Lecture 2, Point Processing
GW 3.1-3.4, Ida-Maria

Last Lecture
Digitization
- sampling in space \((x,y)\)
- sampling in amplitude (intensity)

Sample in space twice as often as the smallest detail you want to see

Image Processing

\[f(x,y) \xrightarrow{T} g(x,y) \]

Original image \(f(x,y) \)
New image \(g(x,y) \)

- We want to create an image which is "better" in some sense.
- For example
 - Image restoration (reduce noise)
 - Image enhancement (enhance edges, lines etc.)
 - Make the image more suitable for visual interpretation
- Image enhancement does NOT increase image information

Image processing can be performed in the
- Spatial domain (lectures 2 and 3)
 - brightness transforms, works per pixel \(\rightarrow\) point processing
 - spatial filters, local transforms, works on small neighborhood.
- Frequency domain (lectures 4, 11 and 12)

greylevel transform

\[r = T(s) = \text{greylevel out} \]

\[s = \text{greylevel in} \]

\(r > 45^\circ \rightarrow \text{increased contrast} \)
\(r < 45^\circ \rightarrow \text{decreased contrast} \)
\(\text{up} \rightarrow \text{increased brightness} \)
\(\text{down} \rightarrow \text{decreased brightness} \)

- change the greylevel for each individual pixel
- compare to TV:
 - brightness: addition
 - contrast: multiplication

brightness: subtract
add

\[\text{grey level} \]
\[\text{white level} \]
\[\text{black level} \]
contrast: multiply

Image histograms
- A grey scale histogram shows how many pixels there are at each intensity level.

Gray-level transformations

Log transformation to visualize patterns in the dark regions of an image
Histogram Equalization

Idea: create an image with evenly distributed greylevels, for visual contrast enhancement

- the normalized grey-level histogram gives the probability for a pixel to have a certain greylevel
- Transform the image using the cumulative normalized histogram
- The histogram for the output image is uniform (THEORETICALLY! continuous case), why not in our case with digital images?

More Examples of Histogram Equalization

Transformations for image 1-4. Note that the transform for figure 4 (dashed) is close to the neutral transform (thin line).

Histogram Equalization is not always “optimal” for visual quality

Original image | Image after histogram equalization | Image after manual choice of transform

(image from GW, the Mars moon Phobos)

Local Histogram Equalization

Arithmetic/Logical Operations

- Information from two different images with the same size can be combined by adding, subtracting, multiplying or comparing the pixel values, pixel by pixel.
- For enhancement, segmentation, change detection
Reduction of noise by averaging

Noise can be reduced by observing the same scene over a long period of time, and averaging the images.

Image from GW, averaging 8, 16, 64 and 128 times.