
Introduction to Racket

Advanced Functional Programming

Kostis Sagonas

November 2015

(original set of slides by Jean-Noël Monette)

1

Racket

• a programming language — a dialect of Lisp and a descendant of Scheme

• a family of programming languages — variants of Racket, and more

• a set of tools — for using a family of programming languages

2

Getting Started

Installation

• download from http://www.racket-lang.org/download

• run the self-extracting archive

• type racket (REPL) or drracket (IDE)

3

Getting Started

Installation

• download from http://www.racket-lang.org/download

• run the self-extracting archive

• type racket (REPL) or drracket (IDE)

Documentation at http://docs.racket-lang.org which contains:

• tutorials

• comprehensive guide

• reference manual

• ... and a lot more ...

4

A First Example

#lang racket

(define (fact x)
 (cond [(> x 0) (* x (fact (sub1 x)))]

[else 1]))

(fact 42)

5

Syntax

• The syntax is uniform and made of s-expressions

• An s-expression is an atom or a sequence of atoms separated by spaces and
enclosed in parentheses

• Square brackets [] and braces {} can be used instead of parentheses (as
long as they match per type)

• There are a few syntactic shortcuts such as e.g. ' , #

6

Choosing your language

Always start your files with #lang racket to define the language.

We will mainly use racket as a language but others do exist.

Examples: typed/racket, slideshow, scribble, ...

7

Racket Basics

Strict evaluation:

• arguments to a procedure are evaluated before the procedure

Dynamically typed:

• (fact "some string") is a runtime error, not a compilation error

8

Racket Basics

Strict evaluation:

• arguments to a procedure are evaluated before the procedure

Dynamically typed:

• (fact "some string") is a runtime error, not a compilation error

But

9

Racket Basics

Strict evaluation:

• arguments to a procedure are evaluated before the procedure

Dynamically typed:

• (fact "some string") is a runtime error, not a compilation error

But

Macros can emulate laziness

Contracts can help catch "type errors"

10

Comments

; starts a comment to the end of the line

;; is usually used to mark more important comments

#; comments the following s-expression

11

Procedure Calls

Appear between parentheses

• the first expression must evaluate to the procedure

• the remaining ones are the arguments

(+ 1 2 3 4)
(string? "Hello")
(equal? 42 "bar")

12

Definitions

(define x 5)
(define (inc x) (+ x 1)) ; predefined as add1
(define 3*2 (* 3 2))

Identifiers can be composed of any characters but ()[]{}",'`;#|\

Identifiers usually start with a lower case letter

Compound names are usually separated with - , e.g. sum-two-numbers

13

Numbers

• Arbitrary large integers and (exact) rationals: (/ 1 3)

• Floating point numbers: (+ 3.14 -inf.0 +nan.0)

• Complex numbers: 42+1/2i

• Test procedures: number? real? rational? integer?
inexact? exact?

14

Booleans

Two boolean literals: #t and #f

Everything not #f is considered as true in conditions

(boolean? x) tells whether x is a boolean value

(and) and (or) take any number of arguments (including zero) and
short-circuit

• For instance, (or 42 #f) returns 42

15

Characters and Strings

Characters are Unicode scalar values:

#\A

Converting to/from integers with char->integer and integer->char

Strings are sequences of characters (in between double quotes):

"Hello, World!"

(string-length (string-append "Hello" ", " "World!"))

16

Comparing Objects

There are (at least) four comparison procedures in Racket

• = compares numbers numerically:

(= 1 1.0) => #t

(= 0.0 -0.0) => #t

(= 1/10 0.1) => #f

17

Comparing Objects

There are (at least) four comparison procedures in Racket

• = compares numbers numerically:

(= 1 1.0) => #t

(= 0.0 -0.0) => #t

(= 1/10 0.1) => #f

• eq? compares objects by reference:

(eq? (cons 1 2) (cons 1 2)) => #f

(let ([x (cons 1 2)]) (eq? x x)) => #t

 This is fast but not reliable in all cases

18

Comparing Objects (2)

• eqv? is like eq? except for numbers and characters:

(eq? (expt 2 100) (expt 2 100)) => #f

(eqv? (expt 2 100) (expt 2 100)) => #t

19

Comparing Objects (2)

• eqv? is like eq? except for numbers and characters:

(eq? (expt 2 100) (expt 2 100)) => #f

(eqv? (expt 2 100) (expt 2 100)) => #t

• equal? is like eqv? except for strings and decomposable structures (lists,
hash-table, structures):

(eqv? "banana" (string-append "ban" "ana")) => #f

(equal? "banana" (string-append "ban" "ana")) => #t

(equal? (list 1 2) (cons 1 (cons 2 '()))) => #t

20

Comparing Objects (2)

• eqv? is like eq? except for numbers and characters:

(eq? (expt 2 100) (expt 2 100)) => #f

(eqv? (expt 2 100) (expt 2 100)) => #t

• equal? is like eqv? except for strings and decomposable structures (lists,
hash-table, structures):

(eqv? "banana" (string-append "ban" "ana")) => #f

(equal? "banana" (string-append "ban" "ana")) => #t

(equal? (list 1 2) (cons 1 (cons 2 '()))) => #t

Suggestion: prefer the use of equal? as it is more reliable, and = for (exact)
numeric comparisons.

21

Conditionals

(if (> 1 0) "Good" 'nogood)

(cond [(not (number? x)) "NaN"]
[(> x 0) "Pos"]
[(< x 0) "Neg"]
[else "Zero"])

If no condition evaluates to true and there is no else clause, the result is
(void)

22

Printing

There are (at least) three ways to output data to the console:

• display removes all quotation marks and string delimiters

• print does not remove any quotation marks or string delimiters

• write removes the outermost quotation mark if any

In addition, (newline) prints a newline.

(displayln '(a "azer" 3))
(print '(a "azer" 3))
(newline)
(write '(a "azer" 3))

23

Anonymous Procedures

(lambda (x) (+ x 1)) defines an anonymous procedure

(define inc (lambda (x) (+ x 1)))
(inc 41)
((lambda (x) (+ x 1)) 41)

24

Procedure Body

• A procedure body is composed of any number of (local) definitions followed by
any number of expressions

• The return value of the procedure is the value of the last expression

• Internal defines can be mutually recursive:

(define (sum a b)
 (define (suma c) (+ a c))
 (suma b))

 Here sum is defined at the top-level, while suma is a local definition.

25

Local Declarations

let declares local variables. It evaluates all the expressions before binding
them.

(let ([x y] [y x])
 (cons x y))

26

Local Declarations

let declares local variables. It evaluates all the expressions before binding
them.

(let ([x y] [y x])
 (cons x y))

In a let*, the first bindings are available to the next ones.

(let* ([x y] [y x])
 (cons x y))

27

Local Declarations

let declares local variables. It evaluates all the expressions before binding
them.

(let ([x y] [y x])
 (cons x y))

In a let*, the first bindings are available to the next ones.

(let* ([x y] [y x])
 (cons x y))

In letrec, all bindings are available to each other (mainly for mutually
recursive local procedures).

(letrec ([x y] [y x])
 (cons x y))

28

Local Declaration of Procedures

(let loop () (loop))

This creates a procedure called loop and executes it.

This particular example is probably not very interesting...

29

Local Declaration of Procedures

(let loop () (loop))

This creates a procedure called loop and executes it.

This particular example is probably not very interesting...

Below, sum-help is a procedure of two (optional) arguments

(define (sum x)
 (let sum-help ([x x] [res 0])
 (cond [(= x 0) res]

[else (sum-help (sub1 x) (+ res x))])))

30

Lists

(list 1 2 3 4)
(define x (list 1 2 3 4))
(car x) (first x)
(cdr x) (rest x)
null empty
(cons 0 x)
(cons? x) (pair? x)
(null? x) (empty? x)
(length (list 9 8 7))
(map add1 (list 1 2 3 4))
(andmap string? (list "a" "b" 0))
(filter positive? (list -1 0 1 2 -5 4))
(foldl + 0 (list 1 2 3))

31

Cons revisited

(cons 1 2) is valid code but it does not produce a proper list.

(list? x) tells if it is a proper list (in constant time).

This is a difference between strongly typed code (such as SML) and Racket.

32

Dots and Infix Notation

A fake list is displayed like that:

'(1 2 . 3)

One can also use it when entering a list:

'(1 2 . (3 4)) is equivalent to the list '(1 2 3 4)

33

Dots and Infix Notation

A fake list is displayed like that:

'(1 2 . 3)

One can also use it when entering a list:

'(1 2 . (3 4)) is equivalent to the list '(1 2 3 4)

One can also use two dots around an element of the s-expr to make it the first
one.

(code (4 . + . 5)) " is transformed into " (code (+ 4 5))

This can be useful if you are not comfortable with the prefix notation.

34

Quotation and Symbols

(list '+ 2 3 4) produces a list '(+ 2 3 4) that looks like a procedure
application but is not evaluated and preceded by '

The s-expression is quoted and considered as data.

quote quotes its argument without evaluating it.

(quote (map + 0 "cool")) is simply a list of four elements.

35

Quotation and Symbols

(list '+ 2 3 4) produces a list '(+ 2 3 4) that looks like a procedure
application but is not evaluated and preceded by '

The s-expression is quoted and considered as data.

quote quotes its argument without evaluating it.

(quote (map + 0 "cool")) is simply a list of four elements.

(quote map) creates a symbol 'map that has nothing to do with the identifier
map (except the name).

One can directly write ' instead of quote.

quote has no effect on literals (numbers, strings)

Symbols can be also created with (string->symbol "aer") or (gensym)

36

Quasiquoting and Unquoting

Quasiquoting is like quoting but it can be escaped to evaluate part of the
expression:

 (quasiquote (1 2 (unquote (+ 1 2))
(unquote (- 5 1)))

Or equivalently:

`(1 2 ,(+ 1 2) ,(- 5 1)) => (1 2 3 4)

37

Quasiquoting and Unquoting

Quasiquoting is like quoting but it can be escaped to evaluate part of the
expression:

 (quasiquote (1 2 (unquote (+ 1 2))
(unquote (- 5 1)))

Or equivalently:

`(1 2 ,(+ 1 2) ,(- 5 1)) => (1 2 3 4)

,@ or unquote-splicing also decompose a list:

`(1 2 ,@(map add1 '(2 3))) => (1 2 3 4)

`(1 2 ,(map add1 '(2 3))) => (1 2 (3 4))

38

Eval

(Quasi-)quoted s-expressions can be evaluated using eval

(define sum ''(+ 1 2 3 4))
(displayln sum)
(displayln (eval sum))
(displayln (eval (eval sum)))

39

Apply

apply applies a procedure to a list of arguments:

(apply + '(1 2 3))

With more than one argument, the first ones are put in front of the list:

(apply + 1 '(2 3))

(apply append '(1 2) '((3 4)))

40

Procedure Arguments

Procedures can have a variable number of arguments:

(define (proc1 . all) (apply + (length all) all))
(proc1 12 13 14)
(proc1)
(proc1 41)
(define (proc2 x . rest) (* x (length rest)))
(proc2 7 1 2 3 4 5 6)
(proc2 42 0)
(proc2)

41

Procedure Arguments

Procedures can have a variable number of arguments:

(define (proc1 . all) (apply + (length all) all))
(proc1 12 13 14)
(proc1)
(proc1 41)
(define (proc2 x . rest) (* x (length rest)))
(proc2 7 1 2 3 4 5 6)
(proc2 42 0)
(proc2)

There can also be optional and keywords arguments:

(define (proc3 x [y 2]) (+ x y)) (proc3 40)
(define (proc4 x #:y y) (- x y)) (proc4 #:y 2 44)
(define (proc5 x #:y [y 7]) (* x y)) (proc5 6)
(define (proc6 x #:y y . rest) ...)

42

Curried and Higher-Order Procedures

Short way to define curried procedures:

(define ((add x) y) (+ x y))
(define add38 (add 38))
(add38 4)
((add 11) 31)

43

Curried and Higher-Order Procedures

Short way to define curried procedures:

(define ((add x) y) (+ x y))
(define add38 (add 38))
(add38 4)
((add 11) 31)

A simple composition of procedures:

(define ((comp f g) . x)
 (f (apply g x)))
(define add2 (comp add1 add1))
(add2 40)

44

Multiple Values

A procedure can return several values at the same time with values:

(values 1 2 3)

To bind those values to identifiers, one can use define-values, or
let-values, or one of the other variants (e.g. let-values):

(define-values (x y z) (values 1 2 3))
(define-values (five) (add1 4))

45

Simple Matching: case

case matches a given value against fixed values (with equals?)

(case v
 [(0) 'zero]
 [(1) 'one]
 [(2) 'two]
 [(3 4 5) 'many]
 [else 'too-many])

If no branch matches and there is no else clause, the result is #<void>.

46

More Matching: match

match matches a given value against patterns.

Patterns can be very complex (using e.g. and, or, not, regexp, ...):

(match x
 ['() "Empty"]
 [(cons _ '()) "A list that contains one element"]
 [(cons a a) "A pair of identical elements"]
 [(or (list y ...) (hash-table y ...))

"A list or a hash table"]
 [(? string?) "A string"]
 [else "Something else"])

If no branch matches, an exn:misc:match? exception is raised.

47

Assignment

The value bound to an identifier can be modified using set!

(define next-number!
 (let ([n 0])
 (lambda ()
 (set! n (add1 n))
 n)))

(next-number!)
(next-number!)

Use with care!

48

Guarded Operations

(when with-print (print x))
(unless finished (set! x y))

Mainly useful to enclose side-effect only code.

49

Guarded Operations

(when with-print (print x))
(unless finished (set! x y))

Mainly useful to enclose side-effect only code.

Quiz: What is the return value of the following code?

(when #f #t)

50

Guarded Operations

(when with-print (print x))
(unless finished (set! x y))

Mainly useful to enclose side-effect only code.

Quiz: What is the return value of the following code?

(when #f #t)

 Also produced by the procedure (void).

51

Parameters

Parameters are variables that can be dynamically bound:

(define color (make-parameter "green"))
(define (best-color) (display (color)))
(best-color)
(parameterize ([color "red"])
 (best-color))
(best-color)

This is preferable to set! for several reasons (tail calls, threads, exceptions).

There exist parameters for instance to define the output stream, the level of
details when reporting an error, etc.

52

Vectors

• Fixed length arrays with constant-time access to the elements

• Created as a list but with a # instead of the quotation mark or with the
procedure vector

(vector "a" 1 #f)

• (vector-ref a-vect num) accesses the num-th element of a-vect
(indices start from zero)

• Vector elements can be modified with vector-set!

(vector-set! a-vect num new-val)

53

Hash Tables

Immutable hash tables:

(define ht (hash "a" 3 "b" 'three))
(define ht2 (hash-set ht "c" "three"))
(hash-ref ht2 "c")
(hash-has-key? ht "c")

54

Hash Tables

Immutable hash tables:

(define ht (hash "a" 3 "b" 'three))
(define ht2 (hash-set ht "c" "three"))
(hash-ref ht2 "c")
(hash-has-key? ht "c")

Mutable hash tables:

(define ht (make-hash '(("A" "Apple")
("B" "Banana"))))

(hash-set! ht "A" "Ananas")
(hash-ref ht "A")

55

New Datatypes

(struct point (x y)) produces a new data structure that can be used as
follows:

(point 1 2)
(point? (point 1 2))
(point-x (point 1 2))

56

New Datatypes

(struct point (x y)) produces a new data structure that can be used as
follows:

(point 1 2)
(point? (point 1 2))
(point-x (point 1 2))

We can also create data structures whose internal structure can be accessed
(e.g. recursively by equals?), and its fields can be modified:

(struct point (x y) #:transparent #:mutable)

57

Exceptions

Exceptions are raised upon runtime errors.

To catch exceptions use an exception handler:

(with-handlers ([exn:fail:contract:divide-by-zero?
(lambda (exn) +inf.0)])

 (/ 1 0))

The first argument is a list of pairs, whose first element is a test to check the
type of exception and its second is what to do with it.

The check exn:fail? catches all exceptions.

(error "string") creates and raises a generic exception.

(raise 42) raises anything as an exception.

58

Threads

thread runs the given procedure in a separate thread and returns the thread
identifier.

(define t (thread (lambda ()
 (let loop ()
 (display "In thread")
 (sleep 1)
 (loop)))))

(sleep 142)
(kill-thread t)

Threads are lightweight and run inside the same physical process.

59

Threads and Channels

Threads can collaborate (among others) through message passing with
thread-send and thread-receive:

(define t0 (current-thread))
(define t1
 (thread (lambda ()

 (define v (thread-receive))
 (thread-send t0 (add1 v)))))

(thread-send t1 41)
(display (thread-receive))

60

Comprehensions

Racket provides many looping constructs:

(for ([i '(1 2 3 4 5)])
 (display i))
(for/list ([i '(1 2 3 4 5)])
 (modulo i 3))
(for/and ([i '(1 2 3 4 5)])
 (> 0))
(for/fold ([sum 0])
 ([i '(1 2 3 4 5)])
 (+ sum i))

61

Parallel and Nested Comprehensions

for and variations iterate over several sequences in parallel:

(for ([i '(1 2 3 4)]
[j '(1 2 3)])

 (display (list i j)))

62

Parallel and Nested Comprehensions

for and variations iterate over several sequences in parallel:

(for ([i '(1 2 3 4)]
[j '(1 2 3)])

 (display (list i j)))

for* and variations act as nested for’s:

(for* ([i '(1 2 3 4)]
[j '(1 2 3)])

 (display (list i j)))

63

Iterable Sequences

for and variations can iterate over different kinds of sequences, not only lists:

(for ([(k v) (hash 1 "a" 2 "b" 3 "c")]
[i 5]) ; range 0 to 4

 (display (list i k v)))
(for ([i "abc"]

[j (in-naturals)])
 (display (cons i j)))

64

Performance of Sequences

To make the comprehension fast, one should "declare" the type of each
sequence.

(for ([i (in-range 10)]
[j (in-list '(1 2 3 4 5 6))]
[k (in-string "qwerty")])

 (display (list i j k)))

65

There is Much More in Racket

• Classes and Objects

• Units and Signatures

• Input/Output

• RackUnit

• Graphical, Network, Web, DB, ... Libraries

• Other Languages (typed Racket, Scribble, ...)

66

Wrap-up

• Everything you can expect from a modern functional language

• Minimal syntax — although a bit of an acquired taste

• Code = Data

67

Wrap-up

• Everything you can expect from a modern functional language

• Minimal syntax — although a bit of an acquired taste

• Code = Data

Next Lectures

• Macros

• Modules and Contracts

• Making your own language

68

Voluntary Warm-up Exercises

• Redefine map and length as recursive procedures.

• Define a procedure (primes n) that returns a list of the n first prime
numbers.

• Define a procedure (perms xs) that returns all permutations of the list xs.

69

