'A Haskell: From Basic to Advanced

Part 1 — Basic Language

2t (R > 1 > [R]1 -> L]]

ombining Haskell + Unicode, you

Haskell buzzwords

N

. Functional . Haskell 98 / Haskell 2010
« Pure « GHC
o Lazy . Glasgow Haskell Compiler

« GADTs

» Strong static typing

T | i . Generalized Algebraic Data Types
. morpnism
Type pIO ymorp . STM
o € ClaSSES
yP » Hackage

. Monads

N

. Named after the logician Haskell B. Curry

History

« Designed by a committee aiming to

« consolidate (lazy) FP languages into a common one
. develop a language basis for FP language research

. Well crafted and designed pure FP language
« CONcCise and expressive
« strong theoretical basis (A-calculus)
« sophisticated type system
« evaluation on demand, at most once (laziness)

Hello, World!

—— Fi1le: hello.hs
module Main where

N

main -: 10 ()
main = putStrLn ""Hello, World!"

Not the most representative Haskell program...
. ——'starts a one-line comment

« '- 2" denotes a type declaration

o "='defines a function clause

« All but the last line are optional
« Source file names end in “_hs”

Quick sort over lists

N

—-— File: gsort.hs
gsort [] = []
gsort (p:xs) =
gsort [X | X <- Xs, X < p] ++

[p] ++
gsort [x | x <- xs, x >= p]

« [] for the empty list
« (h:1) notation for a list with head h and tail t

« Very compact and easy to understand code

%% Erlang version

 Small letters for variables gsort([1) -> [1:

gsort([P|Xs]) ->
gsort([X]| X <= Xs, X < P]) ++

« Simpler list comprehensions [Pl + & pivot elenent

gsort([X]] X <- Xs, X >= P]).

« No parentheses or punctuations needed

" Another quick sort program

-— Frle: gsort2.hs

gsort [] = [1
gsort (p:xs) = gsort It ++ [p] ++ gsort ge
where It = [X | x <- Xs, X < p]
ge = [X | X <- xs, X >= p]

« Equivalent to the previous definition (shown below)
« Which version to prefer is a matter of taste

-— Fi1le: gsort.hs
gsort [] = [1
gsort (p:xs) =
gsort [X | X <- Xs, X < p] ++

[p] ++
gsort [x | x <- xs, x >= p]

.’ Running the Haskell interpreter

$ ghci

GHCi, version 7.4.1: http://www.haskell._.org/ghc/ :? for help
Loading package ... <SNIP>

Loading package base ... linking ... done.

Prelude> 6*7

42

Prelude> :-quit

Leaving GHCiI.

$

ne Glasgow Haskell interpreter is called ‘GHCi'

ne interactive shell lets you write any Haskell
expressions and run them

The "Prelude>" means that this library is available

o exit the interpreter, type “:quit” (or “zq” or “*D”)

" Loading and running a program

$ ghci

GHCi, version 7.4.1: http://www.haskell._.org/ghc/ :? for help
Loading package ... <SNIP>

Loading package base ... linking ... done.
Prelude> :load gsort.hs
[1 of 1] Compiling Main (gsort.hs, Interpreted)

Ok, modules loaded: Main.
*Main> gsort [5,2,1,4,2,5,3]
[1,2,2,3,4,5,5]

. Use “:l1oad” (or “:1”) to load a file in the interpreter

Functions and values

As we will soon see,
functions are values!

N

len [] =0
len (X:xs) = len xs + 1

nums = [17,42,54]
n = len nums

« Functions are written as equations (no fun keywords)
 Their definitions can consist of several clauses
« Function application is written without parentheses

« We can define values and apply functions to them
« Local definitions using let expressions or where clauses

nums = [17,42,54] nums = [17,42,54]
n=1let len [] =0 n = len nums
len (Xx:xs) = len xs + 1 where len [] =0

in len nums len (x:xs) = len xs + 1

N

* Note the spaces: all clauses of a function need to

be aligned nums = [17,42,54]
n = letglen [] =0
len (X:xs) = len xs + 1
in len nums

Layout matters!

* On the other hand, the following is not legal

nums = [17,42,54]
n = let len [] =0
len (Xx:xs) = len xs + 1
in len nums

e One can also write

nums = [17,42,54]
n = let { len [] = 0; len (x:xs) = len xs + 1 }
in len nums

Pattern matching

N

len [] =0
len (Xx:xs) = len xs + 1

« Function clauses are chosen by pattern matching
. Pattern matching also available using case expressions

len Is = case Is of

[1 >0

X:Xs -> len xs + 1

« Strong static typing ensures the above is equivalent to

len Is = case Is of
X:Xs -> len xs + 1
_>O

N

Pattern matching (cont.)

-— take fTirst N elements from a list
take 0 Is = []

take n [] = [1

take n (x:xs) = x - take (n-1) xs

» Pattern matching can involve ‘multiple’ arguments

» But no repeated variables in patterns (as in ML)
« Pattern matching can also be expressed with case

-— equivalent definition using case

take n Is =
Note: All branches
case (n ? IS) of of a case have to
@O,) -> 1] return the same type
. ID -=>1

(n, x:xs) -> x - take (n-1) Is

.’ Pattern matching and guards

« Pattern matching can also involve guards | s
cl_ause
-— a simple factorial function \c')vr']':yr?s:(:h
fac 0 = 1 positive
fac n | n >0 =n * fac (n-1) numbers

Prelude> :1 factorial.hs
[1 of 1] Compiling Main (factorial.hs, i1nterpreted)
Ok, modules loaded: Main.
*Main> fac 3
6
*Main> fac 42
1405006117752879898543142606244511569936384000000000
*Main> fac (-42)
*** Exception: factorial.hs:(2,1)-(3-31):

Non-exhaustive patterns in function fac

No “match non exhaustive” warnings; runtime errors instead

N

« More than one clauses can contain guards

—— returns the absolute value of Xx
abs x | x >= 0 = X
abs x | x < 0 = -x

More on guards

« We can abbreviate repeated left hand sides

—— returns the absolute value of Xx
abs X | x >= 0 = X
| Xx <0 = -x

. Haskell also has 1 T-then-else

—— returns the absolute value of X
abs X = 1f X >= 0 then x else -Xx

Type annotations

len -: [a] -> Integer
len [] =0
len (X:xs) = len xs + 1

nums :-: [Integer]
nums = [17,42,54]

n -: Integer
n = len nums
« Every function and value has an associated type

« This type can be (optionally) supplied by the programmer
In the form of an annotation

. Note the variable in the type of len (a polymorphic type)

N

e Integer, String, Float, Double, Char, ... Base types
o [X] A list of values of type X

e X -=Y A function from X values to Y values

e (X,Y,Z2) A 3-tuple with an X, a Y and a Z value

Type notation

pair_sum :: (Integer,Integer) -> Integer
pair_sum (a,b) = a + b

triple :: (Integer,(String, Integer),|[Char])
triple = (17,('foo0",42),["b","a","r"])

N

* A type annotation is a contract between the
author and the user of a function definition

Type inference

* In Haskell, writing type annotations is optional

— the compiler will infer types and detect inconsistencies
— in fact, it will infer the best possible type (principal type)

« Still, providing type annotations is recommended

— to enhance readability of programs

— especially when the intended meaning of functions is
not “immediately obvious”

e But, as we will see, often Haskell infers better
types than those we would normally write by hand

N

We can create new types by enumerating constants
and constructors (they need to start with uppercase)

User defined types

data Color = Green | Yellow | Red

next Green = Yellow
next Yellow = Red
next Red = Green

data Shape = Rectangle Double Double
| Circle Double

area (Rectangle X y) = x * vy
area (Circle r) = 3.14159265 * r * r

A type used in another type (such as Double above)
has to be wrapped in a constructor — why?

" Constructors vs. pattern matching

e Constructors are a special kind of functions that
construct values

e.g. Rectangle 3.0 2.0 constructs a Shape value

e Constructors have types!
e.g. Rectangle :: Double -> Double -> Shape

o Pattern matching can be used to “destruct” values

e.g. below we define a function that can extract the first
(X) component of a Rectangle value

getX (Rectangle X y) = X

N

 Type definitions can be recursive

Recursive data types

data Expr = Const Double
| Add Expr EXpr
| Neg Expr
| Mult Expr EXpr

eval :-: Expr -> Double

eval (Const c) = cC

eval (Add el e2) = eval el + eval e2
eval (Neg e) = - eval e

eval (Mult el e2) = eval el * eval e2

eval (Mult (Const 6.0) (Add (Const 3.0) (Const 4.0)))
= ... > 42.0

Parameterized types

N

data Expr = Const Double
| Add Expr EXpr
| Neg Expr
| Mult Expr EXpr

* Type definitions can also be parameterized

data Expr a = Const a
| Add (Expr a) (Expr a)
| Neg (Expr a)

| Mult (Expr a) (Expr a)
type DoubleExpr = Expr Double

« Now EXpr Is a parameterized type:

— It takes a type as “argument” and “returns” a type

" Parameterized types (cont.)

* Another parameterized type definition

data Tree a = Empty | Node a (Tree a) (Tree a)

Empty :-: Tree a
Node :: a -> Tree a -> Tree a -> Tree a

depth :-: Tree a -> Integer
depth Empty = O
depth (Node X 1 r) = 1 + max (depth 1) (depth r)

» Types can be parameterized on more type variables

type Map a b = [(a,b)]
constraints Duo to
data Pair a = Duo a a%ﬁﬁh?ﬁaﬂiﬁe&

Type synonyms

N

 Synonyms for types are just abbreviations
e Defined for convenience

type String = [Char]

type Name = String
data OptAddress = None | Addr String
type Person = (Name,OptAddress)

A note on names: The naming style we have been using is mandatory
e Type names and constructor names begin with an uppercase letter
* Value names (and type variables) begin with a lowercase letter

N

e Functions are first class values

Higher order functions

* They can take functions as arguments and return

functions as results
%variables |

map -:: (a -> b) -> [a] -> [b]
map ¥ [1 = []

map f (Xx:xs) = f x - map T xs

nums = [17,42,54]
InC X = X + 1
more_nums = map INC nums

* Function application associates to the left
Fxy=EX)y

N

add t :: (Integer,Integer) -> Integer
add t (X,y) = X +vVy

Currying

add c :: Integer -> Integer -> Integer
add c Xy =X +vVy

add42 = add c 42

 add_t takes a pair of integers as argument and
returns their sum

 add_c takes one integer as argument and returns

a function that takes another integer as argument
and returns their sum (curried version)

Anonymous functions

N

* A A-abstraction is an anonymous function

 Math syntax:

Ax.exp where x is a variable name and
exp is an expression that may use x

* Haskell syntax:
\X => exp

 Two examples:

INcC42 X = X + 42 INc42 = \X -> X + 42

U

add X y = X + vy add = \x -> \y -> X + vy

U

U

add = \x y -> X + vy

Infix operators

PN

 Infix operators (e.g. + or ++) are just “binary” functions

X+y ~ () Xy
« "Binary” functions can be written with an infix notation
add Xy ~ X add vy

« Apart from the built-in operators, we can define our own

— Infix operators are built from non-alphanumeric characters

[1 @@ ys = ys
(X:xs) @@ ys = x = (ys @@ xs)

— Operator precedence and associativity can be specified
with “fixity declarations”

Strictly, there are no binary functions in Haskell as all functions have only one argument...

"Infix operators & partial application

Even infix operators can be applied partially

Prelude> map (42 +) [1,2,3]}

[43,44,45]

Prelude> map (+ 42) [1,2,3]}

[43,44,45]

Prelude> map (‘'the " ++) ['dog","cat",'pig']
["the dog",'"the cat',''the pig"]

Prelude> map (++ " food') [''dog",'cat","pig"]
['dog food",'cat food",'pig food"]

Notice that for a non-commutative operator order matters!
(as shown for ++ above or as shown for / below)

Prelude> map (/ 2) [1,2,3]}
[0.5,1.0,1.5]

Prelude> map (2 /) [1,2,3]}
[2.0,1.0,0.6666666666666666]

Function composition

N

* Function composition is easy (and built-in)

-— same as the burlt-i1n operator . (dot)
compose f g = \x -=> f (g xX)

*Main> compose fac length "foo"
6

*Main> (fac . length) "foobar™
720

o Composition is not commutative
 What is the type of function composition?

*Main> -type compose
compose :: (b ->¢c) > (a ->b) ->a ->c

" Haskell standard Prelude

* A library containing commonly used definitions

 Examples:
type String = [Char]

data Bool = False | True

True && X
False &&

X
False

[1 ++ ys = ys
(X:xs) ++ ys = X - (Xs ++ ys)

* The core of Haskell is quite small
* In theory, everything can be reduced to A-calculus

List comprehensions

N

» Lists are pervasive in Haskell (as in all FP languages...)

» List comprehensions are a convenient notation for
list manipulation

* Recall
It = [y | v <-Xxs, Vy < X]

which means the same as

It = concatMap T xs
where

fyly<xz=1Lyl
| otherwise = []

(concatMap is defined in the Prelude)

" List comprehensions (cont.)

* List comprehensions can have multiple generators

-— finds all Pythagorian triples up to n
pythag :: Int -> [(Int,Int,Int)]
pythag n =

[(X.y.z) | x <= [1..n], ¥y <- [Xx..n],
Z <- [y..n], X2 + y?2 == z"2]}

*Main> pythag 13

[(3.4.5),(5,12,13),(6,8,10)]

*Main> pythag 17
[(3.4,5),(5,12,13),(6,8,10),(8,15,17),(9,12,15)]

* Note that any list-producing expression can be used as a
generator, not just explicit lists

e Similarly, any Boolean expression can be used as a filter

N

* The function z1p takes two lists as input (curried)
and returns a list of corresponding pairs

The lists zip operation

zip (X:xs) (y:ys) = (X,Y) :- zZIp XS yS
zip [1 ys = [1
zip xs [1 = [1

 Two examples:

Prelude> zip [17,42,54] ["a","b","c"]
[(17,%a%),(42,"b"), (54, c™)]

Prelude> zip [1,2,3,4] [FA".."Z"7]
[(1,7A"),(2,"B"),(3,"C"),(4,"D")]

.’ Abstractions using HO functions

* These two functions perform a similar traversal of
the list, but apply different operations to elements

sum [] =0
sum (X:XS) = X + sum XS

very common
prod [] =1 technique in

FP languages
prod (Xx:xs) = X * prod Xxs O 2P
-

 We can abstract the traversal Eart and separate it
from the operations
foldr op 1nit [] = Init
foldr op Init (X:xs) = x op Toldr op Init xs

sum
prod

foldr (+) O

foldr (*) 1 foldr op init [x1,x2,...,x42] =
(x1 'op” (x2 'op’ ... (x42 "op’ init) ..

DR More Foldr fun

Using foldr we can obtain very concise definitions
of many common list functions

and = foldr (&&) True
concat = foldr (++) [1

xs ++ ys = foldr (:) ys xs
reverse = foldr (\y ys -> ys ++ [vD [1

maximum (x:xs) = foldr max X Xs

N

Syntactic redundancy

Expression style VS. Declaration style
each function is defined N each function is defined
as one expression as a series of equations
let —_ where
A arguments on the left
< hand side of =
case N function Ievgl pattern
matching
1T — guards

N

Higher-order function: a function that takes
another function as argument and/or returns one
as a result

Terminology review

Polymorphic function: a function that works with
arguments of many possible types

Type scheme: a type that involves type variables

— the type of a polymorphic function is a type scheme

Parameterized type: a type that takes another type
as “argument” and “returns” a type

— their constructors are often polymorphic functions

