
Haskell: From Basic to Advanced

Part 3 – A Deeper Look into Laziness

• Haskell is a lazy language
– A particular function argument is only evaluated when

it is needed, and
– if it is needed then it is evaluated just once

Laziness again

(\x -> x + x) (3 * 7)
⇒ +

(3 * 7)
⇒ 21 + 21
⇒ 42

“apply” needs
the function

(+) needs
its arguments

A computation model
called graph reduction

When is a value “needed”?

strange :: Bool -> Integer
strange True = 42
strange False = 42

Prelude> strange undefined
*** Exception: Prelude.undefined

An argument is
evaluated when
a pattern match

occurs

But also primitive
functions evaluate

their argumentsuse undefined or
error to test if an

argument is evaluated

Lazy programming style
• Clear separation between

– Where the computation of a value is defined
– Where the computation of a value happens

We naturally
get modularity!

At most once?

foo :: Integer -> Integer
foo n = (fib n)^2 + fib n + 42

bar :: Integer -> Integer
bar n = foo 42 + n

Quiz: How to avoid such recomputation?

Prelude> foo (6 * 7)
71778070269089954

Prelude> bar 17 + bar 54
143556140538179979

fib n = head (drop n fibs)

6 * 7 is evaluated
once but fib 42
is evaluated twice

foo 42 is
evaluated

twice

At most once!

foo :: Integer -> Integer
foo x = t^2 + t + 42

where t = fib x

bar :: Integer -> Integer
bar x = foo42 + x

foo42 :: Integer
foo42 = foo 42

The compiler might also perform these optimizations with
ghc -O
ghc –ffull-laziness

Lazy iteration
iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

Prelude> take 13 (iterate (*2) 1)
[1,2,4,8,16,32,64,128,256,512,1024,2048,4096]

repeat :: a -> [a]
repeat x = x : repeat x

cycle :: [a] -> [a]
cycle xs = xs ++ cycle xsDefine these

with iterate?

repeat :: a -> [a]
repeat x = iterate id x

cycle :: [a] -> [a]
cycle xs = concat (repeat xs)

Lazy replication and grouping
replicate :: Int -> a -> [a]
replicate n x = take n (repeat x)

Prelude> replicate 13 42
[42,42,42,42,42,42,42,42,42,42,42,42,42]

group :: Int -> [a] -> [[a]]
group n =

takeWhile (not . null)
. map (take n)
. iterate (drop n)

How to
define this?

Prelude> group 3 "abracadabra!"
["abr","aca","dab","ra!"]

. connects stages like
Unix pipe symbol |

Lazy IO

headFile f = do
c <- readFile f
let c’ = unlines . take 5 . lines $ c
putStrLn c’

Does not actually read
in the whole file!

Need to print causes
just 5 lines to be read

• Even IO is done lazily!

Aside: we can use names with ’ at their end (read: “prime”)

Lazy IO

import Network.HTTP.Base (urlEncode)

encodeLines = interact $
unlines . map urlEncode . lines

Prelude> encodeLines
hello world
hello%20world
20+22=42
20%2B22%3D42
...

Common pattern: take a function from String to String,
connect stdin to the input and stdout to the output

interact :: (String -> String) -> IO ()

Other IO variants
• String is a list of Char:

– each element is allocated individually in a cons cell
– IO using String has quite poor performance

• Data.ByteString provides an alternative non-lazy
array-like representation ByteString

• Data.ByteString.Lazy provides a hybrid version
which works like a list of max 64KB chunks

Controlling laziness
• Haskell includes some features to reduce the

amount of laziness, allowing us to decide when
something gets evaluated

• These features can be used for performance
tuning, particularly for controlling space usage

• Not recommended to mess with them unless you
have to – hard to get right in general!

Tail recursion
• A function is tail recursive if its last action is a recursive

call to itself and that call produces the function’s result
• Tail recursion uses no stack space; a tail recursive call

can be compiled to an unconditional jump
• Important concept in non-lazy functional programming

• Recall foldr

• The tail recursive “relative” of foldr is foldl

foldr op init [] = init
foldr op init (x:xs) = x `op` foldr op init xs

foldr op init [x1,x2,...,x42] ⇒
(x1 `op` (x2 `op` ... (x42 `op` init) ...

foldl op init [] = init
foldl op init (x:xs) = foldl op (init `op` x) xs

foldl op init [x1,x2,...,x42] ⇒
(...(init `op` x1) `op` x2) ... `op` x42

Tail recursion and laziness
• Recall sum

• OK, we were expecting these, but how about foldl?

• What’s happening!?
• Lazy evaluation is too lazy!

sum = foldr (+) 0

*Main> let big = 42424242 in sum [1..big]
*** Exception: stack overflow
*Main> let big = 42424242 in foldr (+) 0 [1..big]
*** Exception: stack overflow

*Main> let big = 42424242 in foldl (+) 0 [1..big]
*** Exception: stack overflow

foldl (+) 0 [1..big]
⇒ foldl (+) (0+1) [2..big]
⇒ foldl (+) (0+1+2) [3..big]
⇒ ...

Not computed until needed;
at the 42424242 recursive call!

Controlling laziness using seq
• Haskell includes a primitive function

• It evaluates its first argument and returns the second

The Prelude also defines a strict application operation

seq :: a -> b -> b

($!) :: (a -> b) -> a -> b
f $! x = x `seq` (f x)

“strict” is used to mean
the opposite of “lazy”

• A tail recursive lists sum function

• When compiling with ghc -O the compiler looks
for arguments which will eventually be needed
and will insert `seq` calls in appropriate places

Strictness

sum :: [Integer] -> Integer
sum = s 0

where s acc [] = acc
s acc (x:xs) = s (acc+x) xs

sum’ :: [Integer] -> Integer
sum’ = s 0
where s acc [] = acc

s acc (x:xs) = acc `seq` s (acc+x) xs

force acc to be simplified
on each recursive call

Strict tail recursion with foldl’
foldl’ :: (a -> b -> a) -> a -> [b] -> a
foldl’ op init [] = init
foldl’ op init (x:xs) = let a = (init `op` x)

in a `seq` foldl’ op a xs

*Main> let big = 42424242 in foldl’ (+) 0 [1..big]
899908175849403

*Main> import Data.List (foldl’)
*Main> let big = 42424242 in foldl’ (+) 0 [1..big]
899908175849403

And now

Or even better, we can use the built-in one

• One more example: average of a list of integers

• Seems to work, doesn’t it? Let’s see:

Are we there yet?

average :: [Integer] -> Integer
average xs = sum’ xs `div` fromIntegral (length xs)

*Sum> let big = 42424242 in length [1..big]
42424242
*Sum> let big = 42424242 in sum’ [1..big]
899908175849403
*Sum> let big = 42424242 in average [1..big]
21212121

*Sum> let bigger = 424242420 in length [1..bigger]
424242420
*Sum> let bigger = 424242420 in sum’ [1..bigger]
89990815675849410
*Sum> let bigger = 424242420 in average [1..bigger]
... CRASHES THE MACHINE DUE TO THRASHING! WTF?

needed due
to the types
of sum’ and
length

• Making sum and length tail recursive and strict
does not solve the problem

• This problem is often called a space leak
– sum forces us to build the whole [1..bigger] list
– laziness (“at most once”) requires us to keep the list in

memory since it is going to be used by length
– when we compute either the length or the sum, as we

go along, the part of the list that we have traversed so
far is reclaimed by the garbage collector

Space leaks

• This particular problem can be solved by making
average tail recursive by computing the list sum
and length at the same time

Fixing the space leak

average’ :: [Integer] -> Integer
average’ xs = av 0 0 xs where
av sm len [] = sm `div` len
av sm len (x:xs) = sm `seq`

len `seq`
av (sm + x) (len + 1) xs

*Sum> let bigger = 424242420 in average [1..bigger]
212121210

call to fromIntegral
not needed anymore

fixing a space leak

• seq forces evaluation of its first argument, but
only as far as the outermost constructor!

Gotcha: seq is still quite lazy!

Prelude> undefined `seq` 42
*** Exception: Prelude.undefined
Prelude> (undefined,17) `seq` 42
42

sumlength = foldl’ f (0,0)
where f (s,l) a = (s+a,l+1)

sumlength = foldl’ f (0,0)
where f (s,l) a = let (s’,l’) = (s+a,l+1)

in s’ `seq` l’ `seq` (s’,l’)

the pair is already “evaluated”, so
a seq here would have no effect

force the evaluation of components
before the pair is constructed

evaluation to weak
head-normal form

• We sometimes need to control lazy IO
– Here the problem is easy to fix (see below)
– Some other times, we need to work at the level of file handles

Laziness and IO
count :: FilePath -> IO Int
count f = do contents <- readFile f

let n = read contents
writeFile f (show (n+1))
return n

Prelude> count "some_file"
*** Exception: some_file: openFile: resource busy (file is locked)

readFile is not computed
until it is needed

count :: (Num b,Show b,Read b) => FilePath -> IO b
count f = do contents <- readFile f

let n = read contents
n `seq` writeFile f (show (n+1))
return n

for the time being this will do

• Laziness
– Evaluation happens on demand and “at most once”
+ Can make programs more “modular”
+ Very powerful tool when used right
− Different programming style / approach

• We do not have to employ it everywhere!
• Some performance implications are very tricky

– Evaluation can be controlled by tail recursion and seq
– Best avoid their use when not really necessary

Some lazy remarks

