Lecture 10 – part 1,

Medical Image Analysis and Programming Tools

No suggested problem...

Magnus Gedda magnusg@cb.uu.se
2005-04-28
Medical Image Processing

• Medical imaging
 – X-Ray, CT
 – Ultrasound
 – MRI
 – PET, SPECT

• Generic problems
 – Enhancement
 – Registration
 – Segmentation
 – Interpretation

• Visualization
 – MPR, MIP
 – Surface and Volume rendering
Images are acquired to get information about anatomy and physiology of a patient.
Image types

US

MRI

PET

CT
Use of X-Rays

1901

1975

2000
X-Ray Technique
Pulmonary
Musculo-skeletal
Angiography
Mammography
CT – Computed Tomography
CT Technique
Skeleton
Abdominal
Angiography
US - Ultrasound
Cardiac imaging
Abdominal

Liver / hepatic veins
Angiography
Gynecology Obstetrics
PET – Positron Emission Tomography
PET Technique
Examples
SPECT - Scintigraphy
MR – Magnetic Resonance
Musculo-skeletal (joints)
Neurological

Multiple sclerosis
Angiography
Angiography
Abdominal
Cardiac
Other medical imaging modalities

- Microscopy
Generic problems in medical imaging processing

- Enhancement
- Registration
- Segmentation
- Interpretation
Enhancement

• **Noise (e.g. MRI)**
 – Requires good knowledge of imaging physics
 – And a good approximation algorithm
Enhancement

• **Background**
 – E.g., MRI
 – Field variations produce non-uniform background
 – Corrected by fitting a low-order polynomial to the image
Registration

• Matching 2 volumes by applying geometric correction to one of them
• The need for registration
 – Study over time
 – Fusion of different imaging modalities
 – Matching to an atlas
 – Organs movement
Segmentation

• The need for more sophisticated algorithms
 – Deformable models
 – Watershed
 – Level set methods
 – Fuzzy connectedness

=> Image Analysis MN2
Interpretation

- Labeling from segmentation result
- Top-down image analysis
- Expert systems

=> Artificial Intelligence
Visualization of medical images

• 2D

• 3D
 – (Multi-planar reconstruction)
 – Maximum intensity projection
 – Surface rendering
 – Volume rendering
Maximum intensity projection
Shade surface display (SSD)

- Preliminary segmentation
- Voxel set => surface
- Surface elements rendered according to illumination model
- Optional to texture
Volume rendering

• Reflection/transmission properties assigned to each voxel
The Visible Human Project
Perspective

• **Fusion of techniques (MR, CT, PET, ...)**
 – Dual imaging devices
 – Image processing

• **Real-time imaging/Virtual surgery**

• **Higher power, but tougher problems**

• **Complete automation unattainable**
 – Good interaction more feasible