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1. a)
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c) A Householder-matrix has the form P = I�2wwT where w is a vector such
that wTw = 1. PT =

�
I � 2wwT

�T = IT � 2
�
wwT

�T = I � 2
�
wT
�T

wT =
I � 2wwT .

2. a) A direct method such as Gaussian elimination causes much “fill-in” when
the coefficient-matrix A is large and sparse. Fill-in means that areas with
elements equal to 0 are filled in with non-zeros, i.e. we have to store a lot
more information in the computer memory. An iterative method however, is
based on matrix-vector multiplication which means that there won’t be any
fill-in in the areas that are equal to 0. Hence, we save a lot of computer
memory by using an iterative method.
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c) Since B is strictly diagonally dominant the iteration will converge.

3. a) ẽ1 = sin(2�t) and ẽ2 = cos(2�t) are already orthogonal. In order to have
an ON-basis we just need to normalize them.

(ẽ1; ẽ1) =
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Hence an ON-basis is formed by e1 =
q

2
5 sin(2�t) and e2 =

q
2
5 cos(2�t).



b) The least squares projection of the data unto M is given by g� =
(y; e1)e1 + (y; e2)e2.

(y; e1) =
r

2
5

(�3 sin(0) + 0 sin(0:4�) + 3 sin(0:8�) + 1:8 sin(1:2�)� 1:8 sin(1:6�))

� 1:5288

(y; e2) =
r

2
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(�3 cos(0) + 0 cos(0:4�) + 3 cos(0:8�) + 1:8 cos(1:2�)� 1:8 cos(1:6�))

� �4:7052

The final answer is then g� = (y; e1)e1 + (y; e2)e2 � 0:9669 sin(2�t) �
2:9758 cos(2�t).

c) The equations are given by yi = a1 sin(2�ti) + a2 cos(2�ti), leading to
the system Ax = b, where

A =

2
66664

sin(0) cos(0)
sin(0:4�) cos(0:4�)
sin(0:8�) cos(0:8�)
sin(1:2�) cos(1:2�)
sin(1:6�) cos(1:6�)

3
77775 ; x =

�
a1
a2

�
; b =

2
66664

�3
0
3

1:8
�1:8

3
77775

d) A QR-factorization can be computed through for example Householder
transformations or by the Gram-Scmidt orthogonalization method ap-
plied to the columns of A.
When the factorization A = QR is known, the normal equations ATAx =
AT b can be rewritten as Rx = QT b. This is now a square linear system
and furthermore, R is upper triangular. Hence, the system can be solved
through backward substitution.

4. a) The eigenvalues are distinct if either the row circles or the column circles
are non-overlapping. The circles are centerad at aii, that is at 1, 2, and 3.
They are non-overlapping if the sum of the radii of two adjacent circles
is less than 1 (the distance between the centers). Let r1, r2, and r3 be
the radii of the row circles and c1, c2 and c3 of the column circles. We
have

r1 = jaj+ 0:3;
r2 = 0:5;
r3 = jbj+ 0:1;

c1 = jbj+ 0:2;
c2 = 0:4;
c3 = jaj+ 0:3;

For the row circles, r1 + r2 < 1 and r2 + r3 < 1 lead to jaj < 0:2 and
jbj < 0:4. The conditions c1 + c2 < 1 and c2 + c3 < 1 lead to jaj < 0:3
and jbj < 0:4. Accordingly, the best possible bound through Gershgorin
circles is jaj < 0:3 and jbj < 0:4.

b) The error of the power method depends on the ratio of the eigenvalue
with the largest modulus and the eigenvalue with the next to largest
modulus. In this case, the error is proportional to�
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where k is the number of iterations. To get an error less than 10�5 we
would (approximately) need

�
2
3

�k

< 10�5 , k >
log 10�5

log(2=3)
� 28:4:

That is, we would need about 29 iterations to reach the desired accuracy.



c) By first shifting the matrix to B = A� 2I we make the eigenvalue with
the desired eigenvector have the smallest modulus. Then we apply inverse
iteration to B (the power method on B�1) to compute the eigenvector.

5. a) The Fourier series of unj is

unj =
N�1X
`=0

cn` exp(i2�`jh):

For one term cn` exp(i2�`jh) in the series we have

cn+1
` exp(i2�`jh)

= cn` exp(i2�`jh)(1� 0:5akh�1(exp(i2�`h)� exp(�i2�`h))):

Then with r = ah�1k, cn` satisfies

cn+1
` = (1� 0:5r(exp(i2�`h)� exp(�i2�`h)))cn`

= (1� ri sin(2�`h))cn` = Qcn` :

For stability, jQj � 1 which is possible only if r = 0, i.e. a = 0.
b) The recursion formula for the Fourier coefficient is

cn+1
` = (1� r(exp(i2�`h)� 1))cn`

= (1 + r � r cos(2�`h)� ri sin(2�`h))cn` = Qcn` :

For stability, we have jQj � 1, i.e.

jQj2 = (1 + r � r cos(2�`h))2 + r2 sin(2�`h)2

= 1 + r2 + r2 cos(2�`h)2 + 2r � 2r cos(2�`h)� 2r2 cos(2�`h) + r2 sin(2�`h)2

= 1 + 2r(r + 1)(1� cos(2�`h)):

Since 0 � 1� cos(2�`h) � 2 the strictest bound on r is when cos(2�`h) = �1.
The minimum of f(r) = 1 + 4r(r + 1) is at r = �0:5 and f(�0:5) = 0 and
f(r) = 1 at r = 0 and r = �1. Hence, for stability �1 � r � 0 or

�h=k � a � 0:


