- Time: $9^{00}-14^{00}$
- Tools: Pocket calculator, Beta Mathematics Handbook
- Maximum number of points: 40
- All your answers must be very well argued. Calculations shall be demonstrated in detail. Solutions that are not complete can give points if they include some correct thoughts.

Uppgift 1

a) A and B are similar if $A=C B C^{-1}$ for some nonsingular matrix C.

$$
\begin{gathered}
A x=\lambda x \\
\Leftrightarrow \\
C^{-1} A x=\lambda C^{-1} x \\
\Leftrightarrow \\
\underbrace{C^{-1} A C}_{B} \underbrace{C^{-1} x}_{y}=\lambda \underbrace{C^{-1} x}_{y} \\
\Leftrightarrow \\
B y=\lambda y
\end{gathered}
$$

where $y=C^{-1} x$, i.e. B has eigenvalues λ and eigenvectors $C^{-1} x$ where λ are eigenvalues and x are eigenvectors of A.
b) P Hermitian:

$$
\begin{aligned}
P^{H} & =\left(I-2 w w^{H}\right)^{H}=I^{H}-\left(2 w w^{H}\right)^{H}= \\
& =I-2\left(w w^{H}\right)^{H}=I-2\left(w^{H}\right)^{H} w^{H}= \\
& =I-2 w w^{H} .
\end{aligned}
$$

P unitary:

$$
\begin{aligned}
P^{H} P & =P P=\left(I-2 w w^{H}\right)\left(I-2 w w^{H}\right)= \\
& =I-2 w w^{H}-2 w w H+4 w w^{H} w w^{H}= \\
& =I-4 w w^{H}+4 w\left(w^{H} w\right) w^{H}= \\
& =I-4 w w^{H}+4 w w^{H}=I .
\end{aligned}
$$

c) Let $A=Q R$ be a $Q R$-factorisation. Since multiplication with a unitary matrix does not change the 2-norm,

$$
\|A x-b\|_{2}=\left\|Q^{H}(Q R x-b)\right\|_{2}=\left\|R x-Q^{H} b\right\|_{2}
$$

The matrix R is upper-triangular, i.e. we obtain the least-squares solution by solving the linear system of equations $R_{1} x_{1}=c_{1}$ where R_{1} is the n first rows of R, x_{1} is the n first rows of x and c_{1} is the n first rows of $Q^{H} b$. Here A is an $m \times n$-matrix.

Uppgift 2

a) For an arbitrary $g=\sum_{i=1}^{n} d_{i} e_{i} \in M$, consider

$$
\begin{aligned}
\|f-g\|^{2} & =\left\|f-\sum_{i=1}^{n} d_{i} e_{i}\right\|^{2}=\left(f-\sum_{i=1}^{n} d_{i} e_{i}, f-\sum_{i=1}^{n} d_{i} e_{i}\right) \\
& =(f, f)-2 \sum_{i=1}^{n} d_{i}\left(f, e_{i}\right)+\sum_{i=1}^{n} \sum_{j=1}^{n} d_{i} d_{j}\left(e_{i}, e_{j}\right) \\
& =\|f\|^{2}+\sum_{i=1}^{n}\left(d_{i}-\left(f, e_{i}\right)\right)^{2}-\sum_{i=1}^{n}\left(f, e_{i}\right)^{2} .
\end{aligned}
$$

We see that $\|f-g\|$ is minimized when $d_{i}=\left(f, e_{i}\right)$, that is, for $g^{*}=\sum_{i=1}^{n}\left(f, e_{i}\right) e_{i}$.
b) Since

$$
\left(f-g^{*}, e_{k}\right)=\left(f-\sum_{i=1}^{n}\left(f, e_{i}\right) e_{i}, e_{k}\right)=\left(f, e_{k}\right)-\sum_{i=1}^{n}\left(f, e_{i}\right)\left(e_{i}, e_{k}\right)=\left(f, e_{k}\right)-\left(f, e_{k}\right)=0
$$

for $k=1, \ldots, n$, the error $f-g^{*}$ is orthogonal to M.

Uppgift 3

a) The largest eigenvalue is estimated by Gerschgorin's method. The eigenvalue is located in the circle with center -8 and radius $0.8+0.2=1$.
b) Let the eigenvalues be ordered $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\left|\lambda_{3}\right|>\left|\lambda_{4}\right|$. The convergence rate with the power method is $\left|\lambda_{2}\right| /\left|\lambda_{1}\right| \approx 4 / 8=0.5$. Since $0.5^{10} \approx 0.001$, about 10 iterations are needed.
c) Use the inverse power method. Let

$$
\begin{align*}
y^{k} & =z^{k} /\left\|z^{k}\right\|_{2} \tag{1}\\
A z^{k+1} & =y^{k}
\end{align*}
$$

This is the power method applied to A^{-1} with the largest eigenvalue $1 / 0.3041$. Hence, the iterations converge to that eigenvalue λ_{4}^{-1}, the inverse of the smallest eigenvalue of A.
d) Use the shifted inverse power method with the shift 4 . Let A in the algorithm (1) be equal to $A-4 I$.

Uppgift 4

a) The approximation

$$
h^{-2}\left(-u_{i+1}+2 u_{i}-u_{i-1}\right)+i h u_{i}=f_{i}, i=1,2, \ldots, N-1,
$$

with $u_{0}=1$ and $u_{N}=0$ is second order accurate.
b) The matrix A is

$$
A=\left(\begin{array}{cccccc}
2+h^{3} & -1 & 0 & \ldots & \ldots & 0 \\
-1 & 2+2 h^{3} & -1 & 0 & \cdots & 0 \\
0 & -1 & 2+3 h^{3} & -1 & 0 & \cdots \\
0 & \cdots & 0 & -1 & 2+(N-2) h^{3} & -1 \\
0 & \cdots & \cdots & 0 & -1 & 2+(N-1) h^{3}
\end{array}\right) .
$$

The vector b is $\left(1+h^{2} f_{1}, h^{2} f_{2}, \ldots, h^{2} f_{N-1}\right)^{T}$.
c) The iteration is

$$
u^{k+1}=M u^{k}+c=D^{-1} C u^{k}+D^{-1} b,
$$

where

$$
\begin{aligned}
& D=\left(\begin{array}{cccccc}
2+h^{3} & 0 & 0 & \ldots & \ldots & 0 \\
0 & 2+2 h^{3} & 0 & 0 & \ldots & 0 \\
0 & 0 & 2+3 h^{3} & 0 & 0 & \ldots \\
0 & \ldots & 0 & 0 & 2+(N-2) h^{3} & 0 \\
0 & \ldots & \ldots & 0 & 0 & 2+(N-1) h^{3}
\end{array}\right) \\
& C=\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & \ldots & 0 \\
1 & 0 & 1 & 0 & \ldots & 0 \\
0 & 1 & 0 & 1 & 0 & \ldots \\
0 & \ldots & 0 & 1 & 0 & 1 \\
0 & \ldots & \ldots & 0 & 1 & 0
\end{array}\right) .
\end{aligned}
$$

d) The eigenvalues of M are estimated by Gerschgorin's circles. The eigenvalues are in the union of the circles with center at 0 with the radii $2 /\left(2+j h^{3}\right)$. The radii are all less than 1 and therefore the eigenvalues of M are less than 1 in magnitude and the Jacobi method converges.

Uppgift 5

a)

$$
\begin{aligned}
\left(u, D_{+} v\right)_{r, s} & =\sum_{j=r}^{s} u_{j}^{T}\left(D_{+} v\right)_{j} h=\sum_{j=r}^{s} u_{j}^{T}\left(v_{j+1}-v_{j}\right)=\sum_{j=r+1}^{s+1} u_{j-1}^{T} v_{j}-\sum_{j=r}^{s} u_{j}^{T} v_{j} \\
& =\sum_{j=r+1}^{s+1} u_{j-1}^{T} v_{j}-\sum_{j=r+1}^{s+1} u_{j}^{T} v_{j}+u_{s+1}^{T} v_{s+1}-u_{r}^{T} v_{r} \\
& =-\sum_{j=r+1}^{s+1}\left(u_{j}-u_{j-1}\right)^{T} v_{j}+u_{s+1}^{T} v_{s+1}-u_{r}^{T} v_{r} \\
& =-\left(D_{-} u, v\right)_{r+1, s+1}+u_{s+1}^{T} v_{s+1}-u_{r}^{T} v_{r} \\
(u, A v)_{r, s} & =\sum_{j=r}^{s} u_{j}^{T} A v_{j} h=\sum_{j=r}^{s} u_{j}^{T} A^{T} v_{j} h=\sum_{j=r}^{s}\left(A u_{j}\right)^{T} v_{j} h=(A u, v)_{r, s}
\end{aligned}
$$

b) $\quad \frac{\mathrm{d}}{\mathrm{d} t}\|u\|_{1, N-1}^{2}=2\left(u, u_{t}\right)_{1, N-1}=2\left(u, A D_{+} D_{-} u\right)_{1, N-1}=2\left(A u, D_{+} D_{-} u\right)_{1, N-1}$

$$
=-2\left(D_{-} A u, D_{-} u\right)_{2, N}+(A u)_{N}^{T}\left(D_{-} u\right)_{N}-(A u)_{1}^{T}\left(D_{-} u\right)_{1}
$$

$$
=-2 \sum_{j=2}^{N}\left(D_{-} A u\right)_{j}^{T}\left(D_{-} u\right)_{j} h+0-(A u)_{1}^{T} u_{1} h^{-1}
$$

$$
=-2 \sum_{j=2}^{N}\left(D_{-} u\right)_{j}^{T} A^{T}\left(D_{-} u\right)_{j} h-u_{1}^{T} A^{T} u_{1} h^{-1} \leq 0
$$

where the last inequality follows from the fact that A is symmetric positive definite and the last equality follows from that A and D_{-}commute. Hence

$$
\|u(\cdot, t)\|_{1, N-1} \leq\|u(\cdot, 0)\|_{1, N-1}=\|f(\cdot)\|_{1, N-1}
$$

which shows that the approximation is stable with the norm $\|u\|_{1, N-1}$.

