
Assignment 1

Advanced Functional Programming, 2017
(Avancerad funktionell programmering, 2017)

due 20 November 2017, 23:59

1 Road Construction (road.erl & road.pdf, 4 + 2 points)

In a place not so far away, the local authority wants to construct a road of length L (1 ≤ L ≤ 1 000 000 000)
units of measure. Unfortunately, the construction work is not so well organized. Each day, the construction
team fixes some continuous segment of the road, with known start and end points, but the segment that
gets constructed during the next day may start at some totally unrelated point or even partly overlap with
segments of the road that were previously constructed. Luckily, we know the exact number of days N
(1 ≤ N ≤ 1 000 000) the construction is to take place as well as the start and end (Sk and Ek) points of the
road segments that will be constucted during these N days.

Given this information and a number X (0 ≤ X ≤ L), we want to find the number of days after which
the largest consecutive segment of the road that is still unconstructed will not be larger than X. If a segment
larger than X remains unconstructed even after construction is finished (i.e., after all N days have passed),
then your program should return -1.

Task

Write a program in Erlang (road.erl), which defines a function days/3 that returns the result described
above. (4 points) To get the maximum number of points for this part, your program needs to be efficient,
besides correct: it should return an answer in 10 seconds or less. Your solution should include tests, including
property-based tests, for appropriately chosen parts of the implementation. Your submission must also
include a report (road.pdf) explaining the algorithm you used and the properties you tested. (2 points)

Examples

Below we show two sample calls for the function:

1> road:days(30, [{1,5},{11,27},{2,14},{18,28}], 6).

2

2> road:days(30, [{1,5},{11,27},{2,14},{18,28}], 1).

-1

In both examples, the length L of the road to be constructed is 30, the construction lasts four days and
involves the same list of segments. After the first day, the largest unconstructed segment ({5,30}) has
length 25. After the second day, the largest unconstructed segment ({5,11}) has length 6. After the third
day, the the largest unconstructed segment is {27,30} which has length 3. This segment gets reduced by
one in the last day, so the largest unconstructed segment after all four days have passed has length 2. Thus,
it’s after the second day that the largest unconstructed segment is not larger than 6, which explains the
answer 2 in the first example. The largest unconstructed segment will never become less or equal to 1, which
explains the -1 answer in the second example.

1

2 Approximating Pi (calc pi.erl, 4 points)

In this exercise, you will be applying parallel programming in Monte Carlo method1 to calculate Pi. You
will generate N random 2D points in range [0, 1], and count the number of points falling within the circle
inscribed in the unit square, say C. Then, Pi could be approximated as Pi = 4 ∗ C/N .

Task

Your solution must export a function calc/2. Its first argument, N, is the number of simulated points,
and its second argument, Schedulers, is the number of schedulers to use. The function should return the
approximated Pi value after N simulations.

Grading

Your implementation will be graded on a machine with at least eight cores against a reference implementation,
which utilizes all Schedulers fully. A list of machines to use in order to benchmark your implementation
can be found here2. A sample grader, which merely compares the execution time without validating the
calculated Pi, is provided, calc pi grader.beam3.

Example

$ erl -noshell -s calc_pi_grader calc_sample_grader -s init stop

For 1 scheduler(s) score is 0.97

For 2 scheduler(s) score is 1.00

For 4 scheduler(s) score is 1.00

For 8 scheduler(s) score is 1.00

Total Score: 4

1https://en.wikipedia.org/wiki/Monte_Carlo_method
2http://www.it.uu.se/datordrift/maskinpark/linux
3http://www.it.uu.se/edu/course/homepage/avfunpro/ht17/calc_pi_grader.beam

2

https://en.wikipedia.org/wiki/Monte_Carlo_method
http://www.it.uu.se/datordrift/maskinpark/linux
http://www.it.uu.se/edu/course/homepage/avfunpro/ht17/calc_pi_grader.beam

3 Vector Calculator Server (vector server.erl, 6 points)

Task

Following the tutorial of Chapter 3 of the book “Erlang and OTP in Action”, which is available at https://
manning-content.s3.amazonaws.com/download/0/8c4c508-6e21-4e8b-ab22-ba9ff22f27e2/sample_Ch03_

Erlang.pdf, implement in Erlang a simple RPC server that evaluates vector expressions given in the lan-
guage described below. After a connection has terminated, the server should wait for a new connection.

Language

⟨top⟩ ::= ⟨expr⟩

⟨expr⟩ ::= ⟨vector⟩
| {⟨vector-op⟩, ⟨expr⟩, ⟨expr⟩}
| {⟨scalar-op⟩, ⟨int-expr⟩, ⟨expr⟩}

⟨vector⟩ ::= [⟨integer⟩, . . .]

⟨int-expr⟩ ::= ⟨integer⟩
| {⟨norm⟩, ⟨expr⟩}

⟨vector-op⟩ ::= ’add’
| ’sub’
| ’dot’

⟨scalar-op⟩ ::= ’mul’
| ’div’

⟨norm⟩ ::= ’norm one’
| ’norm inf’

Vector language semantics

• The binary vector operations are: addition, subtraction, and a non-aggregated “dot product”-like
operator which is just a pairwise multiplication of the vectors’ elements.

• mul is multiplication and div is integer division of all vector elements with an integer.

• norm one or “Taxicab norm” for vectors is defined as ∥x∥1 :=
∑n

i=1 |xi|.

• norm inf or “Maximum norm” for vectors is defined as ∥x∥∞ := max (|x1|, . . . , |xn|).

• Integers are not bounded.

Evaluation rules

• The evaluation results in a vector, unless it fails.

• The evaluation must fail if:

– An integer division with 0 is attempted.

– Any vector in the input has a number of elements that is not between 1 and 100.

– An expression is nesting deeper than 100 levels. (For example, {’add’, [1], [2]} has level 0.)

– The sizes of vectors in a binary vector operation (i.e., ’add’, ’sub’, ’dot’) are not equal.

Input/Output

• The server’s input is a string from the language above. Whitespace is not important. Consider parsing
the string as an Erlang term before evaluating it.

• The response should be the result of the evaluation: a vector if the evaluation is successful or the
message “error” if the evaluation has failed. Printing response to the socket must be done using
io_lib:fwrite("Res: ~w~n", [Result]), assuming Result is what you want to print.

3

https://manning-content.s3.amazonaws.com/download/0/8c4c508-6e21-4e8b-ab22-ba9ff22f27e2/sample_Ch03_Erlang.pdf
https://manning-content.s3.amazonaws.com/download/0/8c4c508-6e21-4e8b-ab22-ba9ff22f27e2/sample_Ch03_Erlang.pdf
https://manning-content.s3.amazonaws.com/download/0/8c4c508-6e21-4e8b-ab22-ba9ff22f27e2/sample_Ch03_Erlang.pdf

Sample

Similar to the tutorial’s example, the server should be started from the Erlang shell with:

1> vector_server:start_link().

{ok,<0.35.0>}

After the server has started, you can use telnet to communicate:

$ telnet localhost 1055

Trying 127.0.0.1...

Connected to localhost.

Escape character is ’^]’.

[1,2,3,4,5]

Res: [1,2,3,4,5]

{’dot’, [6,6,6], [7,7,7]}

Res: [42,42,42]

{’mul’, {’norm_one’, [1,-1,2,-2]}, [7,-7,7]}

Res: [42,-42,42]

{’div’, 0, [1,2,3,4,5]}

Res: error

Connection termination

The server described in the tutorial cannot handle connection termination correctly. Your implementation
should take care of the messages received when the client closes the socket and wait for a new connection to
be established.

$ telnet localhost 1055

Trying 127.0.0.1...

Connected to localhost.

Escape character is ’^]’.

[1,2,3,4,5]

Res: [1,2,3,4,5]

{’dot’, [6,6,6], [7,7,7]}

Res: [42,42,42]

^]

telnet> quit

Connection closed.

$ telnet localhost 1055

{’mul’, {’norm_one’, [1,-1,2,-2]}, [7,-7,7]}

Res: [42,-42,42]

{’div’, 0, [1,2,3,4,5]}

Res: error

^]

telnet> quit

Connection closed.

$

Notice that the character ^] is produced by Ctrl+].

4

4 Property-Based Bug Hunting (bughunt.erl, 4 points)

The module vectors.beam4, contains 50 implementations of an evaluator for the language used in the
previous task. Unfortunately 46 of them have bugs...!

Task

Write properties that can be used to test the evaluators. Identify those that do not conform to the specifi-
cation, by giving an input, the expected output and the buggy evaluator’s output.

Interface of vectors.beam

The contents of the corresponding vectors.erl5 were the following:

-module(vectors).

-export([vector/1,

vector_1/1,

...

vector_50/1]).

-type vector() :: [integer(),...].

-type expr() :: vector()

| {vector_op(), expr(), expr()}

| {scalar_op(), int_expr(), expr()}.

-type int_expr() :: integer()

| {norm_op(), expr()}.

-type vector_op() :: ’add’ | ’sub’ | ’dot’.

-type scalar_op() :: ’mul’ | ’div’.

-type norm_op() :: ’norm_one’ | ’norm_inf’.

-spec vector(integer()) -> fun((expr()) -> vector() | ’error’).

vector(Id) when Id > 0, Id < 51 ->

Name = list_to_atom(lists:flatten(io_lib:format("vector_~p", [Id]))),

fun ?MODULE:Name/1.

-spec vector_1(expr()) -> vector() | ’error’.

vector_1(Expr) ->

%% ???

...

-spec vector_50(expr()) -> vector() | ’error’.

vector_50(Expr) ->

%% ???

As you can see, the function vector/1 can be used to get the evaluator corresponding to the provided Id.
The evaluators can also be called directly using the vector N/1 functions.

4http://www.it.uu.se/edu/course/homepage/avfunpro/ht17/vectors.beam
5https://gist.github.com/aronisstav/626f0f8edd943c8ca998

5

http://www.it.uu.se/edu/course/homepage/avfunpro/ht17/vectors.beam
https://gist.github.com/aronisstav/626f0f8edd943c8ca998

Expected interface of bughunt.erl

Among other functions, the module bughunt should export a function test/1 that takes as input an integer
between 1 and 50 and returns one of the following within 5 seconds:

• if the input is the id of a correct evaluator, the atom ’correct’ is returned.

• if the input is the id of a buggy evaluator, the tuple {Input, ExpectedOutput, ActualOutput,

Comment} is returned, where:

– Input is an Erlang term of type expr()

– ExpectedOutput is the expected output when evaluating the input

– ActualOutput is the output returned by the buggy evaluator or the atom ’crash’ (if the evaluator
crashes) and

– Comment is a string that shortly describes a probable cause for the bug (you can leave it empty if
you are not sure about the bug)

Sample

Assume that a hypothetical evaluator #51 is correct and evaluator #52 does not support addition.

1> vectors:vector_51({’div’, {’norm_inf’, [-1, 5, 10]}, [1, 10, 100, 9999]}).

[0, 1, 10, 999]

2> bughunt:test(51).

correct

3> vectors:vector_52({’add’, [1], [1]}).

error

4> vectors:vector_52({’sub’, [1], [1]}).

[0]

5> bughunt:test(52).

{{’add’, [1], [1]}, [2], error, "The operation ’add’ is not supported."}

Submission instructions

• Each student must send their own individual submission. You cannot work in groups.

• For this assignment, you must submit a single afp assignment1.zip file at the relevant section in
Studentportalen.

• afp assignment1.zip should contain six (6) files, wihout any directory structure:

– the four programs requested (road.erl, calc pi.erl vector server.erl, bughunt.erl) that
should conform to the specified interfaces regarding exported functions, handling of input and
format of output. Moreover, your programs should not produce any compiler warnings and,
preferably, should also not produce any warnings from dialyzer.

– the report road.pdf explaining your algorithm and how you tested road.erl.

– a text file named README.txt whose first line should be your name. You can include any other
comments about your solutions in this file.

• Remember that you have a total of ten (10) free “late” days for all assignments and the final project.
Do not spend them all on this assignment!

Have fun!

6

	Road Construction (road.erl & road.pdf, 4 + 2 points)
	Approximating Pi (calc_pi.erl, 4 points)
	Vector Calculator Server (vector_server.erl, 6 points)
	Property-Based Bug Hunting (bughunt.erl, 4 points)

