
Solution to problem 1

a) Let v1 = 1, v2 = x, and v3 = x2. Use the Gram-Schmidt orthogonalization
method to determine an ON-basis.e1 =

v1kv1k =
1p

12 + 12 + 12 + 12
=

1

2
;w2 = v2 � hv2; e1ie1 = x� 1

2
(�1� 1=3 + 1=3 + 1)e1 = x;e2 =

w2kw2k =
xp

(�1)2 + (�1=3)2 + (1=3)2 + 12
=

3xp
20
;w3 = v3 � hv3; e1ie1 � hv3; e2ie2 = x2 � hx2; 1=2i1=2� hx2; 3x=p20i 3xp

20

= x2 � 5

9
;e3 =

w3kw3k =
x2 � 5=9p

(4=9)2 + (4=9)2 + (4=9)2 + (4=9)2
=

x2 � 5=9

8=9
=

9

8
x2 � 5

8
:

b) The least squares projection of the data unto M is given by g� = hy; e1ie1+hy; e2ie2 + hy; e3ie3.hy; e1ie1 =
1

2

1

2
hy; 1i1 =

7

4
;hy; e2ie2 =

3p
20

3p
20
hy; xix =

33

20
x;hy; e3ie3 =

�y; 9

8
x2 � 5

8

��
9

8
x2 � 5

8

�
=

�
9

8
hy; x2i � 5

8
hy; 1i��9

8
x2 � 5

8

�
= �1

2

�
9

8
x2 � 5

8

�
= � 9

16
x2 +

5

16
:

The least squares approximation is g�(x) = � 9
16x2 + 33

20x + 33
16 .

Solution to problem 2

a) The matrix A is symmetric. Therefore the eigenvalues are real (not necas-
sary in order to solve the problem, but useful to know). The Gersgorin
circles are the same for rows and columns. For the original matrix, we
have j�1 � 0:5j � 0:2 + 0:3 = 0:5 ) 0 � �1 � 1j�2 + 2:0j � 0:2 ) �2:2 � �2 � �1:8j�3 + 0:5j � 0:3 ) �0:8 � �3 � �0:2:
The largest eigenvalue (the one to compute) is �1.
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For the first shift A + 1:25I , we get, for �j = �j + 1:25,

1:25 � �1 � 2:25�0:95 � �2 � 0:55
0:45 � �3 � 1:05
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The power method will converge to �1 as desired. The error is given by�
max(j�2j; j�3j)j�1j �k � �1:05

1:25

�k
= 0:84k;

where the worst case scenario was chosen as estimate. (The best case is
(0:55=2:25)k � 0:24k.)

For the second shift A� 0:5I , we get, for �j = �j � 0:5,�0:5 � �1 � 0:5�2:7 � �2 � �2:3�1:3 � �3 � �0:7
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Inverse iteration converges to the smallest eigenvalue �1 as desired. How-
ever, now the convergence rate is determined by the inverse of the eigen-
values, since we are actually using the power method on A�1. The error
is given by�

max(j�2j�1; j�3j�1)j�1j�1

�k
=

� j�1j
min(j�2j; j�3j)�k � �0:5

0:7�k � 0:71k;
where the worst case scenario has again been chosen as estimate. (The best
case is convergence in zero iterations if the shift is exactly the eigenvalue.)

Answer: Inverse iteration is likely to converge in fewer iterations than the
power method, since the worst case convergence rate is faster than for
the power method. (Furthermore, the best case convergence is also better
than for the power method.)

b) The power method does one normalization, one matrix-vector multiplica-
tion and one eigenvalue estimate in each iteration, leading toCp = kp(3N + 2N2 + 2N) = kpN(2N + 5):
With inverse iteration, the matrix is first factorized and then, for each
iteration, one normalization, one solve, and one eigenvalue estimate is
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performed, leading toCi = 2N3=3 + ki(3N + 2N2 + 2N) = 2N3=3 + kiN(2N + 5):
The two methods use the same number of operations whenkpN(2N + 5) = 2N3=3 + kiN(2N + 5),

(kp � ki)N(2N + 5) = 2N3=3,
(kp � ki) =

2N3=3N(2N + 5)
� N

3
:

Conclusion: We can do a lot of extra iterations with the power method for a
large full matrix before it pays off to change to inverse iteration. However, for
a sparse matrix, the extra cost for the factorization is much less notable.

Solution to problem 3

a) kBk1 = max(0:8; 0:85; 0:6; 0:95) = 0:95kBk1 = max(1:1; 0:95; 0:55; 0:6) = 1:1
b) x1 =

2664 �0:1 0:2 �0:15 0:65
0:25 0:5 0:1 �0:1�0:15 �0:1 0:2 �0:1
0:3 0:05 0:15 0:1 37752664 0:1

0:2�0:1
0:4 3775+

2664 0
0:1
0:3�0:2 3775 =

2664 0:325
0:175
0:205�0:045

3775 :
c) The iterations converge if �(B) < 1. We have �(B) � kBk all norms.

Since kBk1 = 0:95, we have �(B) � 0:95 < 1. Hence, the iterative method
converges.

d) Bu = (D + L + U)u = b
Jacobi’s method: xk+1 = �D�1(L + U)xk + D�1b:
In this case:xk+1 =

2664 0 2 �1:5 6:5�0:5 0 �0:2 0:2
0:75 0:5 0 0:5�3 �0:5 �1:5 0

3775 xk +

2664 �2
2�6�10

3775 :
Remark: Both x and u were used in the question by accident and either one
can be used in the answer.
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Solution to problem 4

a) 0� 0 � � = 0 ) the PDE is parabolic.

b) un+1j = unj +
�∆th2

�unj+1 � 2unj + unj�1

� ; j = 0; : : : ;M � 1;)un+1 =

0BBBBB� a b 

 a b
. . .

. . .
. . .
 a bb 
 a

1CCCCCAun;
where a = 1� 2�∆th2 ;b = 
 = �∆th2 :

c) Taylor-expansion around (xj ; tn), denote u(xj ; tn) by u:un+1j = u + ∆tut + ∆t2

2 utt + ∆t3

6 uttt +O(∆t4);unj+1 = u+ hux + h2

2 uxx + h3

6 uxxx + h4

24uxxxx +O(h5);unj�1 = u� hux + h2

2 uxx � h3

6 uxxx + h4

24uxxxx +O(h5):
Move all terms in the approximation of the PDE to the left-hand side:u+∆tut+ ∆t2

2
utt+ ∆t3

6
uttt+O(∆t4)�u

∆t ��u+hux+h2

2
uxx+h3

6
uxxx+h4

24
uxxxx+O(h5)�2u+u�hux+h2

2
uxx�h3

6
uxxx+h4

24
uxxxx+O(h5)h2 =ut + ∆t

2 utt +O(∆t2)� �uxx +O(h2) = [ut = �uxx] =O(∆t) +O(h2):
Hence the local truncation error is O(∆t) +O(h2).

d) A Fourier expansion and orthogonality of ei!xj yieldsûn+1! = ûn! �1 + �∆th2

�ei!h � 2 + e�i!h�� =

= ûn! �1 + 2�∆th2 (cos(!h)� 1)
�

= Q̂!ûn!:
Since cos(!h) � 1 2 [�2; 0] Q̂! � 1. Remains to derive a condition such
that Q̂! � �1. A condition for this is that 2�∆th2 (cos(!h)� 1) � �2.

Since cos (!h)�1 � �2 this means that �∆th2 � 1
2 for stability, i.e. ∆t � h2

2� .
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Solution to problem 5

a) Let v be an arbitrary element in V multiplying the equation with v and
integrating over [0; 1] results inZ 1

0

�u00v dx =

Z 1

0

fv dx
integrating the left hand side by parts results inZ 1

0

u0v0 dx� [u0v]
1
0 =

Z 1

0

fv dx: (1)

The boundary conditions can be written asu0(0) = 1� au(0); u0(1) = 1� au(1);
inserting this into equation (1) yieldsZ 1

0

u0v0 dx� v(1)(1 � au(1) + v(0)(1� a(0)) =

Z 1

0

fv dx
Since v is arbitrary this hold for all v 2 V . We can now state our variation
problem as

Find u 2 V such thatZ 1

0

u0v0 dx� v(1)(1� au(1) + v(0)(1 � a(0)) =

Z 1

0

fv dx 8v 2 V :
b) Let V0 = fv 2 V j v(0) = v(1) = 0g, the variational formulation reads

Find u 2 V0 such thatZ 1

0

u0v0 dx =

Z 1

0

fv dx 8v 2 V0:
Let N > 0 be an integer, and define h = 1=(N + 1) and let xi = ih fori = 0; 1; 2; : : : ; N;N + 1. Now define the linear hat functions �i as�i =

8><>: x�xi�1xi�xi�1
for x 2 (xi�1; xi];

1� x�xixi+1�xi for x 2 (xi; xi+1];
0 otherwise

for i = 1; 2; : : : ; N . Define Vh = spanf�1; �2; : : : ; �Ng. The finite element
method for equation is given by

Find uh 2 Vh such thatZ 1

0

u0hv0h dx =

Z 1

0

fvh dx 8vh 2 Vh:
5



Let v = (�1; �2; : : : ; �N )T and define vh(x) =
PNi=1 �i�i(x), thenvTAv =

NXi=1

NXj=1

�i Z 1

0

�0i�0j dx�j
=

Z 1

0

NXi=1

(�i�0i) NXj=1

(�j�0j) dx =

Z 1

0

jv0hj2 dx � 0;
with equality iff v0h � 0 or equivalently vh = Const. But since vh(0) =vh(1) = 0 we have equaility iff vh � 0. Thus vTAv > 0 for each v 6= 0,
that is, A is positive definite.

c) For x 2 [0; 1] we have thatju(x)j =

����Z x
0

u0(y) dy���� =

����Z x
0

1u0(y) dy���� � ����Z x
0

12 dy����1=2 ����Z x
0

u0(y)2 dy����1=2� 1

����Z 1

0

u0(x)2 dy����1=2

= ku0kL2(0;1);
and thuskukL2(0;1) =

����Z 1

0

(u(x))2 dx����1=2 � ����Z 1

0

ku0k2L2(0;1) dx����1=2

= ku0kL2(0;1):
Moreover, we have thatku0k2L2(0;1) =

����Z 1

0

u0u0 dx���� =

����Z 1

0

fu dx���� � ����Z 1

0

f2 dx����1=2 ����Z 1

0

u(x)2 dx����1=2

= kfkL2(0;1)kukL2(0;1) � kfkL2(0;1)ku0kL2(0;1)

that is, ku0kL2(0;1) � jfkL2(0;1). Putting it all together yieldskukL2(0;1) + ku0kL2(0;1) � 2ku0kL2(0;1) � 2jfkL2(0;1):
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