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Today’s lecture: filtering I
● Smoothing:

– Low-pass filtering (linear)
– Non-linear smoothing

● 1st order derivatives:
– Linear filters
– Enhance/detect edges

● 2nd order derivatives:
– Linear filters
– Enhance/detect lines

● Normalised convolution
● Next lecture: detection & analysis
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Filtering properties
● Shift invariant:

– The result of the filter is independent of location within the 
image

● Rotation invariant:
– The result of the filter should be independent of the 

orientation of the image w.r.t. the axes

● These two rules make the result dependent only on 
the object being imaged, not on the exact positioning 
of the imaging system
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Low-pass filters
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Application: noise reduction

Low-pass filter

White noise spectrum

Signal spectrum
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Application: unsharp masking
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Application: unsharp masking
● Subtract smoothed image from original image
● Darkroom technique: implemented by projecting out-

of-focus image onto a negative, then using the two 
negatives together

spatial domain frequency domain

Identity (δ)

Unsharp (G)

2 δ – G
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Application: shading correction

Subtract the background or divide by the
background, depending on the imaging model.

Gaussian smoothing,
σ = 10 pixels
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Application: abstraction
● Sometimes you just don’t want all those details...
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Application: down-sampling

Low-pass filter before 
down-sampling to avoid 
aliasing:
Filtering removes high 
frequencies that cannot 
be represented by lower 
sampling rate
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Linear smoothing in 1-D
● Low-pass filtering: removing high-frequency 

components
smoothing kernel frequency response

ideal (sinc)

uniform (box)

triangle
(=box⊗box)

Gaussian

(note: book pg. 139, eq. 5.47 needs normalization: 1/2πσ2 in 2D)
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Phase reversal of uniform filter

uniform Gaussian
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Phase reversal of uniform filter

uniform Gaussian

reversed!
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Central limit theorem

box ⊗ box ⊗ box ⊗ box ⊗ box ⊗ ... = Gaussian

Gaussian ⊗ Gaussian = Gaussian

with increased sigma!

=1
2
2

2
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Other linear low-pass filters
● Square neighbourhood, significance of centre pixel 

increased:

– Book says: “it better approximates the properties of noise 
with a Gaussian probability distribution.” (pg. 125) Wrong!

– You now now why these filters are used!

● The Butterworth Filter
– Compare: Chebyshev, Elliptic, etc.
– Designed for electric circuitry
– But: electric circuitry has different constraints!
– Has no purpose in digital signal/image processing

[
1 1 1
1 2 1
1 1 1] 1

10 [
1 2 1
2 4 2
1 2 1] 1

16
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Linear smoothing in n-D
● Separable filter:

● Convolution is associative:

● Separable filters are faster & easier to implement

f⊗ {hx⊗hy } = {f⊗hx }⊗hy

h = hx⊗hy

the square uniform kernel is separable

the circular uniform kernel
is not separable

G x  ⊗ G y  = G x , y 
the Gaussian kernel is separable
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circular uniform
(not separable)

Linear smoothing in n-D

Frequency
response

Gaussian
(separable)

square uniform
(separable)
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Linear smoothing in n-D

Frequency
response

circular triangular
(not separable)

Gaussian
(separable)

square triangular
(separable)
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Linear smoothing in n-D

Gaussian filter
σ = 3

Uniform
circle d = 9

Uniform
square s = 9



Cris Luengo – 1TD398 – spring 2015 – cris@cb.uu.se

Discretizing the Gaussian
● “Proper” sampling occurs for sampling period <= σ
● Thus: σ >= 1 for proper sampling of Gaussian kernel

– Some people say σ >= 0.8

Gaussian kernel frequency response

σ = 0.5

σ = 1

Gaussian
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Median filter
● Takes the median of the values in some 

neighbourhood
● Not separable
● Median is an estimator for the mean

– Better than mean (linear filters) for some noise models
– Conserves edges slightly better than linear filters

● Generalizes to percentile filter
– Median is 50%
– 0% is min filter  ( = erosion )
– 100% is max filter  ( = dilation )
– Other useful filters: 5%, 95% (like min and max, but less 

sensitive to noise)
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Median statistics

Salt &
pepper

noise

Normally
distributed

noise

one input image mean of 5 images median of 5 images
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Median statistics

Salt &
pepper

noise

Normally
distributed

noise

input image 3x3 uniform filter 3x3 median filter
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Max-min and min-max filter

max-min
(=closing)

min-max
(=opening)

(More on this in Ida-Maria’s lecture on Mathematical morphology)
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Sequence of max and min filters
● max min min max f   ≈   min max max min f
● Removes local maxima and minima
● Apply first with very small neighbourhood
● Apply repeatedly with increasing size
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Application: shading correction
Closing 25 pixels
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Kuwahara / Nagao filter
● Mean in neighbourhood
● The neighbourhood shifts for each pixel

– Neighbourhood with minimum variance chosen

● Does not average across edges

In book: “averaging using rotating mask”
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Adaptive filters
● Generalization of Kuwahara / Nagao
● We can turn or grow and shrink our neighbourhood
● Many, many ways of directing the filter

Gaussian (3x0.8) rotated to
align to local contours
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● Computes mean in neighbourhood, like uniform filter
● But: excludes pixels that differ more than s from the 

central value

7-pixel circular
uniform filter

7-pixel circular uniform
sigma filter, with s=20

Sigma filter
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Generalizing the sigma filter
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Bilateral filter
● Kernel is Gaussian in distance, like linear Gaussian
● Kernel is also Gaussian in intensity difference

– Edges attenuate kernel significantly

hx0
x  = G x

x−x0 G f
 f x −f  x0 
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Anisotropic diffusion

● Linear diffusion = heat equation = Gaussian filter

● Choose diffusion coefficient
to be low at edges:

∂ f
∂ t

= ∇⋅D f ,x ∇ f  , f x ,t 

∂ f
∂ t

= D∇ 2 f

Df , x =g ∣∇ f∣

g u=e−u/K 
2

g u=
1

1u /K 
2
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Filtering for detection
● Edge detection

– linear: gradient magnitude
– non-linear

● Line detection:
– linear: Laplace
– non-linear

● Template matching
– linear: correlation
– non-linear:

● mean square error
● mean absolute error
● etc.

1st derivative

2nd derivative

discussed tomorrow
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First order derivatives

● In a discrete grid, the smallest δ is 1
● Convolve with  [ 1  -1 ]  filter

– Asymmetric

● Convolve with  [ 1  0  -1 ] / 2  filter
– Larger δ = worse approximation to derivative

∂
∂ x

f x  = lim
0

f  x−f x 


ℱ { ∂
∂ x

f  x } = iℱ {f  x }
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Gaussian derivatives
● Both filters have problems:

– High response to noise
– Poor approximation of gradient vector in n-D images

● Solution: use Gaussian derivatives

– Reduced response to noise
– Computes exact derivative of smoothed function

(meaning gradient vector has correct direction)
– “Band-limited”, so discretisable
– Separable

∂
∂ x

{f  x ⊗G x } = f  x ⊗ ∂
∂ x

G x 
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Gradients

finite difference filter Gaussian derivative

[1 0 -1]/2
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Other derivatives
● In the first course you learned about some other 

derivative operators:
– Prewitt

– Sobel

– Etc.

● You should understand now why Gaussian is better!

[
1 0 −1
1 0 −1
1 0 −1]/6 = [1 0 −1 ] /2 ⊗ [

1
1
1]/3

[
1 0 −1
2 0 −2
1 0 −1]/8 = [1 0 −1 ]/2 ⊗ [

1
2
1]/4
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Uses of the gradient
● The gradient is a vector perpendicular to the edge
● Gradient magnitude is a measure for edge strength

● Gradient direction is a measure for local orientation

● Of course, you need a rotation invariant filter to 
accurately measure orientation. The Gaussian 
gradient operator is rotation invariant

∣∇ f∣ =  ∂
∂ x

f 
2

 ∂
∂ y

f 
2

...

∢∇ f  = atan2 ∂
∂ y

f , ∂
∂ x

f 
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Gradient magnitude

∣∇ f∣ =  ∂
∂ x

f 
2

 ∂
∂ y

f 
2

...

∂
∂ x

f ∂
∂ y

f ∣∇ f∣
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Detecting edges
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Second order derivatives

● Finite difference approximation (δ=1)
– Convolve with  [ 1  -2  1 ]
– Note that  [ 1  -2  1 ]  =  [ 1  -1 ] ⊗ [ 1  -1 ]

● Gaussian approximation
– Convolve with second derivative of Gaussian

∂2

∂ x2 f  x  = lim
0

f x−2 f  x f x−

2

ℱ { ∂2

∂ x2
f x } = −2 ℱ {f  x }
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Laplace operator
● The Laplace operator is everywhere in physics

– e.g. remember heat equation:

● The Laplace operator is:
– isotropic
– generalized 2nd derivative

● It detects lines, and responds strongly to edges
● It does not measure edge magnitude, as commonly 

claimed (and reported in book on pg. 133)

∂ f
∂ t

= D∇ 2 f

∇2 f = ∇⋅∇ f =  ∂2

∂ x 2
 ∂2

∂ y 2
... f
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Laplace operator

● Finite difference approximation:                  or

● Gaussian approximation:
– Less sensitive to noise, more isotropic
– But: not separable!

● Another approximation: difference of Gaussians (DoG)
– Advantage: separable

∇2 f = ∇⋅∇ f =  ∂2

∂ x2
∂2

∂ y2... f

[
0 1 0
1 −4 1
0 1 0] [

1 1 1
1 −8 1
1 1 1]
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Laplace operator

finite difference
2nd derivative:

[ 1  -2  1 ] [
1 1 1
1 −8 1
1 1 1]

∂
2

∂ x2
f ∇

2 f∂2

∂ y2 f
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Laplace operator

Gaussian
2nd derivative

∂
2

∂ x2
f ∇

2 f∂2

∂ y2 f

[
1 1 1
1 −8 1
1 1 1]
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Detecting lines
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Unsharp masking revisited

spatial domain frequency domain

2−G=1

−∇2G=1

−∇2

+ =

+ =

+ =
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Normalised convolution

Input data, with
missing samples

We also know which
samples are missing

Simply filtering the input image with the
missing samples produces a bad output
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Normalised convolution

By normalising with the mask, the filter
“skips” missing input samples

{f x mx  }⊗h x 
mx ⊗h x 

{f x mx  }⊗hx  mx ⊗h x 
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Normalised convolution
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Normalised convolution
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Summary of today’s lecture
● Gaussian filters for:

– Smoothing
– Derivatives
– Laplace operator

● Non-linear filters for edge-preserving smoothing
● Smoothing filters for:

– Noise reduction
– Image abstraction (simplification)
– Shading correction
– Edge sharpening

● First order derivatives used for edge detection
● Second order derivatives used for line detection


