Parallel & Concurrent Haskell 1:
Basic Pure Parallelism

Simon Marlow

(Microsoft Research, Cambridge, UK)

Background

e The parallelism landscape is getting crowded

— Every language has their own solution(s)
e Erlang: asynchronous message-passing
e Go: CSP
e C: pthreads, OpenMP, TBB, ...
e F#, C#: threads, asyng, ...

e Some programming models are more suited to
particular kinds of applications

— e.g. threads are good for interactive applications, less
good for parallel algorithms

— Message-passing is good for distribution, less good for
local consistency

Haskell’s approach

e We want to give you the right tool for the job
— Even if that means having many tools

e But the overall philosophy is
— provide minimal built-in functionality
— implement nice abstraction layers on top

e How do you, the programmer, decide which
tool (API) you need?

First, we divide the landscape in two:
Parallel and Concurrent
applications/programming models

What's the difference?

Parallelism vs. Concurrency

Multiple threads for modularity
of interaction

Multiple cores for performance

Parallel Haskell Concurrent Haskell

Parallelism vs. Concurrency

* Primary distinguishing feature of Parallel
Haskell: determinism

— The program always does the same thing, but may
run faster when given multiple cores to run on.

— No race conditions or deadlocks
— add parallelism without sacrificing correctness

— Parallelism is used to speed up pure (non-10
monad) Haskell code

Parallelism vs. Concurrency

* Primary distinguishing feature of Concurrent
Haskell: threads of control

— Concurrent programming is done in the 10 monad
e because threads have effects

e effects from multiple threads are interleaved
nondeterministically at runtime.

— Concurrent programming allows programs that
interact with multiple external agents to be modular

e the interaction with each agent is programmed separately

e Allows programs to be structured as a collection of
interacting agents (actors)

We have a lot of ground to cover...

[m——

Server applications
Distributed programming

1. Basic pure parallelism

2. The Par Monad Parallel

3. Concurrent Haskell

4. Software Transactional Memory

g Concurrent
6.

7/

GPU programming

|. Parallel Haskell

* |n this part of the course, you will learn how to:

— Do basic parallelism:

compile and run a Haskell program, and measure its
performance

parallelise a simple Haskell program (a Sudoku solver)
use ThreadScope to profile parallel execution

do dynamic partitioning

measure parallel speedup

— use Amdahl’s law to calculate possible speedup

— Work with Evaluation Strategies

build simple Strategies

Running example: solving Sudoku

— code from the Haskell wiki (brute force search
with some intelligent pruning)

— can solve all 49,000 problems in 2 mins
— input: a line of text representing a problem

import Sudoku

solve :: String -> Maybe Grid

Solving Sudoku problems

e Sequentially:
— divide the file into lines
— call the solver for each line

main :-: 10 ()
main = do
[f] <- getArgs
grids <- fmap lines $ readFile f
print $ length $ filter isJust $ map solve grids

solve :: String -> Maybe Grid

Compile the program...

$ ghc -02 sudokul.hs -rtsopts
[1 of 2] Compiling Sudoku (Sudoku.hs, Sudoku.o)

[2 of 2] Compiling Main (sudokul.hs, sudokul.o)
Linking sudokul ...

$

Run the program...

$./sudokul sudokul7.1000.txt +RTS -s
2,392,127,440 bytes allocated 1n the heap
36,829,592 bytes copied during GC
191,168 bytes maximum residency (11 sample(s))
82,256 bytes maximum slop
2 MB total memory in use (O MB lost due to fragmentation)

Generation 0: 4570 collections, O parallel, 0.14s, 0.13s elapsed
Generation 1: 11 collections, O parallel, 0.00s, 0.00s elapsed

elapsed)
elapsed)
elapsed)
elapsed)
elapsed)

Now to parallelise it...

* Doing parallel computation entails specifying
coordination in some way — compute A in
parallel with B

e This is a constraint on evaluation order

 But by design, Haskell does not have a
specified evaluation order

 So we need to add something to the language
to express constraints on evaluation order

The Eval monad

modulle Control.Parallel_Strategies (..) where

data Eval a Start evaluating

instance Monad Eval a (to WHNF) in
the background

runEval :: Eval a -> a

Evaluate b (to
WHNF) and wait
for the result

rpar -: a -> Eval a
rseq -: a -> Eval a

Eval is pure

e Just for expressing sequencing between rpar/rseq — nothing
more

e Compositional —larger Eval sequences can be built by
composing smaller ones using monad combinators

* Internal workings of Eval are very simple (see Haskell
Symposium 2010 paper)

e We wantto do ain parallel with b.
 Which of the following is the best?

do do
a’ <- rpar a a’ <- rpar a

b> <- rpar b b”> <- rseq b
return (a’,b”) return (a’,b”)

return

return

a’ <- rpar a
b”> <- rseq b
rseq a’

return (a’,b”)

a’ <- rpar a
b> <- rpar b
rseq a’

rseq b’

return (a’,b”)

What does rpar actually do?

e rpar creates a spark by writing an entry in the spark pool
— rpar is very cheap! (not a thread)

* the spark poolis a circular buffer

e when a processor has nothing to do, it tries to remove an
entry from its own spark pool, or steal an entry from
another spark pool (work stealing)

 when a spark is found, it is evaluated

 The spark pool can be full — new sparks are discarded when
the pool is full. Watch out!

-II Spark Pool

Parallelising Sudoku

e Let’s divide the work in two, so we can solve
each half in parallel:

let (as,bs) = splitAt (length grids "div 2) grids
* Now we need something like

runEval $ do
as’ <- rpar (map solve as)
bs®> <- rpar (map solve bs)
rseq as’
rseq bs’

return (as’ ++ bs?)

But this won’t work...

runEval $ do
as’ <- rpar (map solve as)
bs® <- rpar (map solve bs)

rseq as”’
rseq bs’
return (as’ ++ bs?)

e rpar evaluates its argument to Weak Head Normal
Form (WHNF)

e whatis WHNF?
— evaluates as far as the first constructor
— e.g. for a list, we get either [] or (x:xs)

— e.g. WHNF of “map solve (a:as)” would be “solve a : map
solve as”

e But we want to evaluate the whole list, and the
elements

We need to go deeper

modulle Control .DeepSeq (..) where

class NFData a where
rnf -2 a -> O

deepseq :: NFData a => a -> b -> Db
deepseq a b = rnf a "seq b

force :: NFData a => a -> a
force a = deepseqg a a

 provided by the ‘deepseq’ package
e force fully evaluates a nested data structure and returns it
— e.g. a list: the list is fully evaluated, including the elements

e uses overloading: the argument must be an instance of
NFData

— instances for most common types are provided by the library

Ok, adding force

runEval $ do

as’ <- rpar (force (map solve as))
bs” <- rpar (force (map solve bs))

rseq as~’
rseq bs-’
return (as’ ++ bs?)

* Now we just need to evaluate this at the top
level in ‘main’:

print $ length $ filter isJust $ runkEval $ do
as’ <- rpar (force (map solve as))

Let’s try it...

$ ghc --make -02 sudoku2.hs -rtsopts -threaded
[1 of 2] Compiling Sudoku (Sudoku.hs, Sudoku.o)

[2 of 2] Compiling Mailn (sudoku2.hs, sudoku2.0)
Linking sudoku2 ...

$

Run it on one processor first

L

$./sudoku2 sudokul7.1000.txt +RTS -s
-/sudoku?2 sudokul7.1000.txt +RTS -s
1000
2,400,398,952 bytes allocated in the heap
48,900,472 bytes copied during GC
3,280,616 bytes maximum residency (7 sample(s))
379,624 bytes maximum slop
11 MB total memory in use (0O MB lost due to fragmentation)

A tiny bit slower (was 3.06
before). Splitting and
elapsed) reconstructing the list has

elapsed) some overhead.
elapsed)

elapsed)
elapsed

Runtime results...

$./sudoku2 sudokul7.1000.txt +RTS -N2 -s
2,400,125,664 bytes allocated in the heap
48,845,008 bytes copied during GC
2,617,120 bytes maximum residency (7 sample(s))
313,496 bytes maximum slop
9 MB total memory in use (0O MB lost due to fragmentation)

Generation 0: 2975 collections, 2974 parallel, 1.04s, 0.15s elapsed
Generation 1: 7 collections, 7 parallel, 0.05s, 0.02s elapsed

Parallel GC work balance: 1.52 (6087267 / 3999565, i1deal 2)
SPARKS: 2 (1 converted, O pruned)

INIT 0.00s .00s elapsed)
MUT i 2.21s .80s elapsed)
GC i 1.08s .17s elapsed)
EXIT i 0.00s .00s elapsed)
Total ti 3.29s .97s elapsed)

Calculating Speedup

e Calculating speedup with 2 processors:
— Elapsed time (1 proc) / Elapsed Time (2 procs)
— NB. not CPU time (2 procs) / Elapsed (2 procs)!

— NB. compare against sequential program, not parallel
program running on 1 proc

 why? introducing parallelism may add some overhead
compared to the sequential version

e Speedup for sudoku2: 3.06/1.97 = 1.55

— not great...

Why not 27

e there are two reasons for lack of parallel
speedup:
— less than 100% utilisation (some processors idle
for part of the time)

— extra overhead in the parallel version

 Each of these has many possible causes...

A menu of ways to go wrong

e |ess than 100% utilisation
— parallelism was not created, or was discarded
— algorithm not fully parallelised — residual sequential computation
— uneven work loads

e extra overhead in the parallel version
— overheads from rpar, work-stealing, force, ...
— larger memory requirements leads to GC overhead

 |ow-level issues that are Simon’s problem:
— poor scheduling
— communication latency
— GC synchronisation
— duplicating work
— poor locality, cache effects

So we need tools

e to tell us why the program isn’t performing as
well as it could be

* For Parallel Haskell we have ThreadScope

$ rm sudoku2; ghc -02 sudoku2.hs -threaded -rtsopts —eventlog

$./sudoku2 sudokul7.1000.txt +RTS -N2 -Is
$ threadscope sudoku2.eventlog

e -eventlog has very little effect on runtime

— important for profiling parallelism

ﬁ sudoku?.eventlog - ThreadScope

File Wiew Help

el QA0

Keleraces | Bookmarks | Timeline
- nning 0ls 02s 03s 04s 055 06s 07s 0.8s 095 1s 1.1s 1.2s 1.3s 1.4s 1,55 1.6s 1.7s 1.8s 1.9s
e I T 1 T | T 1 T 1 | 1 T T T I T T T T

| create thread Activity
I run spark
thread runnable
seq GC req
par GC req
t”:'rg:s Zi:j; T e e o R R O A A R D R

shutdown

[«

Events

2192000 creating thread 1

2192000 thread 1 is runnable

2198000 running thread 1

2312000 stepping thread 1 (making a fereign call)
2314000 running thread 1

2320000 stopping thread 1 (making a foreign call)

sudokuz.eventlog (86280 events, 1.952s)

Uneven workloads...

* So one of the tasks took longer than the other,
leading to less than 100% utilisation

let (as,bs) = splitAt (length grids "div 2) grids

e One of these lists contains more work than the
other, even though they have the same length

— sudoku solving is not a constant-time task: it is a
searching problem, so it depends on how quickly the
search finds the solution

Partitioning

let (as,bs) = splitAt (length grids “div: 2) grids

e Dividing up the work along fixed pre-defined
boundaries, as we did here, is called static
partitioning

— static partitioning is simple, but can lead to under-
utilisation if the tasks can vary in size

— static partitioning does not adapt to varying
availability of processors — our solution here can
use only 2 processors

Dynamic Partitioning

 Dynamic partitioning involves
— dividing the work into smaller units

— assigning work units to processors dynamically at
runtime using a scheduler

— good for irregular problems and varying number of
Procoessors
e GHC’s runtime system provides spark pools to
track the work units, and a work-stealing
scheduler to assign them to processors

e So all we need to do is use smaller tasks and
more sparks, and we get dynamic partitioning

Revisiting Sudoku...

e So previously we had this:

runEval $ do
a <- rpar (force (map solve as))

b <- rpar (force (map solve bs))

e We want to push rpar down into the map

— so each call to solve will be a separate spark

A parallel map

parMap :: (a -=> b) -> [a] -> Eval [b]
parMap T [] = return [] Create a spark to
parMap f (a:as) = do

b <- rpar (f a) evaluate (f a) for

bs <- parMap f as each element a

return (b:bs)
Return the new list

 Provided by Control.Parallel.Strategies

parMap f xs = mapM (rpar . f) xs

Putting it together...

runEval $ parMap solve grids

 Code is simpler than the static partitioning
version!

Results

./sudoku3 sudokul7.1000.txt +RTS -s -N2 -Is
2,401,880,544 bytes allocated in the heap
49,256,128 bytes copied during GC
2,144,728 bytes maximum residency (13 sample(s))
198,944 bytes maximum slop
7 MB total memory in use (0O MB lost due to fragmentation)

Generation 0: 2495 collections, 2494 parallel, 1.21s, 0.17s elapsed
Generation 1: 13 collections, 13 parallel, 0.06s, 0.02s elapsed

Parallel GC work balance: 1.64 (6139564 / 3750823, ideal 2)

SPARKS: 1000 (1000 converted, O pruned)

INIT 0.00s 0.00s elapsed) Now 1.7 speedup
MUT i 2.19s 1.55s elapsed)
GC i 1.27s 0.19s elapsed)
EXIT i 0.00s 0.00s elapsed)
Total 3.46s 1.74s elapsed

0.1s 0.2s 0.3s 0.4s .55 0.65 0.7s 0.8s5 0.9s 1s 1l.1s . 3s . 1.5s 1.7s

L L L D L L L L

1 O O O RO AN EATRDE Y NEEE TRRAD AR AU (AR

S 1111 i
|, N, O O BRI ORI RGO ERER WO
0,) RO AR RO 000N ARERE SRR R RO
|| O, O AT T LR

1, O O
|, R, RO AR,
RN R W RO | TR ERREE O TR

1s 0.2s5 0.3s 0.4s .55 0.6s 0.7s 0.8s 0.9s

"

Ims 2ms 3ms 4ms 5ms 6ms Tms 8ms 9ms 10ms

e Lots of GC
 One core doing all the GC work

— indicates one core generating lots of data

main :-: 10 O
main = do
[f] <- getArgs

grids <- fmap lines $ readFile f
print $ length $ filter isJust $
runEval $ parMap solve grids

 Are there any sequential parts of this
program?

e readFile and lines are not parallelised

e Suppose we force the sequential parts to
happen first...

main -: 10 (O
main = do
[f] <- getArgs
grids <- fmap lines $ readFile F
evaluate (length grids)
print $ length $ filter isJust $
runEval $ parMap solve grids

x sudokud,.eventlog - ThreadScope

ERE

sudokud.eventlog (89700 events, 1.800s)

i .
File Wiew Help
Keleraces | Bookmarks | Timeline -
— running 20ms 25ms 30ms 35ms 40ms =
GC T T | T T T | | T T | T | T T T
| create thread Activity)
I run spark
I thread runnable [T
seq GC reg
I par GC req
| mioratethread |} Heco BN EN .
I thread wakeup Il I I S NN N N | 1 |
I shutdown .
i 1 EENENIE N BN N B N N N N I . . | | 1
|i| _I 11111 ﬂ
Events
I @y
38174000 cap 1 running thread 3
38196000 cap O: creating thread 4
38197000 cap 0: creating spark thread 4
38197000 cap O:thread 4 is runnable
38200000 cap O: running thread 4
38211000 cap 0: thread 4 stealing a spark from cap 1 -
Y

Calculating possible speedup

 When part of the program is sequential,
Amdahl’s law tells us what the maximum
speedup is.

e P =parallel portion of runtime
* N =number of processors

Applying Amdahl’s law

e |n our case:

— runtime = 3.06s (NB. sequential runtime!)

— non-parallel portion =0.038s (P = 0.9876)

— N =2, max speedup=1/((1-0.9876) + 0.9876/2)
e =~ 1,98

e on 2 processors, maximum speedup is not affected
much by this sequential portion

— N = 64, max speedup = 35.93

e on 64 processors, 38ms of sequential execution has a
dramatic effect on speedup

ﬂg Gnuplot (window id : 0)

s eHE@aQ s ?
80

70

60

50

40

30

20

| 960,640, 854172

e diminishing returns...

e See “Amdahl’s Law in the Multicore Era”, Mark Hill &
Michael R. Marty

e Amdahl’s law paints a bleak picture
— speedup gets increasingly hard to achieve as we add more cores
— returns diminish quickly when more cores are added
— small amounts of sequential execution have a dramatic effect
— proposed solutions include heterogeneity in the cores
— likely to create bigger problems for programmers

e See also Gustafson’s law — the situation might not be as bleak
as Amdahl’s law suggests:

— with more processors, you can solve a bigger problem
— the sequential portion is often fixed or grows slowly with problem size

 Note: in Haskell it is hard to identify the sequential parts
anyway, due to lazy evaluation

Evaluation Strategies

e So far we have used Eval/rpar/rseq
— these are quite low-level tools

— but it’s important to understand how the
underlying mechanisms work

e Now, we will raise the level of abstraction

 Goal: encapsulate parallel idioms as re-usable
components that can be composed together.

The Strategy type

type Strategy a = a -> Eval a

e Strategy ais a function that:
— when applied to a value 3,
— evaluates a to some degree

— (possibly sparking evaluation of sub-components of a
in parallel),

— and returns an equivalent a in the Eval monad

 NB. the return value should be observably
equivalent to the original

— (why not the same? we’ll come back to that...)

Example...

parList :: Strategy [a]

e A Strategy on lists that sparks each element of
the list

e This is usually not sufficient — suppose we
want to evaluate the elements fully (e.g. with
force), or do parList on nested lists.

SO0 we parameterise parlist over the Strategy
to apply to the elements:

parList :: Strategy a -> Strategy [a]

parList :: Strategy a -> Strategy [a]

*This is what we mean by “composable”:
— given a Strategy on the list elements,
— parlList gives us a Strategy on lists of those elements

*\We have some simple Strategies already:

type Strategy a = a -> Eval a

rpar :: a -> Eval a -- same as Strategy a
rseq :: a -> Eval a -- ditto

here’s a couple more:

r0O -: Strategy a
rdeepseq :: NFData a -> Strategy a

so here’s a simple composition:

parList rdeepseq :: Strategy [a]

Strategies are easy to define

type Strategy a = a -> Eval a

parList :: Strategy a -> Strategy [a]

 We have the building blocks:

rpar -:: a -> Eval a

parList -: (a -> Eval a) -> [a] -> Eval [a&a]
-—- same as Strategy a -> Strategy [a]

parList s [] = return []
parList s (x:xs) = do

X> <- rpar (runtEval (s x))
XS’ <- parList s xs
return (X’:xs?)

Let’s generalise...

e parlist has rpar built-in, but we might not
want that. Let’s make a version without the

rpar:

evalList :: (a -> Eval a) -> [a] -> Eval [a]
evalList T [] return ()
evalList T (X:xs) do

X <- F x
Xs? <- evalList f xs
return (X’:xs?)

now we can define parlList in terms of evallist:

parList T = evalList (rparWith f)

rparWith :: Strategy a -> Strategy a

rparWith s a = rpar (runkEval (s a))

Let’s make a general Strategy on pairs:

evalTuple2 :: Strategy a -> Strategy b -> Strategy (a,b)
evalTuple2 sa sb (a,b) = do

a’ <- sa a
b” <- sb b
return (a’,b”)

Example: a Strategy on a pair that evaluates the first
component and sparks the second:

evalTuple2 rseq rpar :: Strategy (a,b)

(left-then-right ordering is built into evalTuple2, if you
want the other ordering you have to define a different
evalTuple2)

rpar, rseq, rO :-: Strategy a
rdeepseq :: NFData a => Strategy a

rparWith :: Strategy a -> Strategy a

evalList .. Strategy a -> Strategy [a]
evalTuple2 :: Strategy a -> Strategy b -> Strategy (a,b)

Here are some example Strategies. What do they do?

evalList (evalTuple2 rpar r0) :: Strategy [(a,b)]

evalList (rparWith (evalTuple2 rseq rseq))
:. Strategy [(a,b)]

evalList (evalTuple2 rdeepseq rpar) :: Strategy [(a,b)]
evalList (evallList rpar) :: Strategy [[all

evalList (rparWith (evallList rseq)) :: Strategy [[all
evalList (rparWith (evalList rpar)) :: Strategy [[a]l

How do we use a Strategy?

type Strategy a = a -> Eval a

e We could just use runEval
e But this is better:

X ~using s = runkEval (s X)

° e.g.

myList “using parList rdeepseq

e Why better? Because we have a “law”:
— X using s = X
— We can insert or delete “'using s” without changing
the semantics of the program

Is that really true?

1. It relies on a Strategy returning “the same
value” (identity-safety)
— Strategies from the library obey this property
— Be careful when writing your own Strategies

2. x using s might do more evaluation than just
X.

— So the program with x ‘using” s might be | , but the
program with just x might have a value

e if identity-safety holds, adding using cannot

make the program produce a different result
(other than |)

But we wanted parMap

e Earlier we used parMap to parallelise Sudoku
e But parMap is a combination of two concepts:
— The algorithm, ‘map’
— The parallelism, ‘parList’

parMap ¥ x = map T Xxs "using parList rseq

e With Strategies, the algorithm can be separated from
the parallelism.

— The algorithm produces a (lazy) result

— A Strategy filters the result, but does not do any
computation — it returns the same result.

* So a nicer way to write the Sudoku example is:

main -: 10 (O
main = do
[f] <- getArgs

grids <- fmap lines $ readFile T
evaluate (length grids)
evaluate $ force $

map solve grids “using parList rseq

 Here the parallelism is modular

Recap...

 Eval monad, for expressing evaluation order and
JeEISUal:M (ata Eval a -- instance Monad Eval

runEval :: Eval a -> a

rpar -: a -> Eval a
rseq -:: a -> Eval a

e Strategies,
* built using Eval, rpar, rseq
e express compositional parallelism over data
structures
* modular: parallelism separate from algorithm

type Strategy a = a -> Eval a

“using :: a -> Strategy a -> a

	Parallel & Concurrent Haskell 1:�Basic Pure Parallelism
	Background
	Haskell’s approach
	Slide Number 4
	Parallelism vs. Concurrency
	Parallelism vs. Concurrency
	Parallelism vs. Concurrency
	We have a lot of ground to cover...
	I. Parallel Haskell
	Running example: solving Sudoku
	Solving Sudoku problems
	Compile the program...
	Run the program...
	Now to parallelise it...
	The Eval monad
	Slide Number 16
	What does rpar actually do?
	Parallelising Sudoku
	But this won’t work...
	We need to go deeper
	Ok, adding force
	Let’s try it...
	Run it on one processor first
	Runtime results...
	Calculating Speedup
	Why not 2?
	A menu of ways to go wrong
	So we need tools
	Slide Number 29
	Uneven workloads...
	Partitioning
	Dynamic Partitioning
	Revisiting Sudoku...
	A parallel map
	Putting it together...
	Results
	Slide Number 37
	Slide Number 38
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Calculating possible speedup
	Applying Amdahl’s law
	Slide Number 47
	Slide Number 48
	Evaluation Strategies
	The Strategy type
	Example...
	Slide Number 52
	Strategies are easy to define
	Let’s generalise...
	Slide Number 55
	Slide Number 56
	How do we use a Strategy?
	Is that really true?
	But we wanted parMap
	Slide Number 60
	Recap...

