Image enhancement

- http://www.youtube.com/watch?v=Vxq9yj2pVWk

- an image processing technique to enhance certain features of the image
We want to create an image which is "better" in some sense.

- For example
- Image restoration (reduce noise)
- Image enhancement (enhance edges, lines etc.)
- Make the image more suitable for visual interpretation
- **Image enhancement does NOT increase image information**
Image processing

- can be performed in the:

 • **Spatial domain**
 - **Pointwise processing** → Lecture 2
 - Works per pixel
 - **Spatial filtering** → Lecture 3
 - Works on small neighborhood

 • **Frequency domain** → Lecture 4

Original image in spatial domain

Original image in frequency domain

Processed image in frequency domain

Processed image in spatial domain
Problem solving using image analysis: fundamental steps

- Image acquisition
- Preprocessing, enhancement
- Segmentation
- Feature extraction, description
- Classification, interpretation, recognition
- Result

Knowledge about the application
Overview

i. repetition

ii. image arithmetics

iii. intensity transfer functions

iv. histograms and histogram equalization
Last lecture

- Digitization
 - Sampling in space (x,y)
 - Sampling in amplitude (intensity)
- Pixel/Voxel
- How often should you sample in space to see details of a certain size?
Bit depth

- Number of bits that are used to store the intensity information
- Images are typically of 8- or 16-bit
 - 1 bit = $2^1 \rightarrow 2$ steps (0,1)
 - 2 bit = $2^2 \rightarrow 4$ steps
 - 8 bit = $2^8 \rightarrow 256$ steps
 - 16 bit = $2^{16} \rightarrow 65,536$ steps
I. Image arithmetics in the spatial domain
Image arithmetics

- $A(x,y) = B(x,y) \circ C(x,y)$ for all x,y.
 - $B, C \rightarrow$ images with the same (spatial) dimensions
 - \rightarrow images + constant value
 - can be
 - Standard arithmetic operation: $+$, $-$, \ast.
 - Logical operator (binary images): AND, OR, XOR,...

- Any pitfalls?
Arithmetics with binary images

image1

image2

image1 - image2

image2 - image1

min value

max value
Arithmetics with binary images

image1

image2

image1-image2

image2-image1

min value

max value
Arithmetics with binary images

image1 image2

image1-image2 image2-image1

■ min value □ max value
Arithmetics with greyscale images

\[
\begin{array}{c}
+ \\
\end{array}
\begin{array}{c}
\text{image 1}
\end{array}
\begin{array}{c}
\text{4x4 checkerboard}
\end{array}
\begin{array}{c}
=
\end{array}
\begin{array}{c}
\text{result image}
\end{array}
\begin{array}{c}
-
\end{array}
\begin{array}{c}
\text{image 2}
\end{array}
\begin{array}{c}
\text{image 3}
\end{array}
\begin{array}{c}
=
\end{array}
\begin{array}{c}
\text{result image}
\end{array}
\]
Logical operations on binary images

<table>
<thead>
<tr>
<th>INPUT</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INPUT</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Applications

- **Noise reduction** using image mean or median

\[
I = \frac{1}{n} \sum_{k=1}^{n} I_k
\]

\[I_1 + \ldots + I_n = I\]
Applications

- **Change detection using subtraction**

Has anything changed?
Applications

- **Change detection** using subtraction

![Images of 2015 and 2016 retinal images with the text "direct difference" at the bottom right.](image-url)
Applications

- Change detection using subtraction
Applications

- Change/motion detection using subtraction
Applications

- **Background removal**

 image - background image

- Creating a background image

Max or median of the pixel intensities at all positions.
Applications

- Background removal - result
Applications

- Subtracting a background image/correcting for uneven illumination
II. Intensity transfer functions
Intensity transfer functions

\[g(x, y) = T f(x, y) \]

i. **linear** (neutral, negative, contrast, brightness)

ii. **smooth** (gamma, log)

iii. **arbitrarily**
The negative transformation

\[g(x, y) = \max _ f(x, y) \]

- For eight bit image:
 \[g(x, y) = 2^8 - 1 - f(x, y) \]

The rules of how to transfer values from the old image to the new one.
The negative transformation

\[g(x, y) = \text{max} - f(x, y) \]

- For eight bit image:
 \[g(x, y) = 2^8 - 1 - f(x, y) \]

<table>
<thead>
<tr>
<th>255</th>
<th>254</th>
<th>253</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>130</td>
<td>110</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

The rules of how to transfer values from the old image to the new one.
The negative transformation

\[g(x, y) = \text{max} - f(x, y) \]

- For eight bit image:
\[g(x, y) = 2^8 - 1 - f(x, y) \]

<table>
<thead>
<tr>
<th>old value</th>
<th>new value</th>
</tr>
</thead>
<tbody>
<tr>
<td>255</td>
<td>0</td>
</tr>
<tr>
<td>254</td>
<td>1</td>
</tr>
<tr>
<td>253</td>
<td>2</td>
</tr>
<tr>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>130</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

The rules of how to transfer values from the old image to the new one.
The negative transform

- Example

Original

Negative
The negative transform

original digital mammogram

image negative to (visually) enhance white or gray details embedded in dark regions
The negative transformation

- Careful with color images
Brightness

\[g(x, y) = f(x, y) + C \]
Brightness

\[g(x, y) = f(x, y) + C \]

\[g(x, y) = f(x, y) - C \]
Brightness

\[g(x, y) = f(x, y) + C \]
\[g(x, y) = f(x, y) - C \]
Contrast

\[\theta = \pi/4 \]

\[\theta > \pi/4 \]

\[g(x, y) = f(x, y) \times C \]

\[C > 1 \]
Contrast

\[\theta = \frac{\pi}{4} \]

\[\theta > \frac{\pi}{4} \]

\[\theta < \frac{\pi}{4} \]

\[g(x, y) = f(x, y) \times C \]

\[C > 1 \]

\[g(x, y) = f(x, y) \times C \]

\[C < 1 \]
Contrast

\[\theta = \frac{\pi}{4} \]

\[\theta > \frac{\pi}{4} \]

\[\theta < \frac{\pi}{4} \]

\[g(x, y) = f(x, y) \times C \]

\[C > 1 \]

\[g(x, y) = f(x, y) \times C \]

\[C < 1 \]
Examples

- Decrease the brightness by 10

 \[g(x, y) = f(x, y) - 10 \]

- Decrease the contrast by 2

 \[g(x, y) = f(x, y) \times 0.5 \]
Examples

- Decrease the brightness by 10

 \[g(x, y) = f(x, y) - 10 \]

- Decrease the contrast by 2

 \[g(x, y) = f(x, y) \times 0.5 \]

<table>
<thead>
<tr>
<th>255</th>
<th>254</th>
<th>253</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>130</td>
<td>110</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>245</th>
<th>244</th>
<th>243</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>120</td>
<td>100</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>128</th>
<th>127</th>
<th>127</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>65</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Decreased brightness

Decreased contrast
Gamma transformation

\[g(x, y) = C \times f(x, y)^\gamma \]

- Computer monitors have \(\gamma \approx 2.2 \)
- Eyes have \(\gamma \approx 0.45 \)
- Microscopes should have \(\gamma = 1 \)
\(\gamma = 0.25 \)

\(\gamma = 1 \)
Log transformations

- Log transformation to visualize patterns in the dark regions of an image

\[g(x, y) = C \log(1 + f(x, y)) \]
Arbitrary transfer functions

- Only one output per input.
- Possibly non-continuous.
- Usually no inverse
III. Histograms and histogram equalization
Image histogram

• A gray scale histogram shows how many pixels there are at each intensity level.

- width = 340 px
- height = 370 px
- bit-depth = 8 bits → 0..255
Exercise

- width = 4px
- height = 4px
- bit-depth = 3 bits
Exercise

Gray level histogram

- width = 4px
- height = 4px
- bit-depth = 3 bits
Image histogram

- Gray-level histogram shows intensity distribution
Beware

- Intensity histogram says nothing about the spatial distribution of the pixel intensities.
Pair images and histograms!
Use of histogram

- Thresholding \rightarrow decide the best threshold value
 - *works well with bi-modal* histograms

- *does not work with uni-modal* histograms

- Analyze the brightness and contrast of an image
- Histogram equalization
Analyze the brightness

- Increase brightness - shift histogram to the right
- Decrease brightness - shift histogram to the left

Greylevel transform:
up → increased brightness
down → decreased brightness
Analyze the contrast

- Decreased contrast - compressed histogram.
- When contrast is increased - the histogram stretches.

Greylevel transform:
- $<45 \, ^\circ \rightarrow$ decreased contrast
- $>45 \, ^\circ \rightarrow$ increased contrast
Cumulative histogram

- Easily constructed from the histogram

\[c_j = \sum_{i=0}^{j} h_i \]
Cumulative histogram

• Slope
 • Steep \rightarrow intensely populated parts of the histogram
 • Gradual \rightarrow in sparsely populated parts of the histogram
Cumulative histogram
Histogram equalization

- **Idea:** Create an image with evenly distributed greylevels, for visual contrast enhancement
- **Goal:** Find the transformation that produces the most even histogram → cumulative histogram curve
- **Equalization** flattens the histogram, linearizes cumulative histogram
- **Automatic contrast enhancement**
Histogram equalization

original image

result of histogram equalization

The contrast transform
Hist eq: small example

- Intensity: 0 1 2 3 4 5 6 7
- Number of pixels: 10 20 12 8 0 0 0 0

- \(p(0) = \frac{10}{50} = 0.2 \), \(cdf(0) = 0.2 \)
- \(p(1) = \frac{20}{50} = 0.4 \), \(cdf(1) = 0.6 \)
- \(p(2) = \frac{12}{50} = 0.24 \), \(cdf(2) = 0.84 \)
- \(p(3) = \frac{8}{50} = 0.16 \), \(cdf(3) = 1 \)
- \(p(r) = \frac{0}{50} = 0 \), \(r = 4, 5, 6, 7 \) \(cdf(r) = 1 \)
Hist eq: small example

- $T(0) = 7 \times (p(0)) = 7 \times 0.2 = 1.4 \approx 1$
- $T(1) = 7 \times (p(0) + p(1)) = 7 \times 0.6 = 4.2 \approx 4$
- $T(2) = 7 \times (p(0) + p(1) + p(2)) \approx 6$
- $T(3) = 7 \times (p(0) + p(1) + p(2) + p(3)) \approx 7$
- $T(r) = 7, r = 4, 5, 6, 7$

Intensity

<table>
<thead>
<tr>
<th>Intensity</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of pixels</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>
More examples of hist eq

Transformations for image 1-4. Note that the transform for figure 4 (dashed) is close to the neutral transform (thin line).
Local histogram equalization

FIGURE 3.23 (a) Original image. (b) Result of global histogram equalization. (c) Result of local histogram equalization using a 7×7 neighborhood about each pixel.
Histogram equalization

• Useful when much information is in a narrow part of the histogram

• Drawbacks:
 • Amplifies noise in large homogenous areas
 • Can produce unrealistic transformations
 • Information might be lost, no new information is gained
 • Not invertible, usually destructive
• Does not work well in all cases!
• Histogram equalization is not always “optimal” for visual quality
- Histogram eq: the result depends on the amount of different intensities
Histogram matching

- In histogram equalization a **flat distribution** is the goal.
- In histogram matching the **distribution of another image** is the goal.

For an image, I, find the transformation, T, that gives the histogram some ideal shape, s.
Image 1 histogram matched to image 2
Image 2 histogram matched to image 1
Histogram matching

- Compute the histograms for image I_1, I_2
- Calculate the cumulative distribution function $F_1(), F_2()$
- For each gray level $G_1 [0,255]$ find gray level G_2 for which $F_1(G_1) = F_2(G_2)$
- Histogram matching function $M(G_1) = G_2$
Summary

● Many common tasks can be described by image arithmetics.

● Histogram equalizations can be useful for visualization.

● Watch out for information leaks!

A few things to think about....

● What is the relation between image arithmetics and linear transfer functions?

● What can you know about an image from the histogram?

● If you have an 8-bit image, A; how will the 8-bit image $B = 255 \times (A+1)$ look like (exactly!)?

● What conclusions can you draw from the histogram if the first/last column is really high?

● Can you get better resolution by combining multiple images of the same sample?

Suggested problems:
2.22, 2.18, 2.9, 3.1, 3.6

Next lecture:
Spatial filtering (Ch. 3.4-3.8)
Bit plane slicing

- Pixels → digital numbers composed of bits
- Computer → Binary number system
- Basic unit, bit

\[194 = 11000010 \]

- 8- and 16- bits are common for file formats.

But how many bits are necessary?

Next slides:
- The eight bit planes for an image.
- The same image using 7,...,0 bit planes.