Image filtering in the frequency domain
Summary of previous lecture

• Virtually all filtering is a local neighbourhood operation

• Convolution = linear and shift-invariant filters
 - e.g. mean filter, Gaussian weighted filter
 - kernel can sometimes be decomposed

• Many non-linear filters exist also
 - e.g. median filter, bilateral filter
Linear neighbourhood operation

For each pixel, multiply the values in its neighbourhood with the corresponding weights, then sum.
Convolution properties

• **Linear:**
 - Scaling invariant:

 \[(C f) \otimes h = C (f \otimes h)\]

 - Distributive:

 \[(f + g) \otimes h = f \otimes h + g \otimes h\]

• **Time Invariant:**

 \[(= shift \ invariant)\]

 \[\text{shift} (f) \otimes h = \text{shift} (f \otimes h)\]

• **Commutative:**

 \[f \otimes h = h \otimes f\]

• **Associative:**

 \[f \otimes (h_1 \otimes h_2) = (f \otimes h_1) \otimes h_2\]
Convolution properties

- Convolving a function with a unit impulse yields a copy of the function at the location of the impulse.
- Convolving a function with a series of unit impulses "adds" a copy of the function at each impulse.
Today’s lecture

- The Fourier transform
 - The Discrete Fourier transform (DFT)
 - The Fourier transform in 2D
 - The Fast Fourier Transform (FFT) algorithm

- Designing filters in the Fourier (frequency) domain
 - filtering out structured noise

- Sampling, aliasing, interpolation
Jean Baptiste Joseph Fourier

• Born 21 March 1768, Auxerre (Bourgogne region).
• Died 16 May 1830, Paris.
• Same age as Napoleon Bonaparte.
• Permanent Secretary of the French Academy of Sciences (1822-1830).
• Foreign member of the Royal Swedish Academy of Sciences (1830).
The Fourier transform
The Fourier transform

- Remarkably, all periodic functions satisfying some mild mathematical conditions can be expressed as a weighted sum of sines and cosines of different frequencies.
- Even functions that are not periodic can be expressed as an integral of sines and cosines multiplied by a weighting function.
Complex numbers

\[i = \sqrt{-1} \quad \Rightarrow \quad i \cdot i = -1 \]

\[x = a + i b \]

(complex conjugate)

\[x^* = a - i b \]

\[x \cdot x^* = a^2 + b^2 = \|x\|^2 \]

\[\begin{align*}
 a &= \|x\| \cos(\angle x) \\
 b &= \|x\| \sin(\angle x)
\end{align*} \]

(Euler’s formula)

\[e^{i\phi} = \cos \phi + i \sin \phi \]

\[x = \|x\| \cos(\angle x) + i \|x\| \sin(\angle x) = \|x\| e^{i\angle x} \]
Fourier basis function

\[e^{i \omega x} = \cos(\omega x) + i \sin(\omega x) \]

\[\omega = 2 \pi f = \frac{2 \pi}{T} \]
Fourier transform

\[F(\omega) = \int_{-\infty}^{\infty} f(x) \, e^{-i\omega x} \, dx \]

\[f(x) = F(\omega_1) e^{i\omega_1 x} + F(\omega_2) e^{i\omega_2 x} + F(\omega_3) e^{i\omega_3 x} + \ldots \]
Fourier transform

\[F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i \omega x} \, dx \]

\[f(x) = F(\omega_1) e^{i \omega_1 x} + F(\omega_2) e^{i \omega_2 x} + F(\omega_3) e^{i \omega_3 x} + \ldots \]

complex value complex function complex function complex function
Fourier basis function

\[A e^{i\omega x} + A^* e^{-i\omega x} \] is a real-valued function

Thus: we need negative frequencies!

For real-valued signals:

At frequency \(\omega \) we have weight \(A \)
At frequency -\(\omega \) we have weight \(A^* \)

\[F(-\omega) = F^*(\omega) \]
Inverse Fourier transform

\[f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) \ e^{i\omega x} \ d\omega \]

Normalization no minus sign

Compare with the forward transform:

\[F(\omega) = \int_{-\infty}^{\infty} f(x) \ e^{-i\omega x} \ dx \]
Fourier transform pairs

Spatial
- impulse
- cosine
- sine
- box
- sinc
- Gaussian
- white noise

Frequency
- Re(F)
- Im(F)

Notice the symmetry!
Properties of the Fourier transform

- Spatial scaling
 \[\mathcal{F} \{ f \otimes h \} = \mathcal{F} \{ f \} \cdot \mathcal{F} \{ h \} \]

- Amplitude scaling

- Addition

- Translation

- Convolution
 \[\mathcal{F} \{ f \cdot h \} = \mathcal{F} \{ f \} \otimes \mathcal{F} \{ h \} \]
Sampling

spatial domain

frequency domain

continuous function

\[\Delta T \]

1/\(\Delta T \)

sampling function

sampled function
Discrete Fourier transform

spatial domain

continuous function

sampled function

continuous image

discrete image

frequency domain
Discrete Fourier transform

Continuous FT: \[F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i\omega x} \, dx \]

Discrete FT: \[F[k] = \sum_{n=0}^{N-1} f[n] e^{-i \frac{2\pi}{N} kn} \]

\(k \) is the spatial frequency, \(k \in [0, N-1] \)

\(\omega = 2\pi k / N \)

\(\omega \in [0, 2\pi) \)
Discrete Fourier transform

$F[k]$ is defined on a limited domain (N samples), these samples are assumed to repeat periodically:

$$F[k] = F[k+N]$$

In the same way, $f[n]$ is defined by N samples, assumed to repeat periodically:

$$f[n] = f[n+N]$$

$$F[k] = \sum_{n=0}^{N-1} f[n] e^{-i \frac{2\pi}{N} kn}$$
Why does the DFT only have positive frequencies?
What is the zero frequency?

Write out the value of $F[0]$ for an input function $f[n]$. What does it mean?

$$F[k] = \sum_{n=0}^{N-1} f[n] e^{-i \frac{2\pi}{N} kn}$$
Inverse DFT

\[F[k] = \sum_{n=0}^{N-1} f[n] e^{-i \frac{2\pi}{N} kn} \]

\[f[n] = \frac{1}{N} \sum_{k=0}^{N-1} F[k] e^{i \frac{2\pi}{N} kn} \]

normalization

no minus sign
Fourier transform in 2D, 3D, etc.

- Simplest thing there is! — the FT is separable:
 - Perform transform along x-axis,
 - Perform transform along y-axis of result,
 - Perform transform along z-axis of result, (etc.)

\[
F[u, v] = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[n, m] e^{-i 2\pi \left(\frac{un}{N} + \frac{vm}{M}\right)} = \sum_{m=0}^{M-1} \left(\sum_{n=0}^{N-1} f[n, m] e^{-i \frac{2\pi}{N} \frac{un}{M}} \right) e^{-i \frac{2\pi}{M} \frac{vm}{N}}
\]
2D Fourier transform pairs

sine

box

\[FT \]
2D Fourier transform pairs

pillbox

Gauss
2D Fourier transform pairs

lines

dots

FT
2D transform example 1
2D transform example 1
2D transform example 2
2D transform example 2
2D transform example 3
2D transform example 3
2D transform example 4
2D transform example 4
2D transform example 5
2D transform example 5
What is more important?

Jean Baptiste Joseph Fourier

magnitude

phase
What is more important?

magnitude

phase
Computing the DFT

- For an image with N pixels, the DFT contains N elements.
- Each element of the DFT can be computed as a sum of all N elements in the image.
- A naive implementation of the DFT the requires $O(N^2)$ time.
- *This is impractical!*
The Fast Fourier Transform (FFT)

- Clever algorithm to compute the DFT.
- Runs in $O(N \log N)$ time, rather than $O(N^2)$ time.
- Because of symmetry of the forward and inverse Fourier transforms, FFT can also compute the IDFT.

$$F[k] = F_{\text{even}}[k] + F_{\text{odd}}[k] e^{-i \frac{2\pi}{N} k}$$

$$F[k+M] = F_{\text{even}}[k] - F_{\text{odd}}[k] e^{-i \frac{2\pi}{N} k}$$
Convolution in the Fourier domain

- The Convolution property of the Fourier transform:
 \[\mathcal{F}\{f \otimes h\} = \mathcal{F}\{f\} \cdot \mathcal{F}\{h\} \]

- Thus we can calculate the convolution through:
 - \(F = \text{FFT}(f) \)
 - \(H = \text{FFT}(h) \)
 - \(G = F \cdot H \)
 - \(g = \text{IFFT}(G) \)

- Convolution is an operation of \(O(NM) \)
 - \(N \) image pixels, \(M \) kernel pixels

- Through the FFT it is an operation of \(O(N \log N) \)
 - Efficient if \(M \) is large!
Low-pass filtering

- Linear smoothing filters are all low-pass filters.
 - Mean filter (uniform weights)
 - Gauss filter (Gaussian weights)
- Low-pass means low frequencies are not altered, high frequencies are attenuated
High-pass filtering

• The opposite of low-pass filtering: low frequencies are attenuated, high frequencies are not altered
• The “unsharp mask” filter is a high-pass filter
• The Laplace filter is a high-pass filter
Band-pass filtering

- You can choose any part of the frequency axis to preserve (band-pass filter).
- Or you can attenuate a specific set of frequencies (band-stop filter).
Example: low-pass filtering

input image f

Fourier transform F
Example: frequency domain filtering

Fourier filter H

$G = F \cdot H$

filtered image g
Why the ringing?

- Frequency domain
- Spatial domain

FT
What is the solution?

Spatial domain \leftrightarrow Frequency domain FT
Example: frequency domain filtering

Fourier filter H

$G = F \cdot H$

filtered image g
Structured noise
Structured noise
Filtering structured noise

Notch filter
Filtering structured noise

Notch filter, Gaussian
Filtering structured noise

Notch filter, Gaussian
Fourier analysis of sampling

\[F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i \omega x} \, dx \]

smooth function

band limit (cutoff frequency)

\[F(\omega) = 0, \quad \omega > \omega_c \]
Fourier analysis of sampling

spatial domain

continuous function

sampling function

sampled function

frequency domain
Fourier analysis of interpolation

- **spatial domain**
 - sampled function
 - reconstruction function
 - continuous function

- **frequency domain**
Aliasing

spatial domain frequency domain

continuous function

sampling function

sampled function
Aliasing

Sampling distance
Aliasing
Avoid aliasing

Continuous function

\[F(\omega) = 0, \quad \omega > \omega_c \]

Sampling function

\[\omega_s > 2\omega_c \]

Sampled function

Minimum sampling frequency

Nyquist frequency
Example: aliasing
Example: aliasing
Example: aliasing

When we downsample, we only keep this part!
Example: aliasing

The spectrum is replicated, higher frequencies being duplicated as lower frequencies.
Example: Moire
Summary of today’s lecture

- The Fourier transform
 - decomposes a function (image) into trigonometric basis functions (sines & cosines)
 - is used to analyse frequency components
 - is computed independently for each dimension

- The DFT can be computed efficiently through the FFT algorithm

- Convolution can be studied through the FT
 - and filters can be designed in the Fourier domain

\[\mathcal{F} \{ f \otimes h \} = \mathcal{F} \{ f \} \cdot \mathcal{F} \{ h \} \]

- Aliasing can be understood through the FT
Reading assignment

- The Fourier transform and the DFT
 - Sections 4.2, 4.4, 4.5, 4.6, 4.11.1
- Filtering in the Fourier domain
 - Sections 4.7, 4.8, 4.9, 4.10, 5.4
- Sampling and aliasing
 - Sections 4.3, 4.5.4
- The FFT
 - Section 4.11.3
- Exercises:
 - 4.14, 4.21, 4.22, 4.42, 4.43
 - 4.27, 4.29
 (feel free to solve these in MATLAB)