
around critical sections
m TM: start_transaction; end_transaction around
“critical sections” (note: no ID!!)
#* Underlying mechanism to guarantee atomic behavior often
by rollback mechanisms
» This is not the same as guaranteeing that only one thread is
in the critical action!!
Supported in HW or in SW (normally very inefficient)

m Suggested by Maurice Herlihy in 1993
m HW support announced for Sun’s Rock CPU (RIP)

Dept of Information Technology| www.it.uu.se 109 © Erik Hagersten| user.it.uu.se/~eh

UNIVERSITET S u p p or t fo r T M

m Start_transaction:
= Save original state to allow for rollback (i.e., save register
values)
m In critical section
* Do not make any global state change
» Detect "atomic violations” (others writing data you've read in
CS or reading data you have written)
* At atomic violation: roll-back to original state
= Forward progress must be guaranteed
m End_transation

* Atomically commit all changes performed in the critical
section.

Dept of Information Technology| www.it.uu.se 110 © Erik Hagersten| user.it.uu.se/~eh

Advantage of TM

m Do not have to "name” CS
m Less risk for deadlocks

m Performance:

» Several thread can be in "the same” CS as
long as they do not mess with each other

» CS can often be large with a small
performance penalty

Dept of Information Technology| www.it.uu.se 111 © Erik Hagersten| user.it.uu.se/~eh

Introduction to
Multiprocessors

Erik Hagersten
Uppsala University

Message-
passing
Fine- Coarse-

grained grained

Information Technology| www.it.uu.se

Shared
Memory

NN

UMA NUMA COMA

113 © Erik Hagersten | user.it.uu.se/~eh

' J Flynn’s Taxonomy

{Single,Multiple}Instruction +
{Single,Multiple}Data

m SISD - Our good old “simple” CPUs

m SIMD - Vectors, "MMX"”, DSPs, CM-2,...
m MIMD - TLP, cluster, shared-mem MP,...
m MISD - Can't think of any...

114

Program:

Dept of Information Technology| www.it.uu.se

115 © Erik Hagersten | user.it.uu.se/~eh

il SIMD: Thinking Machine

m Connection Machine: CM1, CM2, CM200
(at KTH ~1990: CM200 “Bellman”)

m One-bit ALU and a small local memory
m FP accelerator available

m Programmed in "ASM”, *C and *Lisp

m Hard to program (in my opinion...)

Dept of Information Technology | www.it.uu.se 116 © Erik Hagersten | user. it.uu.se/~eh

Other Flavors of SIMD

m MMX/AltiVec/VIS instructions/SSE...

» Divide register content into smaller items
(e.g., bytes)

Special instructions operate on all items i
parallel, e.g., BYTE-COMPARE...

m Some DSPs (Digital Signal Processors)
m Some Image Processors

117

Dept of Information Technology| www.it.uu.se

© Erik Hagersten| user.it.uu.se

UMNIVERSITET

Vector architectures
CRAY, NEC, Fujitsu,
Also x86 extensions: e.g., SSE instruction

m Vectory Processors
» LD/ST operate on vectors of data
» ALU Ops operate on vectors of data

= Example:

8 “vector register” contain 64 vector “words” each

A single LD/ST instr loads/stores entire vectors

A single ALU instr V1 € V2 op V3

64 bit mask vectors make execution conditional
Overlaps Mem and ALU ops

One form of "SIMD"” -- Single Instruction Multiple Data

* % % O % »

Dept of Information Technology| www.it.uu.se 118 © Erik Hagersten| user.it.uu.se/~eh

MIMD:Message-passing

N\

UNIVERSITET

SIMD MIMD
Message- Shared
passing }mo"y
Fine- Coarse- NUVA COMA
grained grained
Dept of Information Technology| www.it.uu.se 11 9 © Erik Hagersten| use

r.it.uu.se/~eh

A
UMNIVERSITET

Message-passing Arch
MIMD

Progra: lProgralNy:
send -
-~ eceiv
Y Z O\ y
(nuylal)-.' rograN:

Dept of Information Technology| www.it.uu.se 120

Explicit
_— Messages

© Erik Hagersten| user.it.uu.se/~eh

| Message-Passing HW

m Programmed in MPI or PVM (or HPFortran...)
Thinking Machines: CM5
Intel: Paragon
IBM: SP2
Meiko (Bristol, UK!!): CS2
Today: Clusters with high-speed interconnect
(Important today, but not covered in this course)

m Clusters can be used as message-passing
HW, put is most often used as capacity
computing (i.e., throughput computing)

Dept of Information Technology| www.it.uu.se 121

© Erik Hagersten| user.it.uu.se/~el

d Dataflow

m Often programmed in functional
languages (e.g., ID)

m Compile program to Dataflow graph

m Operands + graph = executable

m Operation ready when the source
operands are available

Dept of Information Technology| www.it.uu.se 122

© Erik Hagersten| user.it.uu.se/~el

| Dataflow Example:

A B C D
/

A+B
C+D N/ N/
> Y) + +
else

output Y

(_select
l

Dept of Information Technology| www.it.uu.se 123

© Erik Hagersten| user.it.uu.se/~el

il Static Dataflow (Dennis)

A B C D

X B
Y : D
If (X > V) A
output X
else
output Y

A
C
>

<+ +

|

Each operand executed exactly once per program

A‘;g‘l\g'(Location assigned for each input data &

Dept of Information Technology| www.it.uu.se 124 © Erik Hagersten|

user.it.uu.se/~eh

Fine-grained Message-passing
Dataflow ==> Multithreading

Implicit
— Messages
(Tokens)

Dept of Information Technology| www.it.uu.se 125 © Erik Hagersten| user.it.uu.se/~eh

| Dynamic Dataflow (Arvind)

m Allows for recursion and loops
m Each invocation is assigned a “color”

m Pairs of operands are matched dynamically
Based on {Color, Operation}
» In the Waiting-Matching Section (I.e., a cache)

m One problem: too much parallelism in the
wrong place

Dept of Information Technology| www.it.uu.se 126 © Erik Hagersten| user.it.uu.se/~eh

Carlstedts Elektornik

Gunnar Carlstedt, Staffan Truve’ et al

m Processor “"8601"
» Gothenburg 1990-1997
» Functional language “H”

» Execution performed by a reduction a CAM
memory

» ALU rarely used

» Many parallel processors on a wafer
(Wafer-scale integration)

= CRT (Carlstedt Research Technology)

Dept of Information Technology| www.it.uu.se 127 © Erik Hagersten| user.it.uu.se/~eh

N\

SIMD MIMD
\Toda y’s Topic
Message- Shared
passing Memory

VANV AN

Fine- Coarse- UMA NUVA COMA
grained grained

Dept of Information Technology| www.it.uu.se 128 © Erik Hagersten| user.it.uu.se/~eh

UNIVERSIT

=M The server market 1995

Server High-Perf. Commercial
Size Computing Comjputing
<$10k 1% 19%

<$50k 9% JNAX

<$250k 5% 24 %
<$1M 2% 99
30/0 80/0

The target of the rocket science supercomputers
129

Dept of Information Technology| www.it.uu.se © Erik Hagersten| user.it.uu.se/~eh

