
Assignment 2

Advanced Functional Programming, 2017
(Avancerad funktionell programmering, 2017)

due 4 December 2017, 23:59

1 Targeted Property Based Testing Magic (magic.erl, 4 points)

The instructions for this exercise will come by mail.

2 Contracts (contracts.rkt, 3 points)

The following code snippet, where ... marks the body of each definition, contains some lines from a Racket
module that implements some operations on directed graphs with weights on their edges:

(module graph racket

(include "contracts.rkt") ; <- This is the file that you should submit.

(define new ...) ; Returns a new, empty directed graph.

(define (add_vertex digraph a)...) ; Adds a vertex with name ’a’ to ’digraph’.

(define (add_edge digraph a b w)...) ; Adds an edge from ’a’ to ’b’ with weight ’w’.

(define (has_vertex? digraph a)...) ; Checks whether ’digraph’ has a vertex named ’a’.

(define (has_edge? digraph a b)...) ; Checks whether vertex ’a’ has an edge to ’b’.

(define (out_neighbours digraph a)...) ; Returns all vertices that ’a’ has an edge to.

)

The graph could be implemented in various ways, e.g., by a functional implementation where add vertex

and add edge return a new graph (leaving the old unchanged), or by imperative one that mutate the graph
in-place (and return this graph). Your contract definition must not assume any particular implementation.

Task

Provide contracts in a file contracts.rkt that check the following properties for the graph module1:
For add vertex:

• The name of a vertex is an integer number.
• No two vertices have the same name.

For add edge:
• New edges are added only between existing vertices.
• Edges have an integer weight.
• There is at most one edge between each ordered pair of vertices.
• The edge exists in the resulting graph.

For out neighbours:
• It is called with an existing vertex as argument.
• The result is a list of vertices.
• There is an edge from the vertex given as argument to each element of the result.

1It is not required to define the graph module for this task, but you may want to have one for testing your contracts.

1



3 Programmers, too, don’t play dice (dice.{erl,rkt}, 4 + 4 points)

With enough levels of abstraction, every game can be seen as a search for a ‘winning’
node in a game graph, where edges represent legal moves between game states. If
there are no random elements like card shuffling or dice rolling, players can devise
strategies that will get them to such a winning node, just by inspecting the graph
and the node they are currently at. A similar approach could be applied if the
players knew beforehand the order of the cards in a shuffled deck or the result of
every dice roll. For the purposes of this puzzle, you are going to play a simple game
using such a special dice, for which you already know how it is going to roll.

You are given a game graph whose nodes are labelled 1 to N , with 1 being the
starting node and N the only winning node. The graph contains directed edges and
may also contain cycles. You are also given a finite sequence of integers between 1
and 6, which are the results of the dice rolls: the dice will produce every number
in this sequence in order, before resuming from the start (the list is ‘cyclic’ in some

sense). To move in the game, you use the result of a dice roll to traverse the corresponding number of edges,
starting from your current node and reaching a new node. If you end up in the winning node after a move,
you win.

Task

Write two programs, one in Erlang (dice.erl) and one in Racket (dice.rkt), that return the smallest
number of moves that you have to make to reach the winning node. It might also be impossible to reach the
winning node no matter how you use the dice rolls, in which case you should return -1.

Example

1start 2

3

Dice: [3,5]

Figure 1: Sample game

In Figure 1 you can see a small game graph. With the predefined
dice rolls [3,5] you can win this game in 2 moves:

• 1st move, using the 3: 1 → 2 → 1 → 2
• 2nd move, using the 5: 2 → 3 → 2 → 3 → 2 → 3

(This example is also encoded in the Samples.)

If the second move did not end up in the winning node, you should
have used the 3 again, then the 5 again etc. until you can safely
decide that you can never reach the winning node.

Input - Output

The programs take as input an integer N (the number of nodes), a list of node pairs (NodeA,NodeB), each
describing an edge, and a list of numbers between 1 and 6, representing the results of the dice.

They should return a positive integer, which is the smallest number of moves required to reach the
winning node or -1 if that is not possible.

Hint

If you want a data structure to represent the graph, Erlang has the digraph library. Notice that Erlang’s
digraphs are implemented with ETS tables and are therefore not a purely functional data structure (for
example, modifying a ‘copy’ of a graph will also modify the original).

For a graph library for Racket look at: https://docs.racket-lang.org/graph/index.html.

2

https://docs.racket-lang.org/graph/index.html


Samples

Here are some sample calls for the two programs:

Erlang

1> dice:dice(3, [{1,2}, {2,1}, {2,3}, {3,2}], [3,5]).

2

2> dice:dice(4, [{1,2}, {2,3}, {3,4}], [1]).

3

3> dice:dice(3, [{1,2}, {2,3}], [4,2,6]).

-1

4> diceomatic:proper().

... <output> ...

where diceomatic is the name of a module that contains property-based tests for dice. The course’s
homepage contains the diceomatic.beam file.

Racket

> (require "dice.rkt")

> (dice 3 ’((1 2) (2 1) (2 3) (3 2)) ’(3 5))

2

> (dice 4 ’((1 2) (2 3) (3 4)) ’(1))

3

> (dice 3 ’((1 2) (2 3)) ’(4 2 6))

-1

3



4 Relational Algebra (relations.rkt, 5 points)

name title department salary

”John” ”Accountant” ”Finance” 6000
”Rob” ”Salesman” ”Sales” 5000
”Bill” ”Manager” ”Sales” 10000
”Ben” ”Driver” ”Logistics” 4500

department location head

”Finance” ”Paris” ”John”
”Sales” ”London” ”Bill”
”It-support” ”Paris” ”Mark”

Figure 2: Sample relations

The relational algebra operates on named relations. A
named relation can be seen as a table where each row
is a tuple of the relation and each column is identified
by a name. In addition all rows are different (i.e., a
relation is a set of tuples). You can see two examples
of relations in Figure 2.

Task

Implement a language covering a subset of the rela-
tional algebra. The language has the following opera-
tors (it is up to you to decide whether each of them is
a procedure or a macro):

(make-relation (<colname> . . .) ((<data> . . .) . . .))
Creates a new relation. The colnames are the identifiers of the columns. The data is given as a list
of lists, where each inner list is a row. All rows must have the same length. Data can be integers or
strings.

(project <rel> (<colname> . . .))
Returns the projection of the relation rel on the given colnames. The result is a relation containing
only those columns from the original relation. The order of the columns in the new relation is the
order of the given colnames.

(restrict <rel> <condition>)

Restricts the relation rel by keeping only the rows that satisfy the condition. The condition can be
one of the following:

• (<op> <val1> <val2>), op ∈ {>,<,=,<=,>=,!=}, and val1,val2 are values or column names.
True for a row if the value(s) in the corresponding column(s) of that row make the condition true.
The operators = and != are used for both integers and strings, while the other four ones are only
meaningful for integers.

• (or <cond1> <cond2>), (and <cond1> <cond2>), (not <cond>)

True for a row when respectively cond1 or cond2 is true; cond1 and cond2 are true; cond is false
for that row.

(relation <relname> <reldef>)

Binds the identifier relname to the relation given by reldef.

(equal? <rel1> <rel2>)

Returns #t or #f depending on whether rel1 and rel2 are equal. Two relations are equal if and only
if they have the same column names and they contain the same tuples. The order of columns matters,
but the order of the tuples does not matter; remember that a relation is a set.

You may also want to define a printing operator (e.g. (show <rel>)), but you are not required to do so.

4



Sample

Here is an example of a program in our language using the relations shown in Figure 2.

#lang s-exp "relations.rkt"

(relation pers (make-relation

(name title department salary)

(("John" "Accountant" "Finance" 3000)

("Rob" "Salesman" "Sales" 5000)

("Bill" "Manager" "Sales" 10000)

("Ben" "Driver" "Logistics" 4500))))

(relation dept (make-relation

(department location head)

(("Finance" "Paris" "John")

("Sales" "London" "Bill")

("It-support" "Paris" "Mark"))))

(show (project (restrict pers (salary . >= . 5000)) (name title)))

(equal? (project dept (location))

(make-relation (location)

(("Paris") ("London"))))

If we run the program the output can be the following (for a simple definition of show):

((name title)

(("Rob" "Salesman")

("Bill" "Manager")))

#t

Note that the output of your show operator can be different. That operator will not be tested and is included
only for your convenience. On the contrary, the equal? operator will be used for testing purposes.

Submission instructions

• Each student must send their own individual submission.

• For this assignment you must submit a single afp assignment2.zip file at the relevant section in
Studentportalen.

• afp assignment2.zip should contain six files (without any directory structure):
– the five programs requested (magic.erl, contracts.rkt, dice.erl, dice.rkt, relations.rkt)

that should conform to the specified interfaces regarding exported functions, handling of input
and format of output.

– a text file named README.txt whose first line should be your name. You can include any other
comments about your solutions in this file.

Have fun!

5


	Targeted Property Based Testing Magic (magic.erl, 4 points)
	Contracts (contracts.rkt, 3 points)
	Programmers, too, don't play dice (dice.{erl,rkt}, 4 + 4 points)
	Relational Algebra (relations.rkt, 5 points)

