Assignment 3

Advanced Functional Programming, 2017
(Avancerad funktionell programmering, 2017)

due 28 December 2017, 23:59

1 Too lazy to find other problems... ({road,dice}.hs, 5 + 5 points)

In the lectures, we mostly saw how to use GHCIi, the interactive environment of the GHC distribution.
However, as we also saw, GHC also comes with a compiler that produces executable files. One just needs to
define a main function with type I0 () which will be the entry point of the program, as shown below.

$ cat hello.hs

main :: I0 O

main = putStrLn "Hello, World!"

$ ghc hello.hs

[1 of 1] Compiling Main (hello.hs, hello.o)
Linking hello ...

$./hello

Hello, World!

Task

Write two Haskell programs that produce executables that solve the Road and Dice problems from the two
previous assignments. The programs should read data from standard input and return their results on
standard output as shown below:

$ ghc road.hs

[1 of 1] Compiling Main (road.hs, road.o)
Linking road ...

$./road < roadl.txt

2

$./road < road2.txt

-1

$ ghc dice.hs

[1 of 1] Compiling Main (dice.hs, dice.o)
Linking dice ...

$./dice < dice.txt

2

3

-1

The format of the input files is specified on the next page. You can download these three sample files from
the course’s page. Notice that in the sample runs above, these files are read from the standard input.

Format of input files

Road

The first line of the file contains three integers separated by spaces: N, specifying the number of lines that
follow (1 < N < 1000000), the length L and the number X (0 < X < L). The rest of the input file consists
of N lines, each containing two integers Sy and L (0 < Sy < Ejy < L) also separated by a space. (The
limits are the same as in the first assignment.) The two example input files are shown below.

’ roadl.txt ‘ road2.txt ‘

4 30 6 4 30 1
15 15

11 27 11 27
2 14 2 14
18 28 18 28

Dice

The first line of input contains an integer C, specifying the number of test cases that follow (1 < C < 10).
Each test case starts with a line containing the three integers N, E and D separated by a single space,
indicating the number of Nodes and Edges of the graph and the number of Dice in the dice list. The next
line contains E node pairs, describing the graph. Each pair indicates an edge between the respective nodes.
The last line of each test case contains D numbers, which are the values of the dice that you have available.
As for limits, there will be at most 30 nodes in the graph and at most 30 dice in the dice list.

’ dice.txt

2
212332

N W o N D

2334

N

I e U o R S SV I SV V)
N

DN W
w

Output

For each test case, your programs should print each answer on a new line, as shown on the previous page.
The requested answers are the same as in the previous two assignments. For road, the (single) number
in the output is the number of days after which the largest consecutive segment of the road that is still
unconstructed will not be larger than X. For each dice test case, the output is the number of moves needed
to reach the winning node or -1 if this is not possible.

2 Your turn to be lazy... (my_lazy.hs, 4 points)

Using as input in the infinite list of primes = [2,3,5,7,..] we can create a new infinite list out as output
in the following way:

o Start by taking the first element of the in list:
out = [2]

e Append the next element of the in list and a new copy of out:

out = [2] ++ [3] ++ [2] = [2,3,2]

e Repeat:
out = [2,3,2] ++ [6] ++ [2,3,2] = [2,3,2,5,2,3,2]

e Repeat:
out = [2,3,2,5,2,3,2] ++ [7] ++ [2,3,2,5,2,3,2] = [2,3,2,5,2,3,2,7,2,3,2,5,2,3,2]

GHC can employ the C++ preprocessor if given the command-line argument -cpp. This allows the use
of preprocessor commands like #ifdef and #include.

lazy__main.hs

import Data.Numbers.Primes (primes)

import Test.HUnit ((@7=))
import Test.Framework (Test, defaultMain)
import Test.Framework.Providers.HUnit (testCase)

#include "my_lazy.hs"

test_lazy :: (Integer, Integer, [Integer], Integer) -> Test
test_lazy (from, to, list, expected) =
testCase (show from) $
lazy from to list Q7= expected

tests = [
(1, 4, [1..1, 7,
(5, 26, [1..1, 42),
(1000, 2000, primes, 3681),
(1, 10000000, primes, 36746404)
]

main = defaultMain $ map test_lazy tests

Task

Define the function lazy which takes two Integer indices from and to and an infinite list in and calculates
the sum of the elements of the out list from index from to index to. Here, the indexing starts from 1, as
shown in the example.

Shell

$ runghc -cpp lazy_main.hs

1: [OK]

5: [OK]

1000: [OK]

1: [0K]

Test Cases Total

Passed 4 4
Failed O 0
Total 4 4

Your my_lazy.hs file will be included as shown above but with more test cases.

3 Type Classes (showme.hs, 2 points)

Utilizing the preprocessing in Haskell again:

vector.hs

module Vector where

type Vector
data Expr

[Integer]

V Vector

VO VectorOp Expr Expr

S0 ScalarOp IntExpr Expr
I Integer

NO NormOp Expr

Add | Sub | Dot

Mul | Div

NormOne | NormInf

data IntExpr

data VectorOp
data ScalarOp
data NormOp

#include "showme.hs"

Task

Define the contents of showme.hs so that given the above vector.hs you can have the following interaction
with the interpreter:

Shell

$ ghci -cpp

GHCi, version 8.0.1: http://www.haskell.org/ghc/ :7 for help

Prelude> :load vector.hs

[1 of 1] Compiling Vector (vector.hs, interpreted)

Ok, modules loaded: Vector.

*Vector> VO Dot (VO Add (V [1,2]) (V [3,4])) (S0 Mul (NO NormOne (V [2])) (V [5,6]1))
{'dot', {'add', [1,2], [3,4]}, {'mul', {'norm_one', [2]}, [5,6]}}

In general, given any part of an expression that is using the above constructors the interpreter should
print the equivalent “pretty” version, as it appeared in the specification of the vector_server in the first
assignment.

Hint

The type class Show may have something to do with this question...

4 Fulltext indexing (indexing.hs, 4 points)

Your task is to speed up, as much as possible, a program that performs fulltext indexing and searching of
documents by using the power of multicores. The sequential program can be found in course’s page, and
you will need to download and unpack the set of sample documents:

$ wget http://community.haskell.org/~simonmar/par-tutorial-exl.1l-docs.tar.bz2
$ tar xvjf par-tutorial-exl.l-docs.tar.bz2

You can try out the program like this:

$ ghc -0 indexing.hs && ./indexing docs/*
search ("D to end): <type your search terms here>

For example, you could enter parallel concurrent and the program would list the filenames of all the
documents that contain both those words. To benchmark the program, run it like this:

$ echo "parallel concurrent" | ./indexing docs/* +RTS -s

The program works by creating a mapping from words to the set of documents that contains that word.

Sample

$ # original indexing.hs
$ ulimit -n 4096 && ghc -0 indexing.hs && echo "keyword" | ./indexing docs/* +RTS -s

.fétal time 4.034s (4.020s elapsed)

é.# make indexing.hs faster

$ ghc -0 indexing.hs -rtsopts -threaded

$ ulimit -n 4096 && echo "parallel concurrent" | ./indexing docs/* +RTS -N2 -s
.fotal time 3.703s (1.972s elapsed)

é.ﬁlimit -n 4096 && echo "parallel concurrent" | ./indexing docs/* +RTS -N4 -s
.'fotal time 4.384s (1.253s elapsed)

é.ﬁlimit -n 4096 && echo "parallel concurrent" | ./indexing docs/* +RTS -N8 -s
‘fotal time 5.211s (0.835s elapsed)

$ ulimit -n 4096 && echo "parallel concurrent" | ./indexing docs/* +RTS -N16 -s

Total time 9.992s (0.827s elapsed)

Grading

Your final points for this exercise is the sum of the speedup divided by the number of schedulers in each case
from [2,4,8,16] cores measured on a machine with >= 16 cores. In the sample case, the total points for this
exercise would be 4.02 x (1/1.972/2 4+ 1/1.253/4 4+ 1/0.835/8 + 1/0.827/16) = 2.73.

Submission instructions

o Each student must send her/his own individual submission.

e For this assignment, you must submit a single afp_assignment3.zip file at the relevant section in
Studentportalen.

o afp_assignment3.zip should contain seven files (without any directory structure):

— The five files requested (road.hs, dice.hs, my_lazy.hs, showme.hs, and indexing.hs) which
should conform to the specified interfaces regarding exported functions, handling of input and
format of output.

— A text file named README. txt whose first line should be your name. You can include any other
comments about your solutions in this file.

Have fun!

	Too lazy to find other problems... ({road,dice}.hs, 5 + 5 points)
	Your turn to be lazy... (my_lazy.hs, 4 points)
	Type Classes (showme.hs, 2 points)
	Fulltext indexing (indexing.hs, 4 points)

