
Haskell: From Basic to Advanced

Part 1 – Basic Language

By combining Haskell + Unicode, you can write perfectly functional programs in Hieroglyphics



Haskell buzzwords
Functional
Pure
Lazy
Strong static typing
Type polymorphism
Type classes
Monads

Haskell 98 / Haskell 2010
GHC

Glasgow Haskell Compiler

GADTs
Generalized Algebraic Data Types

STM
Hackage



History
Named after the logician Haskell B. Curry
Designed by a committee aiming to

consolidate (lazy) FP languages into a common one
develop a language basis for FP language research

Well crafted and designed pure FP language
concise and expressive
strong theoretical basis (λ-calculus)
sophisticated type system
evaluation on demand, at most once (laziness)



Hello, World!

Not the most representative Haskell program...
'--' starts a one-line comment
'::' denotes a type declaration
'=' defines a function clause
All but the last line are optional
Source file names end in “.hs”

-- File: hello.hs
module Main where

main :: IO ()
main = putStrLn "Hello, World!"



Quick sort over lists
-- File: qsort.hs
qsort [] = []
qsort (p:xs) =

qsort [x | x <- xs, x < p] ++
[p] ++
qsort [x | x <- xs, x >= p]

[] for the empty list
(h:t) notation for a list with head h and tail t
Very compact and easy to understand code
Small letters for variables
Simpler list comprehensions
No parentheses or punctuations needed

%% Erlang version
qsort([]) -> [];
qsort([P|Xs]) ->

qsort([X || X <- Xs, X < P]) ++
[P] ++ % pivot element
qsort([X || X <- Xs, X >= P]).



Another quick sort program
-- File: qsort2.hs
qsort [] = []
qsort (p:xs) = qsort lt ++ [p] ++ qsort ge

where lt = [x | x <- xs, x < p]
ge = [x | x <- xs, x >= p]

-- File: qsort.hs
qsort [] = []
qsort (p:xs) =
qsort [x | x <- xs, x < p] ++
[p] ++
qsort [x | x <- xs, x >= p]

Equivalent to the previous definition (shown below)

Which version to prefer is a matter of taste



Running the Haskell interpreter

The Glasgow Haskell interpreter is called ‘GHCi'
The interactive shell lets you write any Haskell 
expressions and run them
The “Prelude>” means that this library is available
To exit the interpreter, type “:quit” (or “:q” or “^D”)

$ ghci
GHCi, version 7.4.1: http://www.haskell.org/ghc/ :? for help
Loading package ...  <SNIP>
Loading package base ... linking ... done.
Prelude> 6*7
42
Prelude> :quit
Leaving GHCi.
$



Loading and running a program
$ ghci
GHCi, version 7.4.1: http://www.haskell.org/ghc/ :? for help
Loading package ...  <SNIP>
Loading package base ... linking ... done.
Prelude> :load qsort.hs
[1 of 1] Compiling Main            ( qsort.hs, interpreted )
Ok, modules loaded: Main.
*Main> qsort [5,2,1,4,2,5,3]
[1,2,2,3,4,5,5]

Use “:load” (or “:l”) to load a file in the interpreter



Functions and values

Functions are written as equations (no fun keywords)

Their definitions can consist of several clauses
Function application is written without parentheses
We can define values and apply functions to them
Local definitions using let expressions or where clauses

len [] = 0
len (x:xs) = len xs + 1

nums = [17,42,54]
n = len nums

nums = [17,42,54]
n = let len [] = 0

len (x:xs) = len xs + 1
in len nums

nums = [17,42,54]
n = len nums
where len [] = 0

len (x:xs) = len xs + 1

As we will soon see, 
functions are values!



• Note the spaces: all clauses of a function need to 
be aligned nums = [17,42,54]

n = let len [] = 0
len (x:xs) = len xs + 1

in len nums

• On the other hand, the following is not legal
nums = [17,42,54]
n = let len [] = 0

len (x:xs) = len xs + 1
in len nums

• One can also write
nums = [17,42,54]
n = let { len [] = 0; len (x:xs) = len xs + 1 }

in len nums

Layout matters!



Pattern matching

Function clauses are chosen by pattern matching
Pattern matching also available using case expressions

len [] = 0
len (x:xs) = len xs + 1

len ls = case ls of
[] -> 0
x:xs -> len xs + 1

Strong static typing ensures the above is equivalent to

len ls = case ls of
x:xs -> len xs + 1
_ -> 0



Pattern matching (cont.)
-- take first N elements from a list
take 0 ls = []
take n [] = []
take n (x:xs) = x : take (n-1) xs

Pattern matching can involve ‘multiple’ arguments
But no repeated variables in patterns (as in ML)
Pattern matching can also be expressed with case

-- equivalent definition using case
take n ls =

case (n, ls) of
(0, _)    -> []
(_, [])   -> []
(n, x:xs) -> x : take (n-1) ls

Note: All branches
of a case have to
return the same type



Pattern matching and guards

-- a simple factorial function
fac 0 = 1
fac n | n > 0 = n * fac (n-1)

This 
clause 
will match 
only for 
positive 
numbers

Pattern matching can also involve guards

No “match non exhaustive” warnings; runtime errors instead

Prelude> :l factorial.hs
[1 of 1] Compiling Main       ( factorial.hs, interpreted )
Ok, modules loaded: Main.
*Main> fac 3
6
*Main> fac 42
1405006117752879898543142606244511569936384000000000
*Main> fac (-42)
*** Exception: factorial.hs:(2,1)-(3.31):

Non-exhaustive patterns in function fac



More than one clauses can contain guards

We can abbreviate repeated left hand sides

Haskell also has if-then-else

More on guards

-- returns the absolute value of x
abs x | x >= 0 = x
abs x | x < 0 = -x

-- returns the absolute value of x
abs x | x >= 0 = x

| x < 0 = -x

-- returns the absolute value of x
abs x = if x >= 0 then x else -x



Type annotations

Every function and value has an associated type
This type can be (optionally) supplied by the programmer 
in the form of an annotation
Note the variable in the type of len (a polymorphic type)

len :: [a] -> Integer
len [] = 0
len (x:xs) = len xs + 1

nums :: [Integer]
nums = [17,42,54]

n :: Integer
n = len nums



• Integer, String, Float, Double, Char, ... Base types
• [X] A list of values of type X
• X -> Y A function from X values to Y values
• (X,Y,Z) A 3-tuple with an X, a Y and a Z value
• ...

pair_sum :: (Integer,Integer) -> Integer
pair_sum (a,b) = a + b

triple :: (Integer,(String,Integer),[Char])
triple = (17,("foo",42),['b','a','r'])

Type notation



• A type annotation is a contract between the 
author and the user of a function definition

• In Haskell, writing type annotations is optional
– the compiler will infer types and detect inconsistencies
– in fact, it will infer the best possible type (principal type)

• Still, providing type annotations is recommended
– to enhance readability of programs
– especially when the intended meaning of functions is 

not “immediately obvious”
• But, as we will see, often Haskell infers better 

types than those we would normally write by hand

Type inference



We can create new types by enumerating constants 
and constructors (they need to start with uppercase)

A type used in another type (such as Double above) 
has to be wrapped in a constructor – why?

data Color = Green | Yellow | Red

next Green = Yellow
next Yellow = Red
next Red = Green

data Shape = Rectangle Double Double
| Circle Double

area (Rectangle x y) = x * y
area (Circle r) = 3.14159265 * r * r

User defined types



• Constructors are a special kind of functions that 
construct values
e.g.  Rectangle 3.0 2.0 constructs a Shape value

• Constructors have types!
e.g.  Rectangle :: Double -> Double -> Shape

• Pattern matching can be used to “destruct” values
e.g. below we define a function that can extract the first 

(x) component of a Rectangle value

getX (Rectangle x y) = x

Constructors vs. pattern matching



• Type definitions can be recursive

eval (Mult (Const 6.0) (Add (Const 3.0) (Const 4.0))) 
⇒ ... ⇒ 42.0

data Expr = Const Double
| Add Expr Expr
| Neg Expr
| Mult Expr Expr

eval :: Expr -> Double
eval (Const c) = c
eval (Add e1 e2) = eval e1 + eval e2
eval (Neg e) = - eval e
eval (Mult e1 e2) = eval e1 * eval e2

Recursive data types



• Type definitions can also be parameterized

• Now Expr is a parameterized type:
– It takes a type as “argument” and “returns” a type

data Expr = Const Double
| Add Expr Expr
| Neg Expr
| Mult Expr Expr

data Expr a = Const a
| Add (Expr a) (Expr a)
| Neg (Expr a)
| Mult (Expr a) (Expr a)

type DoubleExpr = Expr Double

Parameterized types



• Another parameterized type definition

• Types can be parameterized on more type variables

data Tree a = Empty | Node a (Tree a) (Tree a)

Empty :: Tree a
Node :: a -> Tree a -> Tree a -> Tree a

depth :: Tree a -> Integer
depth Empty = 0
depth (Node x l r) = 1 + max (depth l) (depth r)

type Map a b = [(a,b)]

Parameterized types (cont.)

data Pair a = Duo a a
constraints Duo to 
have two elements 
of the same type



• Synonyms for types are just abbreviations
• Defined for convenience

type String = [Char]

type Name = String
data OptAddress = None | Addr String
type Person = (Name,OptAddress)

A note on names: The naming style we have been using is mandatory
• Type names and constructor names begin with an uppercase letter
• Value names (and type variables) begin with a lowercase letter

Type synonyms



• Functions are first class values
• They can take functions as arguments and return 

functions as results

• Function application associates to the left
f x y = (f x) y

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

nums = [17,42,54]
inc x = x + 1
more_nums = map inc nums

Type variables

Higher order functions



• add_t takes a pair of integers as argument and 
returns their sum

• add_c takes one integer as argument and returns 
a function that takes another integer as argument 
and returns their sum (curried version)

add_t :: (Integer,Integer) -> Integer
add_t (x,y) = x + y

add_c :: Integer -> Integer -> Integer
add_c x y = x + y

add42 = add_c 42

Currying



• A λ-abstraction is an anonymous function
• Math syntax:

λx.exp where x is a variable name and
exp is an expression that may use x

• Haskell syntax:
\x -> exp

• Two examples:
inc42 x = x + 42

add x y = x + y

inc42 = \x -> x + 42

add = \x -> \y -> x + y

≈

≈
add = \x y -> x + y≈

Anonymous functions



• Infix operators (e.g. + or ++) are just “binary” functions

• “Binary” functions can be written with an infix notation

• Apart from the built-in operators, we can define our own
– Infix operators are built from non-alphanumeric characters

– Operator precedence and associativity can be specified 
with “fixity declarations”

x + y (+) x y≈

add x y x `add` y≈

Strictly, there are no binary functions in Haskell as all functions have only one argument...

[] @@ ys = ys
(x:xs) @@ ys = x : (ys @@ xs)

Infix operators



Even infix operators can be applied partially

Notice that for a non-commutative operator order matters! 
(as shown for ++ above or as shown for / below)

Prelude> map (42 +) [1,2,3]
[43,44,45]
Prelude> map (+ 42) [1,2,3]
[43,44,45]
Prelude> map ("the " ++) ["dog","cat","pig"]
["the dog","the cat","the pig"]
Prelude> map (++ " food") ["dog","cat","pig"]
["dog food","cat food","pig food"]

Prelude> map (/ 2) [1,2,3]
[0.5,1.0,1.5]
Prelude> map (2 /) [1,2,3]
[2.0,1.0,0.6666666666666666]

Infix operators & partial application



• Function composition is easy (and built-in)

• Composition is not commutative
• What is the type of function composition?

-- same as the built-in operator . (dot)
compose f g = \x -> f (g x)

*Main> compose fac length "foo"
6
*Main> (fac . length) "foobar"
720

*Main> :type compose
compose :: (b -> c) -> (a -> b) -> a -> c

Function composition



• A library containing commonly used definitions
• Examples:

• The core of Haskell is quite small
• In theory, everything can be reduced to λ-calculus

[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

data Bool = False | True

True && x = x
False && _ = False

type String = [Char]

Haskell standard Prelude



• Lists are pervasive in Haskell (as in all FP languages...)

• List comprehensions are a convenient notation for 
list manipulation

• Recall

which means the same as

(concatMap is defined in the Prelude)

lt = [y | y <- xs, y < x]

lt = concatMap f xs
where
f y | y < x = [y]

| otherwise = []

List comprehensions



• List comprehensions can have multiple generators

• Note that any list-producing expression can be used as a 
generator, not just explicit lists

• Similarly, any Boolean expression can be used as a filter

List comprehensions (cont.)

-- finds all Pythagorian triples up to n
pythag :: Int -> [(Int,Int,Int)]
pythag n =

[(x,y,z) | x <- [1..n], y <- [x..n],
z <- [y..n], x^2 + y^2 == z^2]

*Main> pythag 13
[(3,4,5),(5,12,13),(6,8,10)]
*Main> pythag 17
[(3,4,5),(5,12,13),(6,8,10),(8,15,17),(9,12,15)]



• The function zip takes two lists as input (curried) 
and returns a list of corresponding pairs

• Two examples:

zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip [] ys = []
zip xs [] = []

Prelude> zip [17,42,54] ['a','b','c']
[(17,'a'),(42,'b'),(54,'c')]
Prelude> zip [1,2,3,4] ['A'..'Z']
[(1,'A'),(2,'B'),(3,'C'),(4,'D')]

The lists zip operation



• These two functions perform a similar traversal of 
the list, but apply different operations to elements

• We can abstract the traversal part and separate it 
from the operations

sum [] = 0
sum (x:xs) = x + sum xs

prod [] = 1
prod (x:xs) = x * prod xs

foldr op init [] = init
foldr op init (x:xs) = x `op` foldr op init xs

sum  = foldr (+) 0
prod = foldr (*) 1 foldr op init [x1,x2,...,x42] ⇒

(x1 `op` (x2 `op` ... (x42 `op` init) ...

very common 
technique in 

FP languages

Abstractions using HO functions



Using foldr we can obtain very concise definitions 
of many common list functions

More foldr fun

and = foldr (&&) True
concat = foldr (++) []

maximum (x:xs) = foldr max x xs

xs ++ ys = foldr (:) ys xs

reverse = foldr (\y ys -> ys ++ [y]) []



guards⇔if

function level pattern 
matching⇔case

arguments on the left 
hand side of =⇔λ

where⇔let

each function is defined 
as a series of equations⇔each function is defined 

as one expression

Declaration stylevs.Expression style

Syntactic redundancy



Higher-order function: a function that takes 
another function as argument and/or returns one 
as a result

Polymorphic function: a function that works with 
arguments of many possible types

Type scheme: a type that involves type variables
– the type of a polymorphic function is a type scheme

Parameterized type: a type that takes another type 
as “argument” and “returns” a type
– their constructors are often polymorphic functions

Terminology review


