Racket: Modules, Contracts, Languages

Advanced Functional Programming
Jean-Noél Monette

November 2015



Content

Modules are the way to structure larger programs in smaller pieces.
Modules can import and export bindings.
Contracts define conditions on the exported bindings.

Modules can be used to define new languages.



Modules

Each file defines a separate module.
A module is usually defined in its own file.

In that case the name of the module is the name of the file.



Modules

Each file defines a separate module.

A module is usually defined in its own file.

In that case the name of the module is the name of the file.
Bindings are exported with (provide funcname).

Bindings are imported with (require "filename").



Example

#lang racket ; In file fact.rkt
(provide fact)
(define (fact x) (fact-help x 1))
(define (fact-help x acc)
(case x
[(0) acc]
[else (fact-help (- x 1) (* x acc))1))
(define (fact2 x)
(for/product ([1 (in-range x)])
(+11)))

Non-exported functions are private.

#lang racket ; In file use-fact.rkt
(require "fact.rkt")

(fact 10)

(fact2 10) ; Error



Provide
provide takes a list of elements to provide. Those elements can take various
forms.
e all-defined-out exports all bindings defined in the module.

 (rename-out [orig-name export-name] ...) changes the name of
some exported elements.

(prefix-out prefix spec) adds a prefix to all bindings exported by
spec.

* (except-out spec id ...) exports all bindings from spec except id.

(all-from-out module-path) reexports all the bindings from another
module.



Provide: Example

(provide (except-out (all-from-out racket) lambda)
(rename-out [lambda function]))

This exports all bindings provided by racket but Lambda. lambda is replaced
by function.



Require

require takes a list of elements to import. Again, they can be of various forms.
* A module name will simply import all from the module.
* (except-in spec id ...) imports all bindings from spec except id.

* (rename-1in spec [orig-id new-1d] ...) renames some of the
bindings.

 (only-1in spec id [o-id n-id] ...) imports only some bindings,
optionally renaming them.

e (prefix-in prefix spec) adds a prefix to all bindings.

(for-syntax spec) imports at the syntax level (see macros).



Require: Example

(require (prefix-in racket: (except-in racket lambda))
(only-in racket [lambda functionl]))

This import all bindings from racket by prefixing them with "racket:", except
lambda that is renamed to function.



Submodules

Submodules can be defined using (module mname language decls ...),
where

* mname is the name of the module,
* Language defines the initially available bindings (it is usually racket),

* decls ... isthe body of the module.

Submodules are not automatically evaluated along their parent. They need to be
imported as any module.

Such a submodule can be imported by (require 'mname) (in the parent
module) or by (require (submod "fname' mname)) (in another module).

Submodules can be nested arbitrarily.

10



Submodule: Example

(module my-sum racket
(provide plus)
(define (plus x y) (+ xvy)))

(require 'my-sum)
(plus 3 4)

(module test-sum racket
(require (submod ".." my-sum))
(equal? (plus 3 4) (plus 4 3)))

(require 'test-sum)

11



Submodule: Example

(module my-sum racket
(provide plus)
(define (plus x y) (+ xvy)))

(require 'my-sum)
(plus 3 4)

(module test-sum racket
(require (submod ".." my-sum))
(equal? (plus 3 4) (plus 4 3)))

(require 'test-sum)

Note the order of evaluation: require’s, then define’s, then the rest.

12



Submodules (2)

Submodules cannot access the bindings of their parent module.

It is possible to define "inverted" submodules that can access the parent’s
bindings, but cannot be required inside it.

(module* mname language-or-#f decls) declares such a submodule.

The language can also be #f, in which case the submodule accesses all of the
parent module bindings.

(module+ mname decls) is a shortcut when the language is #f. Using this
form, the same submodule can also be declared in several parts.

13



Submodules: Example

#lang racket ; In file fact.rkt
(provide fact)

(module* extra #f
(provide fact fact2))

Importing the module extra allows to have access to fact2 as well.

#lang racket ; In file use-fact.rkt
(require (submod "fact.rkt" extra))
(fact2 10) ; Now it works

14



Special Submodules

(module+ main
(display "In the main"))
(module+ test
(when (not (= (fact 10) (fact2 10))) (raise "Problem")))

Those module names have a special meaning.

e main modules are run when the module is directly executed (not required
from another module).

* test modules are run by the raco test executable.

15



Modules

Modules are useful to structure larger programs.

We will see that they provide the basis for two interesting concepts
* Contracts define the boundary between modules.

* New languages can be created transparently.

16



Side Note: Include

(include "filename'") inlines the content of "filename" in the current
file.

This is not to be confused with require!

17



Contracts

Contracts are used to define the pre- and post-conditions on provided
procedures.

They are defined as part of the provide instruction.

The contract system ensures that contracts are always respected.

18



A first contract

(provide (contract-out [fact (-> natural-number/c
natural-number/c)]))

The contract stipulates that fact is a function taking a natural and returning a
natural.

19



A first contract

(provide (contract-out [fact (-> natural-number/c
natural-number/c)]))

The contract stipulates that fact is a function taking a natural and returning a
natural.

natural-number/c is provided by the system but we can write our own test:

(define (nat? x)
(and (number? x) (integer? x) (exact? x) (>= x 0)))
(provide (contract-out [fact (-> nat? nat?)]))

A basic contract just need to be a procedure taking one argument. Its return
value is interpreted as a "boolean".

20



Contract language (examples)

(and/c number? integer?) ensures the two conditions.
(or/c number? string?) ensures one of the conditions.
any accepts any argument(s).

any/c accepts one argument of any type.

(Listof string?) accepts a list of strings.

Literals (e.g. symbols, numbers) are evaluated as a contract accepting only
themselves. Example: (or/c 'bold 'italic #f)

21



Contract language (examples)

(and/c number? integer?) ensures the two conditions.
(or/c number? string?) ensures one of the conditions.
any accepts any argument(s).

any/c accepts one argument of any type.

(Listof string?) accepts a list of strings.

Literals (e.g. symbols, numbers) are evaluated as a contract accepting only
themselves. Example: (or/c 'bold 'italic #f)

Side Question: how would you implement e.g. or/c?

22



Contract language (examples)

(and/c number? integer?) ensures the two conditions.
(or/c number? string?) ensures one of the conditions.
any accepts any argument(s).

any/c accepts one argument of any type.

(Listof string?) accepts a list of strings.

Literals (e.g. symbols, numbers) are evaluated as a contract accepting only
themselves. Example: (or/c 'bold 'italic #f)

Side Question: how would you implement e.g. or/c?

(define ((or/c . tests) x)
(ormap (lambda (test) (cond [(procedure? test) (test x)]
[else (equal? test x)]))
tests))

23



Functions with optional and rest arguments

To have a variable number of arguments, use the =->* combinator that takes
three arguments (mandatory, optional, return).

(define (silly xy [z 11) (* (+ x y) 2z))
(provide (contract-out [silly (->* (integer? integer?)

(1nteger?)
integer?)]))

24



Functions with optional and rest arguments

To have a variable number of arguments, use the =->* combinator that takes
three arguments (mandatory, optional, return).

(define (silly xy [z 11) (* (+ x y) 2z))

(provide (contract-out [silly (->* (integer? integer?)
(1nteger?)
integer?)]))

One can also put a contract on the rest.

(provide (contract-out [max (->* ()

()

#:rest (listof real?)
real?)]))

25



Dependencies

(struct counter (cnt))
(define (count) (counter 0))

(define (inc cnt) (counter (addl (counter-cnt cnt))))
(define (val cnt) (counter-cnt cnt))

How to express that the value stored in the result of inc is the value of the
argument plus 17

26



Dependencies

(struct counter (cnt))
(define (count) (counter 0))

(define (inc cnt) (counter (addl (counter-cnt cnt))))
(define (val cnt) (counter-cnt cnt))

How to express that the value stored in the result of inc is the value of the
argument plus 17

With what we have seen so far, it is not possible.

We need to use yet another combinator: ->1

27



Specifying dependencies

->1 looks like =>* but all arguments are given name so that they can be
reused.

(define (minus a b) (- a b))
(provide
(contract-out
[minus (->1 ([a natural-number/c]
[b (a) (and/c natural-number/c (<=/c a))l])
[result (a) (and/c natural-number/c

(<=/c a))l)]))

28



Example: counter

(module counter racket
(struct counter (cnt))
(define (count) (counter 0))
(define (inc cnt) (counter (addl (counter-cnt cnt))))
(define (val cnt) (counter-cnt cnt))

(provide
(contract-out
[count (-> (and/c counter? (lambda (res) (= 0 (val res)))))]
[val (-> counter? natural-number/c)]
[inc (->1 ([cnt counter?])
[res (cnt)
(and/c counter?
(Lambda (res)
(= (val res) (addl (val cnt)))))1)1)))

(require 'counter)
(define x (count))

(val x)

(define y (inc (inc x)))
(val y)

29



Example: stack

(provide make-stack ; empty stack
list->stack ; already filled stack
stack->list ; The content of the stack in a list
empty-stack? ; Is the stack empty?
size ; The number of elements in the stack
top ; The first element of the stack
pop ; The stack without its top element
push ; The stack with a new element on top
stack?) ; Is this object a stack?

30



(struct

(define
(define
(define
(define
(define
(define
(define
(define

Stack: implementation

stack (list))

(make-stack) (stack '()))

list->stack stack)

stack->list stack-list)

empty-stack? (compose null? stack-list))

size (compose length stack-list))

top (compose car stack-list))

pop (compose stack cdr stack-list))

(push s el) (stack (cons el (stack-list s))))

; stack? is provided by the struct.

top and pop need a non-empty stack. This is not handled here but in the

contracts.

31



Stack: simple contracts

First, we put contracts on types and pre-conditions.

32



Stack: simple contracts

First, we put contracts on types and pre-conditions.

(provide

(contract-out
[make-stack (-> stack?)]
[list->stack (-> (listof any/c) stack?)]
[stack->l1ist (-> stack? (listof any/c))]
[empty-stack? (-> stack? boolean?)]
[size (-> stack? natural-number/c)]
[top (-> (and/c stack? (not/c empty-stack?)) any/c)l]
[pop (-> (and/c stack? (not/c empty-stack?)) stack?)]
[push (-> stack? any/c stack?)]
[stack? (-> any/c boolean?)]))

33



Stack: what is a stack?

The previous contracts would still be valid if our implementation was actually a
queue.

What is the speciality of a stack?

34



Stack: what is a stack?

The previous contracts would still be valid if our implementation was actually a
queue.

What is the speciality of a stack?
LIFO: Last-In-First-Out
The elements are popped in the opposite order than they were pushed.

Condition on push: the pushed element is now on top.

35



(

Contract on push

[push (->1 ([st stack?]
[elem any/c])
[res (elem) (and/c stack?
(Lambda (res)
(equal? (top res) elem)))])]

36



Contract on push

(...
[push (->1 ([st stack?]
[elem any/c])
[res (elem) (and/c stack?
(Lambda (res)
(equal? (top res) elem)))])]

..)

Exercise: What about the property that the rest of the stack is preserved?

37



Contracts for more complex cases

Many more complex contracts are available.

See the guide and reference.

38



Contracts for more complex cases

Many more complex contracts are available.

See the guide and reference.

Contracts are checked are runtime. Hence they incur an overhead.
Module boundary is a good place to check contracts.

One should avoid writing contracts that are too costly to check.

39



New Languages

Macros can only extend the language, and do it inside the syntactic convention
of the language.

If one wants to create a new language, it may be necessary to restrict or alter
the language, or to change the syntax.

We will see how to do that, but not the syntax part.

40



New Languages (2)

The "language” of a module can be defined arbitrarily.

In (module name language body ...), the argument Language can be
any module.

The bindings provided by the Language module define what is available to the
new module.

One can define what is available in a language in the provide instruction.

41



A first language

(module racketf racket ; Like racket but "lambda" is "function"
(provide (except-out (all-from-out racket) lambda)
(rename-out [lambda function])))

(module mymodule (submod ".." racketf) ; Use the new language

(define sqr (function (x) (* x x)))
; (define sqr (lambda (x) (* x x))) ; would be an error

(sqr 5))

(require 'mymodule)

42



Minimal export

(module minimal racket
(provide #%app ; Implicit form for procedure application
#%module-begin ; Implicit for module declaration
#%datum ; Implicit for literals and data
#%top ; Implicit for unbound identifiers
lambda)) ; Just because we want to do something

(module test (submod ".." minimal)
ok
((Llambda (x) x) 10)
: not ok

((Lambda (x) (+ x 1)) 10))

43



Redefining implicit forms

#lang racket
(module verbose racket
(provide (except-out (all-from-out racket)
#%module-begin
#%sapp
#%top
#%sdatum)
(rename-out [module-begin #%module-begin]

[app #%app]
[top #%top]
[datum #%datum]))

(define-syntax-rule (module-begin expr ...)
(#%module-begin
(displayln "Entering Module Verbose")
expr ...
(displayln "Leaving Module Verbose")))

[...])

44



Redefining implicit forms

(define-syntax-rule (app f arg ...)
(begin (display "Applying: ")
(displayln '(f arg ...))
(let ([res (#%app f arg ...)])
(display " res: ")
(displayln res)
res)))

(define-syntax-rule (top . arg)
(begin (display "Not found ")
(displayln 'arg)
‘arg))

(define-syntax-rule (datum . arg)
(begin (display "Value: ")
(displayln 'arg)
(#%datum . arg)))

45



Redefining implicit forms

(module client (submod ".." verbose)
(define x 5)
(+ x 10 x)

(display y))

(require 'client)
Result:

Entering Module Verbose
Value: 5

Applying: (+ x 10 Xx)
Value: 10

res: 20

20

Applying: (display y)
Not found y

y res: #<void>

Leaving Module Verbose

46



IS equivalent to

A new #lang

#lang s-exp "fname.rkt"

(module name "fname.rkt"

..)

47



A new #lang

#lang s-exp "fname.rkt"

IS equivalent to

(module name "fname.rkt"

)

To change the syntax, or to get rid of the "s-exp", see the guide.

48



Example: Half-Life

Everytime an identifier is used, its value is divided by two.

#lang s-exp "Language-half-life.rkt"

(define x 10)

(define y 10)

(+ (*xy) (*xy))
(define z (* 50 y (- x x)))
(+ (1f (= z 100) z 100) y)
v

49



Example: Half-Life

Everytime an identifier is used, its value is divided by two.

#lang s-exp "Language-half-life.rkt"

(define x 10)

(define y 10)

(+ (*xy) (*xy))
(define z (* 50 y (- x x)))
(+ (1f (= z 100) z 100) y)
v

Produces...

125
51
25

50



Half-Life: Implementation

#lang racket

(provide + - / * = > < >= <= 1if
%sapp #%datum
%smodule-begin
%top-interaction
(rename-out [my-define define]
[Llookup #%topl))

(define env (make-hash))

(define-syntax-rule (my-define id expr)
(let ([val expr])
(hash-set! env 'id val)
(void)))

51



Half-Life: Implementation

(define-syntax-rule (lookup . id)
(1f (hash-has-key? env 'id)
(let* ([val (hash-ref env 'id)]
[new-val (floor (/ val 2))1])

(1f (not (= new-val 0))
(hash-set! env 'id new-val)
(hash-remove! env 'id))

val)

(error "This id does not exist (anymore)")))

52



Summary

* Modules are used to structure larges program in smaller pieces.
* |t is possible to define contracts on the provided procedures.

* Creating a new language amounts to using macros and the module system.

53



General summary

Racket is a modern functional programming language.
{if {you get sick of '()} {use {'[] or "{}}}}:)

It is more than one language:
* several existing languages

* the infrastructure to create your own

54



