
Computer Assisted Image Analysis

Exercise 1, VT2009: Introduction

The aim of this exercise is to familiarize you with some common algorithms of computerized image

analysis, e. g. pixel-wise operations, filtering, image arithmetics, and the fast Fourier transform. As long

as you attend the lab session the exercise can be corrected orally at the lab session without any written

report. If you don’t finish all the questions or doesn’t attend the lab session a written report with all the

remaining answers has to be handed in as a pdf.

1 Getting started

Log on to one of the workstations. Matlab is started by giving the unix-command:

matlab-7 &

Remember to start Matlab from a directory where you have write permission. After a while you will be
presented with a graphical interface to Matlab. Add the necessary paths by using the Matlab commands:

addpath(’/it/kurs/bild1/matlab’);

addpath(’/it/kurs/bild1/images’);

This gives you access to some custom made functions that we have made to decrease the complexity of this
exercise. The files can also be found as a zip-file on Studentportalen. These functions are ordinary text
files and can be viewed in an ordinary text editor (or Matlab’s m-file editor). E.g., this unix command
will print the function filterimage in the terminal window:

cat /it/kurs/bild1/matlab/filterimage.m

A useful Matlab command is the help command. If you type help followed by the name of a standard
function in Matlab, valuable information on how to use that function will be displayed. Try for example:

help find

First you get the syntax, and at the bottom there is a small example of how to use it.
Since the paths are set (using addpath above), you can start by reading the image napoleon.pgm

by using the Matlab command:

I = imread(’napoleon.pgm’);

The image is now stored as intensity values in the 2D matrix I. Since an image is stored as an ordinary
matrix in Matlab, all matrix operations available can be used on the image (e.g., addition, subtraction
etc).

2 The Matlab Image Tool and the Histogram

We will now examine the image using Matlab’s built in image tool Image Tool. Open the image in
Image Tool by using the Matlab command:

imtool(I)

where I is the image. Image Tool will display two windows; the Overview window and the Image

window. The Image window has a menu bar and a toolbar with various buttons at the top, a window
pane displaying the image in the middle, and a status bar showing various information at the bottom.

Centre for Image Analysis March 24, 2009 2

To measure pixel values in the image you can move the pointer over the pixel. The status bar shows
the current graylevel as:

Pixel info: (x, y) f

where f is the graylevel at the position (x, y) in the picture. You can also choose Tools→Pixel Region

in the menu (or by pressing the Inspect pixel values button in the toolbar). This will open the Pixel

Region window and show a cross hair marker in the image. The Image Region window will show the
pixels in the part of the image covered by the cross hair marker.

1. Where in the image is the pixel (1, 1) located and what is the graylevel value?

Open the images naopleon.pgm, napoleon light.pgm, and napoleon dark.pgm and display their
graylevel histograms by selecting Tools→Adjust Contrast in the menu (or by pressing the Adjust
contrast button in the toolbar). The histogram of the image will appear in the new Adjust Contrast

window with a pink interval defining the graylevel interval of the image file that is displayed on the screen.
The contrast and brightness of the displayed image can be changed by moving the red handles and

changing the length of the pink interval in the histogram. This is only a display function and will not
change the values in the image file. Try to change the contrast and brightness of the three Napoleon
images so that they all look the same.

2. Explain what contrast and brightness are. What change in the histogram is related to
the contrast and what change is related to the brightness? Illustrate this by drawing
graphs showing how the graylevel transform changes as the contrast and brightness
are varied.

Try setting Eliminate outliers to 10% in the Scale Display Range section and press the Apply

button.

3. Explain what Eliminate outliers does.

3 Viewing Images and Saving Images or Figures

There are other ways of displaying the image in Matlab than using the image tool. Aside from imtool

you have the functions imshow, image and imagesc, which all display the image in different ways. imshow
shows the image, using the right axis ratio and original graylevel scale of the image. image uses Matlabs
method for displaying matrices as images. It uses the graylevel scale of the image, but it does not use
the right axis ratio. imagesc works just as image but rescales the graylevels to use the full colormap. To
see the color map you can give the Matlab command colormap after you have displayed the image, or
you can choose Insert→Colorbar in the menu of the figure window. To get a notion of the difference
between image and imagesc you should try the following Matlab commands:

A = [1:10]’ * [1:10] .* 0.2; % create a 10x10 matrix of values from 0 to 20

image(A) % show matrix A using ’image’

colorbar % add a colorbar showing the colormap

figure % open a new figure window

imagesc(A) % show matrix A using ’imagesc’

colorbar % add a colorbar

The text written after the % is just a comment and will not be interpreted by Matlab. You can of course
also see the pixel values of an image directly in the matlab console by just typing the matrix name without
a semicolon, e.g., A.

I recommend using imshow if you just want to view an image, imtool if you want to examine an
image thoroughly, and imagesc if you want to display a matrix which is not necessarily an image. This
will come in handy both during the computer exercises and the project later on in the course.

To save an image you can use the imwrite command, but make sure that you are in a directory where
you have writing rights.

imwrite(I,’my_napoleon.pgm’) % write image I to file ’my_napoleon.pgm’

Centre for Image Analysis March 24, 2009 3

use the Matlab help if you want more information on how to write images to different file formats. If
you want to save an entire figure (including the parts around the image like, e.g., the colorbar) you can
use the print command.

imagesc(I) % show image in figure

colorbar % add colorbar

print(gcf, ’-dpng’, ’nap_fig.png’) % write current figure to file ’nap_fig.png’

If you prefer using the menu for saving the contents of a figure you can use File→Save As..., and choose
a suitable file format and filename, to save the contents of the figure.

A command which can be used to save the contents of any window as an image is the unix command
import. In a unix console you just type import followed by a filename. When executing the command
(i.e., hitting <return>) the pointer will change into a cross hair and you can select which window to
save. The file format will be determined by the filename extension. E.g., if you have the figure from the
previous Matlab code still open, just write the following in your unix console.

import nap_fig.png

When you hit <return> you can choose the figure window and the contents will be saved as a PNG
image to the file nap_fig.png.

The commands for saving a figure or image will come in handy when putting together your reports
for the computer exercises and project later on in the course.

4 Pixelwise Transforms

Start by creating an image to test some standard transformations on by using the Matlab command:

I = uint8(ones(256, 1) * [0:255]);

You now have an image which you will transform by using four different pixelwise transformations. Now,
try neutral, invert, exponential and logarithm on the ramp image by using the following Matlab
commands:

J = neutral(I);

K = invert(I);

L = exponential(I);

M = logarithm(I);

4. Explain the resulting images, describe and draw a graph of each transform. What
happens to a “normal” image, for example napoleon.pgm, when the transforms are
applied?

Histogram equalization is also a pixelwise graylevel transformation. Continue to work with the three
Napoleon images. Perform histogram equalization on them by using the Matlab command:

J = histeq(I);

5. Explain how histogram equalization works in theory. Compare the histograms of the
original images and the output images. Do the changes to the histograms and the
images agree with the theory of histogram equalization?

5 Aliasing when Sampling

Open the file zebra.pgm in Image Tool. Why doesn’t the overview look the same as the image? Alter
the size of the Overview window with the mouse by moving the lower right corner. Make the image
smaller as well as larger. Can you make the overview completely white just by resizing the window?

6. Explain why the contents of the overview image seem to differ very much depending
on the size of the overview window.

Centre for Image Analysis March 24, 2009 4

The effect in the overview window is the same as the effect that occurs when resizing an image. Try to
resize the zebra image to 400x400 by using the Matlab commands:

J = imresize(I, [400 400], ’nearest’);

K = imresize(I, [400 400], ’bilinear’);

where I is the zebra image. Open the resized images in Image Tool but close the Overview windows
for both images this time.

7. Explain why the contents of the images differ.

6 Local Filtering

Load the predefined smoothing- and sharpening-filters by using the Matlab command:

loadfilters

This loads the predefined filters found in the table below.

Filter Description Filter Description
mean3x3 Mean 3x3 gaussian3x3 Gaussian 3x3
mean5x5 Mean 5x5 gaussian5x5 Gaussian 5x5
mean7x7 Mean 7x7 gaussian7x7 Gaussian 7x7
mean11x11 Mean 11x11 lp3x34n Laplace 3x3 4n
mean15x15 Mean 15x15 lp3x38n Laplace 3x3 8n
mean25x25 Mean 25x25 lp5x5 Laplace 5x5
meancircular5x5 Flat Circular 5x5 crisp3x34n Crisp 3x3 4n
meancircular7x7 Flat Circular 7x7 crisp3x38n Crisp 3x3 8n
median3x3 Square 3x3 crisp5x5 Crisp 5x5
median5x5 Square 5x5 sobelvr3x3 Sobel vertical right
median7x7 Square 7x7 sobelvl3x3 Sobel vertical left
median11x11 Square 11x11 sobelhb3x3 Sobel horizontal bottom
median15x15 Square 15x15 sobelht3x3 Sobel horizontal top
median25x25 Square 25x25

Open the image wagon.pgm and filter it using the Matlab command:

J = filterimage(I, F);

where I is the image and F is a filter from the table. Test at least three different kinds of filters, among
which there should be at least one sharpening- and one smoothing-filter. Also examine the weights in
the masks by using the Matlab command (note: no semicolon):

F.filter

where F is one of the filters in the table.

8. For each filter, examine the effect of the filter and explain what the filter does to the
image.

9. For each filter, how does the size of the filter mask affect the result?

Open the image wagon shot noise.pgm. Perform several median filterings on the image using different
sizes of the filter masks.

10. Compare visually the effect of median filtering to the effect of mean filtering and
explain the differences.

11. What is the advantage and disadvantage of each filter when it comes to the result of
the filtering? In general the median filter is more time consuming, why?

Centre for Image Analysis March 24, 2009 5

7 Image Arithmetics

Another way of comparing images, that is not only performed visually, like in question 10, is by subtracting
two images and examining the difference image. Use the Napoleon image and perform a subtraction of a
mean-filtered and a median-filtered version of the image. For a relevant comparison, the images should
be filtered using the same original image with the same size of the filter mask.

12. Describe the difference image. This is easier if first adjusting the contrast and bright-
ness. Is the difference coherent with the answer to question 10? Give cause!

A SPECT image shows the activity in the brain. When evaluating patient data it is often of interest to
make a comparison with an image of a “standard” healthy brain. Standard data is created by averaging
over a large number of images of healthy brains. The difference between the standard data and the
patient data is found by subtraction.

Images brain1.pgm and brain2.pgm show two SPECT images of healthy brains. Image brain3.pgm

shows a SPECT image of a brain from a patient with a stroke.

13. How can a “standard” healthy brain, or a mean image, of the two images brain1.pgm

and brain2.pgm be constructed?

14. Find the difference between the “standard” brain and the image from the stroke patient
(brain3.pgm). Where in the brain is the change located?

Another form of arithmetic for images is letting a constant value affect the image. Try to add or subtract
a constant from an image.

15. What happens when a pixel gets a value less than 0 or a value greater than 255? Are
there other ways this can be handled?

8 Geometric Transforms

It is sometimes necessary to geometrically correct images. In object recognition a first step can be to
rotate the image so that the object is in a standard position, for example along the vertical axis. Open
the image wrench.pgm and rotate it 20 degrees, with and without interpolation, using the Matlab
commands:

J = imrotate(I,20);

K = imrotate(I,20,’bilinear’);

where I is the wrench image.

16. Compare rotations performed with and without interpolation. It is easiest to see dif-
ferences along lines and edges of the images. What does interpolation mean in this
case?

17. In general it is faster to rotate the image by a multiple of 90 degrees than by some
arbitrary degree. Explain why.

9 Fast Fourier Transform

Open the image cameraman.pgm. Fourier transform the image using FFT and display the Fourier
domain by using the Matlab commands:

f = imread(’cameraman.pgm’);

F = fft2(double(f));

displayfft2(F);

This shows the FFT of the image. The double() command converts the image matrix from the uint8

format (8-bit unsigned integer) to the double format (64-bit floating point). This is necessary since the
function fft2 does not operate on matrices in uint8 format.

You will now filter the image by extracting the central disk of the FFT. This is done by first creating
an ideal filter,

Centre for Image Analysis March 24, 2009 6

H = idealfft2filter(R,S);

displayfftfilter(H);

then we use the filter for filtering the FFT:

G = F.*H;

displayfft2(G);

where R is the filter radius (0 ≤ R ≤ 1) and S is the size of the filter (must be size(F)). The filtering is
done by multiplying the image with the filter in the frequency domain. You have now filtered the image
in the frequency domain. To get get your filtered image from the frequency domain you need to inverse
transform your filtered image using the inverse FFT:

g = abs(ifft2(G));

The inverse FFT result contains complex values, therefore, the abs() function is used to get the magnitude
of the complex values. Open the filtered result in Image Tool, but this time you need to pass an empty
matrix as a second argument since the resulting image is in double format:

imtool(g, [])

The [] tells imtool to use the image’s graylevel range (called dynamic range) as display range. If the
image does not look filtered, try a different filter radius.

Repeat the above but use the a Butterworth filter and a Gaussian filter instead of the ideal filter using
the commands:

H = butterworthfft2filter(R,S,N);

H = gaussianfft2filter(STD,S);

where N is the order of the Butterworth filter, and STD is the standard deviation of the Gaussian filter.

18. How do the results differ? What causes the differences?

To create a high-pass (HP) filter it is necessary to obtain the complements of the created low-pass (LP)
filters. This is done by simply inverting the filters above. This can be done in the filtering step, which
then becomes:

G = F.*(1 - H);

Try a few different HP-filters and see if the results meet your expectations.

19. Which filters in the spatial domain correspond to LP- and HP-filters in the frequency
domain, respectively?

Open the image freqdist.pgm. There is a pattern present in the image that should be filtered out. To
your aid you have a function which can create an ideal filter which is not necessarily centered:

H = idealfft2filterpos(R,S,X,Y);

It works just as the ordinary idealfft2filter, but X and Y specifies the disk center. Note that you can
combine many ideal filters into one filter by using the | operator. An example:

H1 = idealfft2filterpos(...);

H2 = idealfft2filterpos(...);

H = H1 | H2;

20. Create a filter in the frequency-domain that suppresses the pattern in freqdist.pgm,
but leaves the rest of the image as intact as possible. What does the filter look like?
What do you see in the filtered image?

That’s it. The exercise is done!

21. Any comments on the exercise?

