- Time: $9^{00}-14^{00}$
- Tools: Pocket calculator, Beta Mathematics Handbook
- Maximum number of points: 40
- All your answers must be very well argued. Calculations shall be demonstrated in detail. Solutions that are not complete can give points if they include some correct thoughts.

Uppgift 1

a) Show that similar matrices have the same eigenvalues but different eigenvectors.
b) The matrix $P=I-2 w w^{H}$ where $w^{H} w=1$ is a so called Householder-matrix. Show that P is hermitian and unitary.
c) Show how we can solve the overdetermined system of equations $A x=b$ in a leastsquare sense by using a $Q R$-faktorisation of A.

Uppgift 2

a) Let L be a linear space with inner product (f, g) and norm $\|f\|=\sqrt{(f, f)}$. Also let M be a linear subspace to L, i.e. $M \subset L$. A least squares problem can then be formulated as given $f \in L$, derive $g^{*} \in M$ that minimizes $F(g)=\|f-g\|$. Now define an ON-basis $\left\{e_{i}\right\}_{i=1}^{n}$ in M. Show that the least squares problem has a unique solution $g^{*}=\sum_{i=1}^{n}\left(f, e_{i}\right) e_{i}$.
b) Show that the error $r=f-g^{*}$ is orthogonal to M.

Uppgift 3

The matrix

$$
A=\left(\begin{array}{cccc}
-1 & 2 & 0 & 0 \\
-3 & 5 & -1 & 0 \\
0 & 0.8 & -8 & 0.2 \\
0 & 0 & 2 & 4
\end{array}\right)
$$

has three eigenvalues $0.3041,3.6459,4.0255$.
a) The fourth eigenvalue has the largest magnitude. Estimate that eigenvalue.
b) The eigenvalue with largest magnitude is computed with the power method. How many iterations do we need to reduce the initial error by a factor 1000 ?
c) Describe how the smallest eigenvalue can be computed by a modification of the power method and explain why the iterations converge.
d) Describe how the eigenvalue close to 4 can be computed by a modification of the power method.

Uppgift 4

We wish to solve the boundary value problem

$$
\begin{align*}
& -u_{x x}+x u=f, \quad 0<x<1, \\
& u(0)=1, \quad u(1)=0, \tag{1}
\end{align*}
$$

on the grid $x_{i}=i h, i=0, \ldots, N$, with $h=1 / N$.
a) Suggest a second order finite difference approximation of the differential equation (1).
b) The solution $u_{i}, i=1, \ldots, N-1$, satisfies a system of linear equations

$$
\begin{equation*}
A u=b . \tag{2}
\end{equation*}
$$

What are the elements of A and b ?
c) The system (2) is solved by the Jacobi method. Write in detail the iteration formula for each iteration with the method.
d) Show that the iterations converge.

Uppgift 5

Consider the problem

$$
\begin{array}{rlrlr}
u_{t} & =A u_{x x}, & & x \in(0,1), & \\
t \geq 0, \tag{3}\\
u(0, t) & =u(1, t)=0, & & & t \geq 0, \\
u(x, 0) & =f(x), & & x \in(0,1), &
\end{array}
$$

where u is a vector function and A is symmetric and postive definite matrix. A semidiscretized version is obtained using centered differences on the spacial grid $x_{j}=j h$, $j=0,1, \ldots, N$, with $x_{N}=1$.

$$
\begin{align*}
\frac{\mathrm{d} u_{j}}{\mathrm{~d} t} & =A D_{+} D_{-} u_{j}, & & j=1,2, \ldots, N-1 \\
u_{0}(t)=u_{N}(t) & =0 & & t \geq 0, \tag{4}\\
u_{j}(0) & =f\left(x_{j}\right) & & j=1,2, \ldots, N-1 .
\end{align*}
$$

We define the scalar products

$$
(u, v)_{r, s}=\sum_{j=r}^{s} u_{j}^{T} v_{j} h
$$

and denote the corresponding norms $\|u\|_{r, s}$, that is

$$
\|u\|_{r, s}^{2}=(u, u)_{r, s}
$$

a) Show that

$$
\begin{align*}
\left(u, D_{+} v\right)_{r, s} & =-\left(D_{-} u, v\right)_{r+1, s+1}+u_{s+1}^{T} v_{s+1}-u_{r}^{T} v_{r} \\
(u, A v)_{r, s} & =(A u, v)_{r, s} \tag{3p.}
\end{align*}
$$

b) Prove that (4) is stable in the norm $\|u\|_{1, N-1}$, that is,

$$
\begin{equation*}
\|u(\cdot, t)\|_{1, N-1} \leq\|f(\cdot)\|_{1, N-1} \quad t>0 \tag{5p.}
\end{equation*}
$$

