Solution to problem 1

a) Let vy =1, vy = x, and v3 = 22. Use the Gram-Schmidt orthogonalization
method to determine an ON-basis.
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b) The least squares projection of the data unto M is given by ¢* = (y, e1)e1+
(y,e2)ez + (y, es)es.
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The least squares approximation is g*(z) = —%562 + %Cﬂ + %.

Solution to problem 2

a) The matrix A is symmetric. Therefore the eigenvalues are real (not necas-
sary in order to solve the problem, but useful to know). The Gersgorin
circles are the same for rows and columns. For the original matrix, we

have
A1 =05 < 02+403=05 = 0< A <1
[A2 +2.0] < 0.2 = —22< XA <18
[As +0.5] < 0.3 = —-08< A3 <-0.2.

The largest eigenvalue (the one to compute) is Aj.
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For the first shift A +1.25I, we get, for u; = A; + 1.25,
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The power method will converge to p; as desired. The error is given by
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where the worst case scenario was chosen as estimate. (The best case is
(0.55/2.25)F ~ 0.24%.)

For the second shift A — 0.51, we get, for u; = A; — 0.5,
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Inverse iteration converges to the smallest eigenvalue p; as desired. How-

ever, now the convergence rate is determined by the inverse of the eigen-
values, since we are actually using the power method on A~!. The error
is given by
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where the worst case scenario has again been chosen as estimate. (The best
case is convergence in zero iterations if the shift is exactly the eigenvalue.)

Answer: Inverse iteration is likely to converge in fewer iterations than the
power method, since the worst case convergence rate is faster than for
the power method. (Furthermore, the best case convergence is also better
than for the power method.)

The power method does one normalization, one matrix-vector multiplica-
tion and one eigenvalue estimate in each iteration, leading to

Cp = kp(3N +2N? + 2N) = k,N(2N + 5).

With inverse iteration, the matrix is first factorized and then, for each
iteration, one normalization, one solve, and one eigenvalue estimate is



performed, leading to
C; =2N?/3+ k(3N + 2N? +2N) = 2N3/3 4+ k;N(2N +5).

The two methods use the same number of operations when

k,N2N +5) = 2N3/3+k;N(2N +5)
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Conclusion: We can do a lot of extra iterations with the power method for a
large full matrix before it pays off to change to inverse iteration. However, for
a sparse matrix, the extra cost for the factorization is much less notable.

Solution to problem 3

a)
IBli = max(0.8,0.85,0.6,0.95) = 0.95
IBllcc = max(1.1,0.95,0.55,0.6) = 1.1
b)
~01 02 =015 065 0.1 0 0.325
.| 025 05 01 -01 02 | | 01 | _ | 0175
7 —015 —01 02 -0.1 -0.1 03 | — | 0205
03 005 015 0. 0.4 —0.2 —0.045

¢) The iterations converge if p(B) < 1. We have p(B) < ||B]| all norms.
Since ||B||1 = 0.95, we have p(B) < 0.95 < 1. Hence, the iterative method
converges.

d)
Bu=(D+L+U)u="b

Jacobi’s method:
" = D YL+ U)z* + D'

In this case:
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Remark: Both x and uw were used in the question by accident and either one
can be used in the answer.



Solution to problem 4
a) 0 —0-A =0 = the PDE is parabolic.

b)
n o AAtL .
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where
a=1-235¢
b=c=25L

c¢) Taylor-expansion around (z;,t,), denote u(z;,t,) by u:

n+1 =u+ Atu; + A—tutt + A—Uttt + 0(At4)
J+1 =u+ hu, + h2 Ugy + h6 Ugzz + 4uzz$$ + O(h )
U;'L,;L =u— hug + 2 Ugy — hﬁ Ugge T 24uzzzz + O(h )

Move all terms in the approximation of the PDE to the left-hand side:

2 3
u+Atut+ATtun+ATtu“t +O0(AtY)—u .
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u + Sluge + O(At?) — Mgy + O(R?) = [uy = Mgy =
O(At) + O(h?).

Hence the local truncation error is O(At) + O(h?).

d) A Fourier expansion and orthogonality of e®?%i yields
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Z (1 +AAt ( iwh __ 2+efiwh)) —
ar (1+ 2/\At (cos(wh) — 1)) = Quan

Since cos(wh) — 1 € [-2,0] Q. < 1. Remains to derive a condition such
that Q, > —1. A condition for this is that 2/\At (cos(wh) — 1) > —2.

Since cos (wh)—1 > —2 this means that )‘,ﬁt < é for stability, i.e. At < 5‘)2\



Solution to problem 5

a)

Let v be an arbitrary element in ¥V multiplying the equation with v and
integrating over [0, 1] results in

1 1
/ —u''vdr = / fvdx
0 0

integrating the left hand side by parts results in

1 1
/ uw'v' dr — [u'v]é = / fodz. (1)
0 0
The boundary conditions can be written as
uw'(0) =1 —au(0), u'(1)=1-au(l),

inserting this into equation (1) yields

/ uw'v' dz —v(1)(1 — au(1) +v(0)(1 — a(0)) = / fvdx
0 0

Since v is arbitrary this hold for all v € V. We can now state our variation
problem as

Find u € V such that

1 1
/ uw'v' dz —v(1)(1 — au(l) + v(0)(1 — a(0)) = / fvdx YveV.
0 0

Let Vo = {v € V| v(0) = v(1) = 0}, the variational formulation reads

Find u € Vy such that

1 1
/ u'v' dr = / fvdz Yv e V,.
0 0

Let N > 0 be an integer, and define h = 1/(N + 1) and let z; = ih for
1=20,1,2,...,N,N + 1. Now define the linear hat functions ¢; as

T—Ti—1
T for € (xi—1,xi,
I r—Tq
¢pi=q1-55, forae (i, Tiv1),
0 otherwise

fori=1,2,...,N. Define V), = span{¢1, ¢2,...,on}. The finite element
method for equation is given by

Find up € V) such that

1 1
/ upvy, do = / fopdx Nop € V.
0 0



Let v = (v1,v,...,vN)! and define vy, (z) = Ziil vid;i(x), then

TAU—ZZUZ/ ¢¢ dzv;
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:/ Z(Ul(j) ZUJ% dx—/ |uh|? dz > 0,
0 =1 j=1

with equality iff vj, = 0 or equivalently v, = Const. But since v,(0) =
vp(1) = 0 we have equaility iff v, = 0. Thus vT Av > 0 for each v # 0,
that is, A is positive definite.

For z € [0,1] we have that
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Moreover, we have that
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that is, |[u'||z2¢0,1) < |fllz2(0,1)- Putting it all together yields

1 1 1
||u’||%2(071)=‘/0 u'u' dz| = /0 fudz| < /0 f?dz

= ||f||L2(0,1)||U||L2(0,1) < ||f||L2(0,1)||U'||L2(0,1)

llullz2(0,1) + U220,y < 2M1w'llz20,1) < 2| fllz20,1)- O



