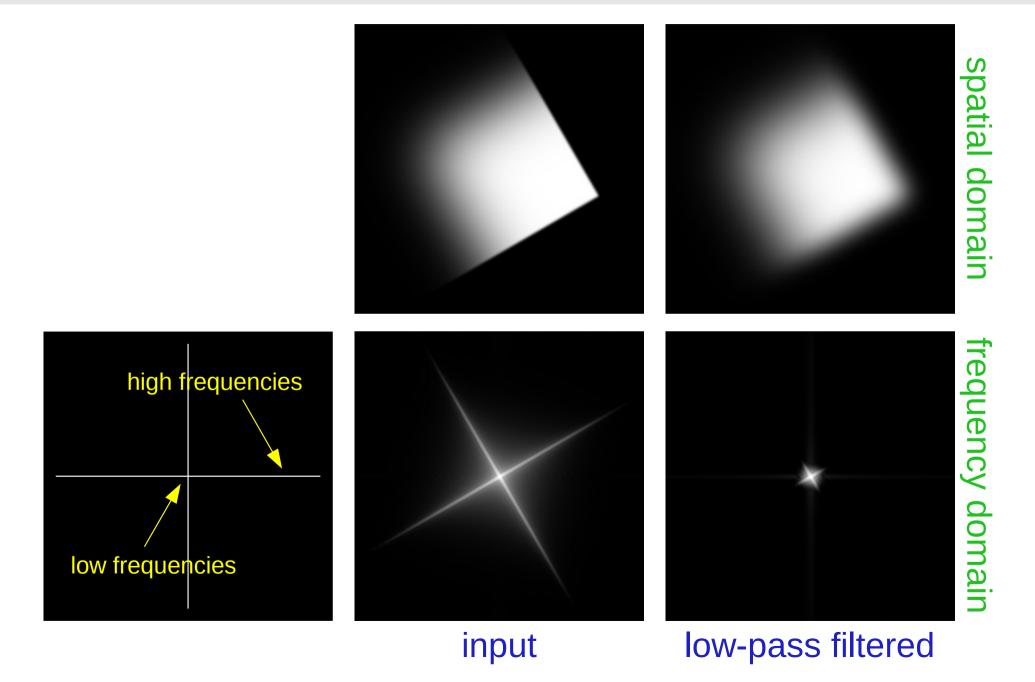
Today's lecture: filtering I

- Smoothing:
 - Low-pass filtering (linear)
 - Non-linear smoothing
- 1st order derivatives:
 - Linear filters
 - Enhance/detect edges
- 2nd order derivatives:
 - Linear filters
 - Enhance/detect lines
- Normalised convolution
- Next lecture: detection & analysis

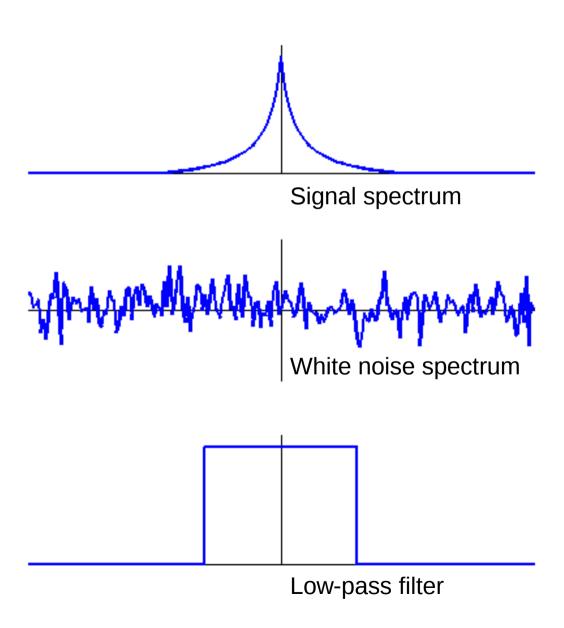
Filtering properties

- Shift invariant:
 - The result of the filter is independent of location within the image
- Rotation invariant:
 - The result of the filter should be independent of the orientation of the image w.r.t. the axes
- These two rules make the result dependent only on the object being imaged, not on the exact positioning of the imaging system

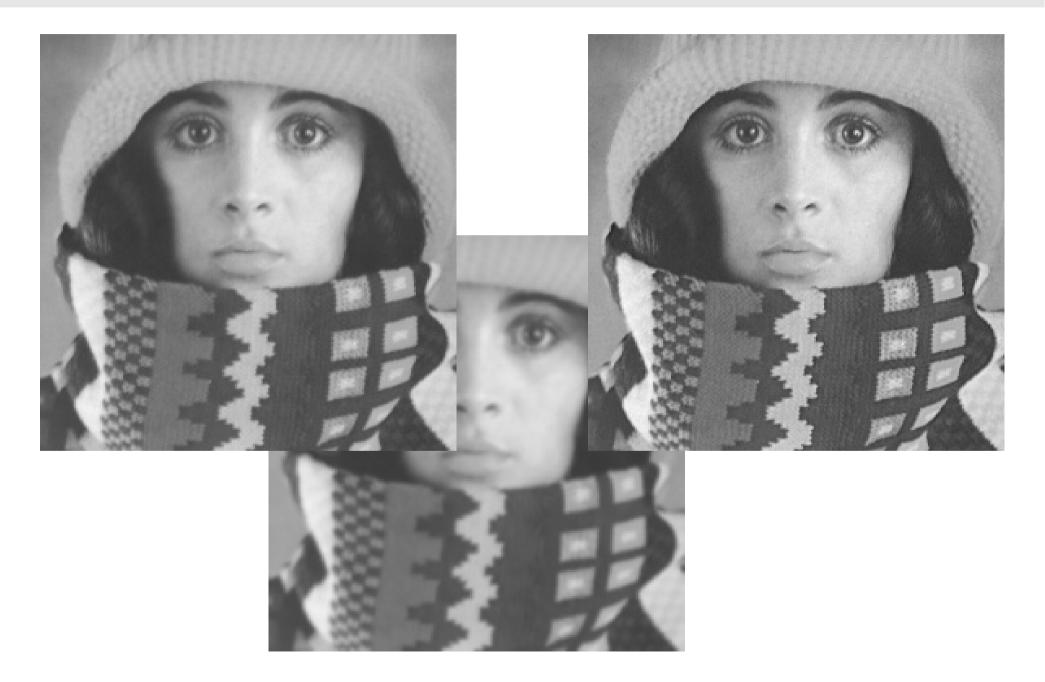
Low-pass filters



Application: noise reduction

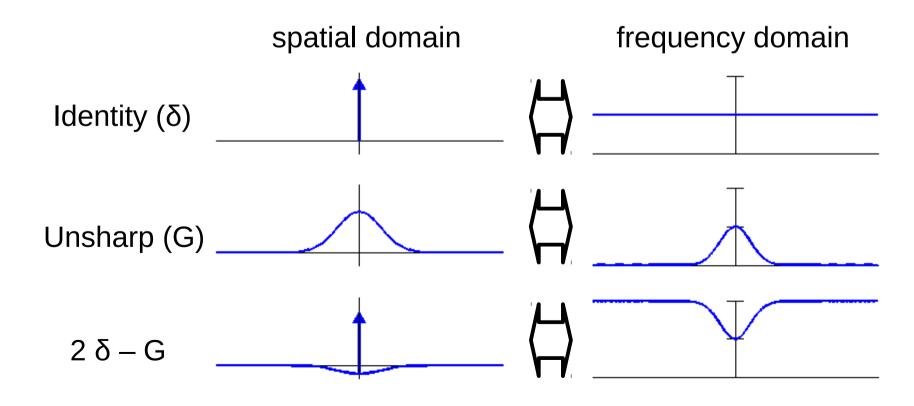


Application: unsharp masking

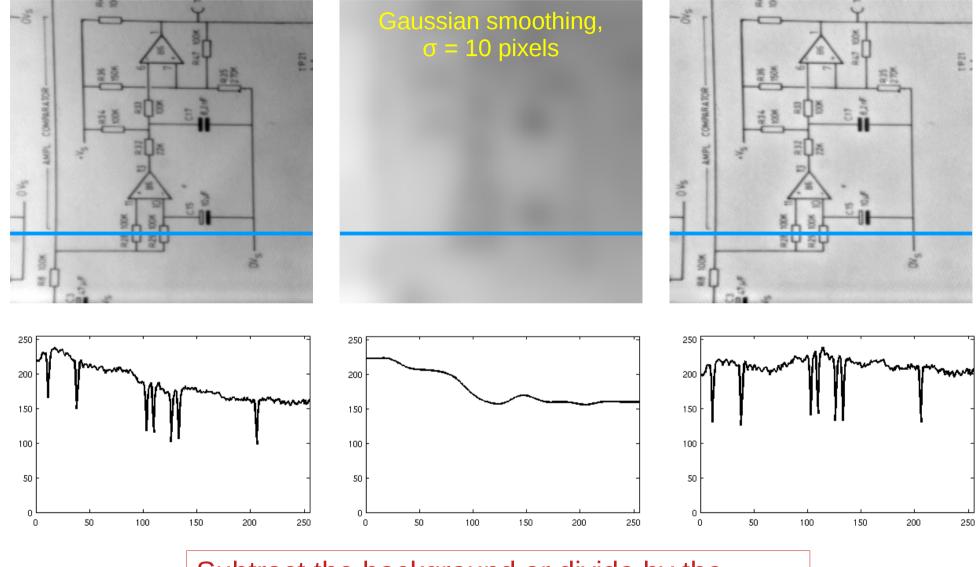


Application: unsharp masking

- Subtract smoothed image from original image
- Darkroom technique: implemented by projecting outof-focus image onto a negative, then using the two negatives together



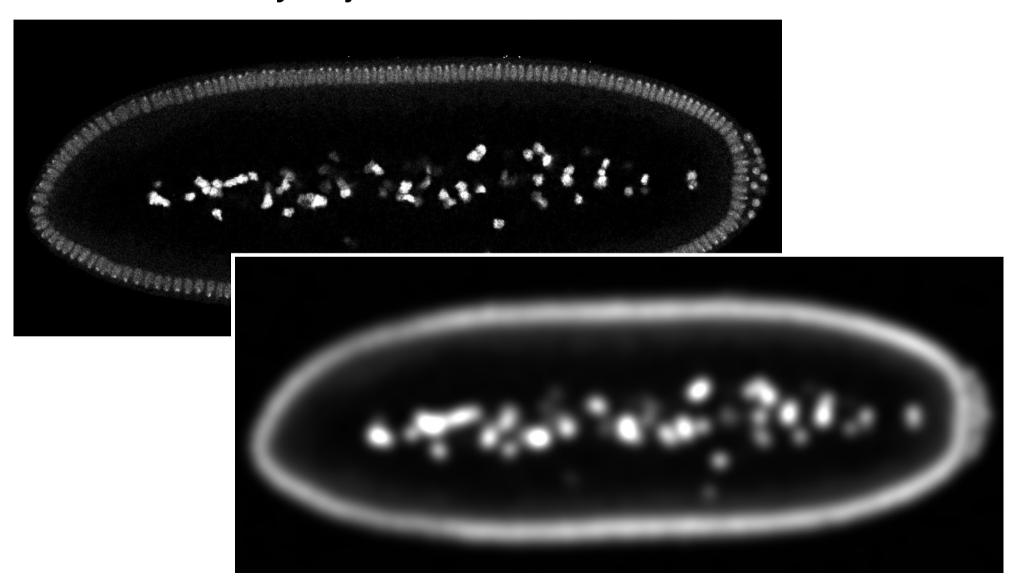
Application: shading correction



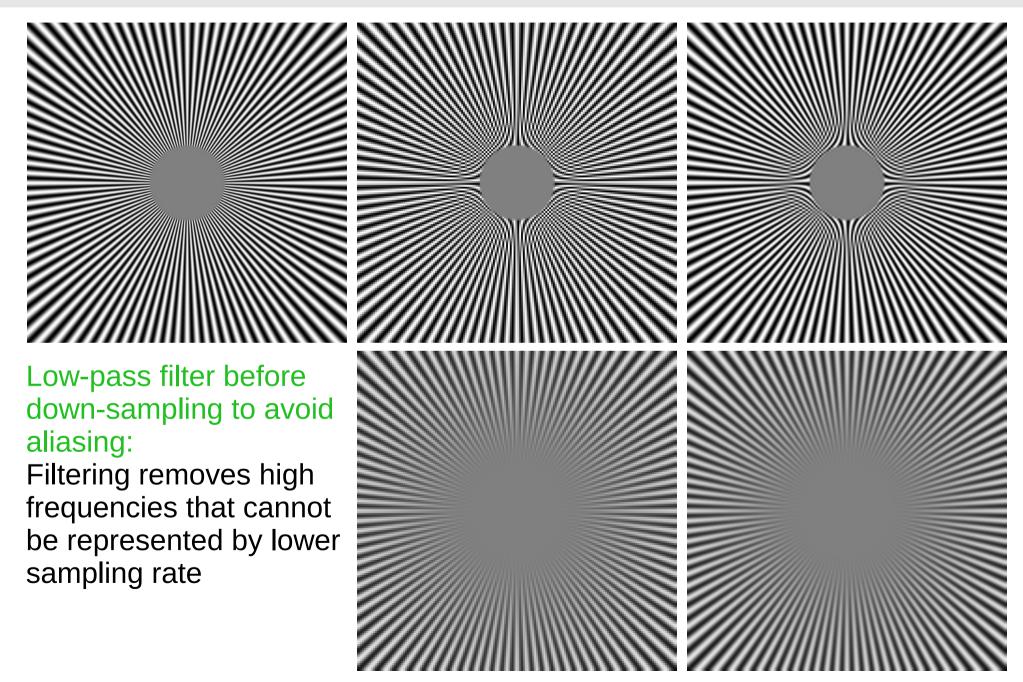
Subtract the background or divide by the background, depending on the imaging model.

Application: abstraction

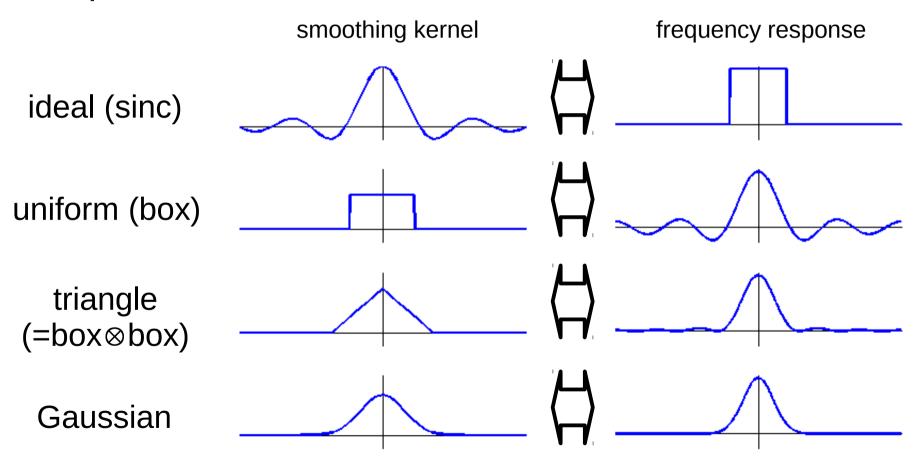
Sometimes you just don't want all those details...



Application: down-sampling

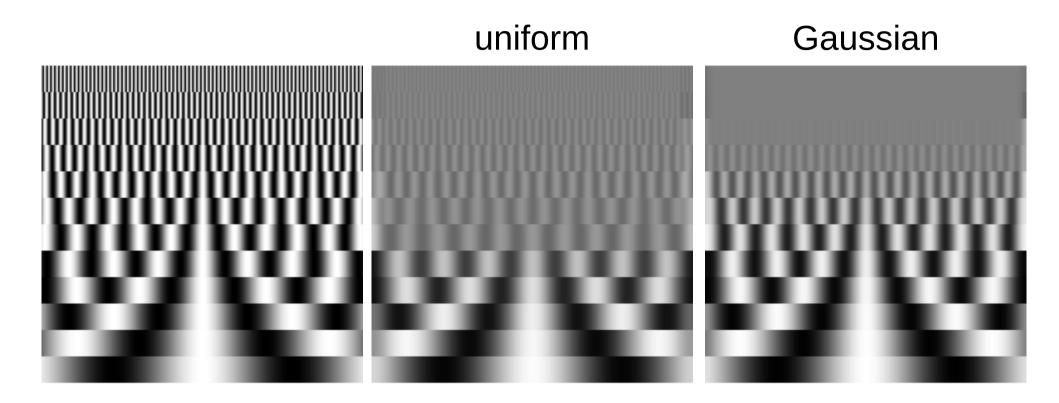


 Low-pass filtering: removing high-frequency components

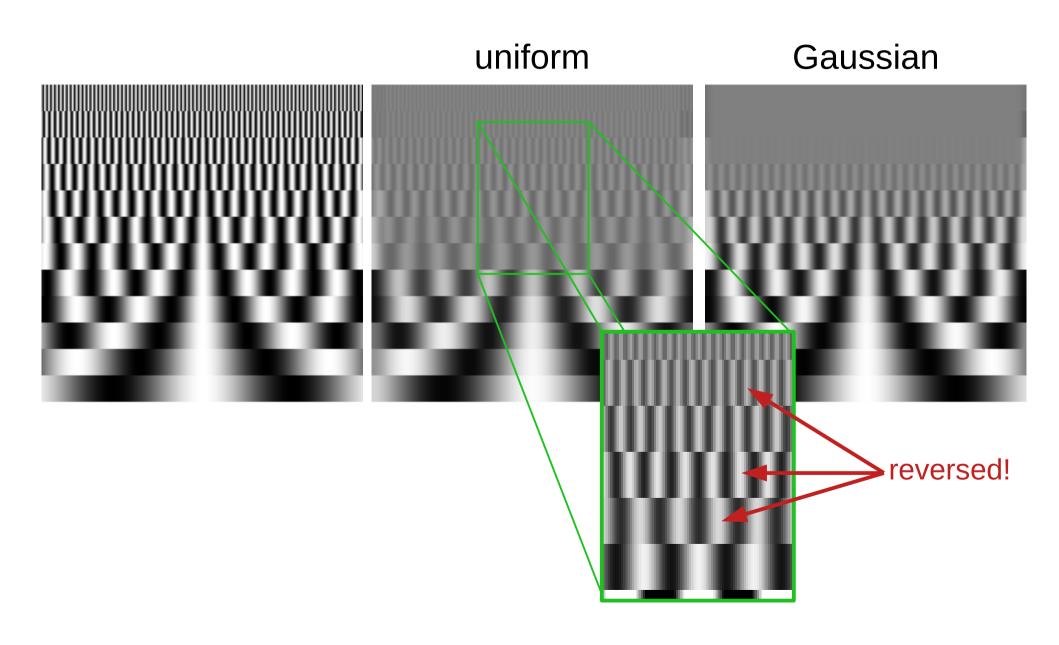


(note: book pg. 139, eq. 5.47 needs normalization: $1/2\pi\sigma^2$ in 2D)

Phase reversal of uniform filter



Phase reversal of uniform filter



Central limit theorem

 $box \otimes box \otimes box \otimes box \otimes box \otimes ... = Gaussian$

Gaussian ⊗ Gaussian = Gaussian

with increased sigma!

$$\sigma = \sqrt{\sigma_1^2 + \sigma_2^2}$$

Other linear low-pass filters

• Square neighbourhood, significance of centre pixel increased:

$$\begin{bmatrix}
1 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 1
\end{bmatrix}
\frac{1}{10}$$

$$\begin{bmatrix}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{bmatrix}
\frac{1}{16}$$

- Book says: "it better approximates the properties of noise with a Gaussian probability distribution." (pg. 125) **Wrong!**
- You now now why these filters are used!
- The Butterworth Filter
 - Compare: Chebyshev, Elliptic, etc.
 - Designed for electric circuitry
 - But: electric circuitry has different constraints!
 - Has no purpose in digital signal/image processing

Separable filter:

$$h = h_x \otimes h_y$$

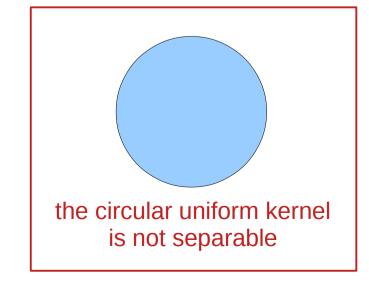
Convolution is associative:

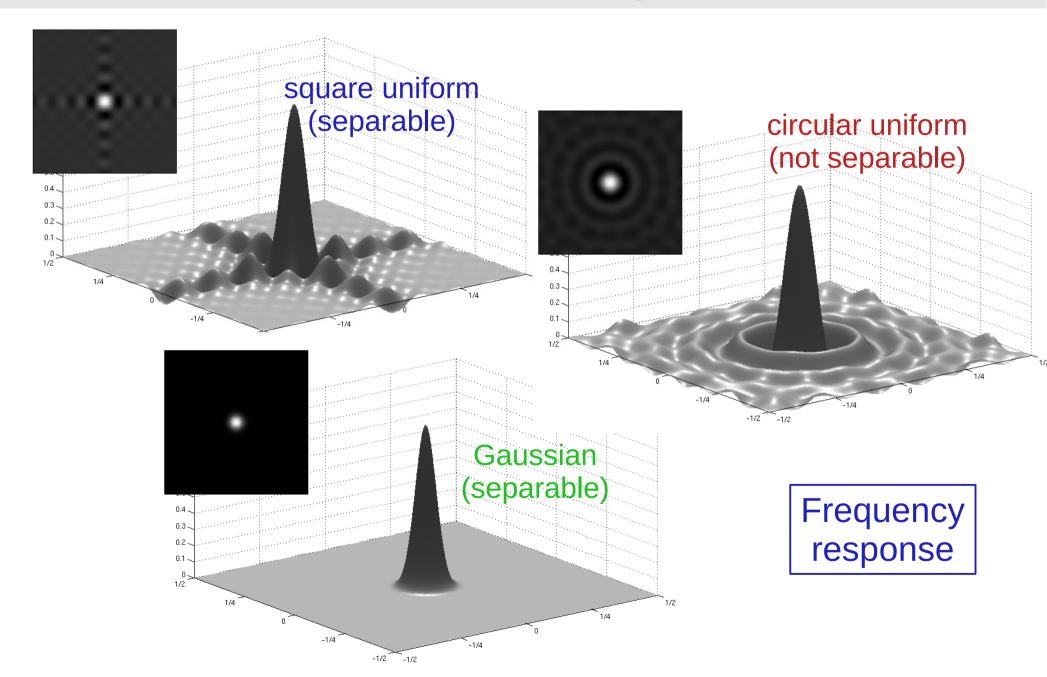
$$f \otimes \{h_x \otimes h_y\} = \{f \otimes h_x\} \otimes h_y$$

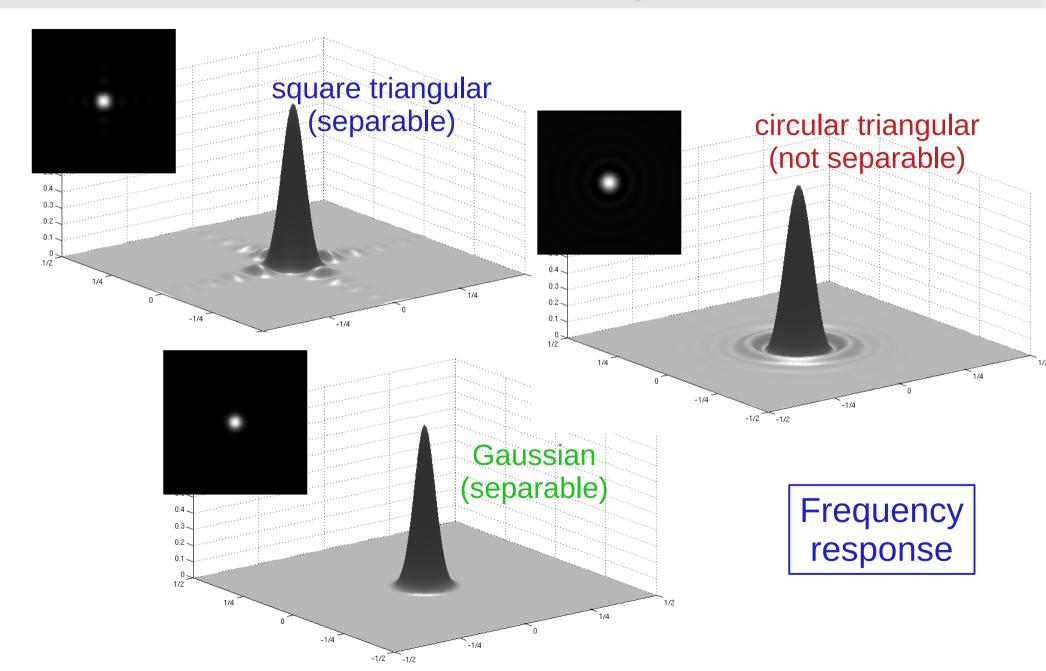
• Separable filters are faster & easier to implement

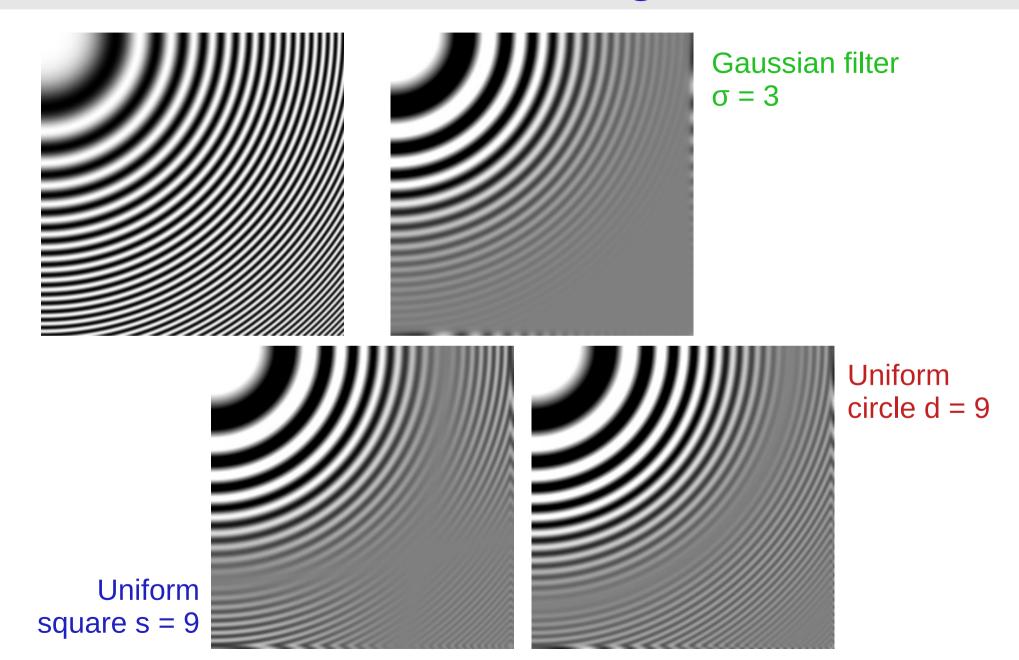
$$G(x) \otimes G(y) = G(x,y)$$

the Gaussian kernel is separable



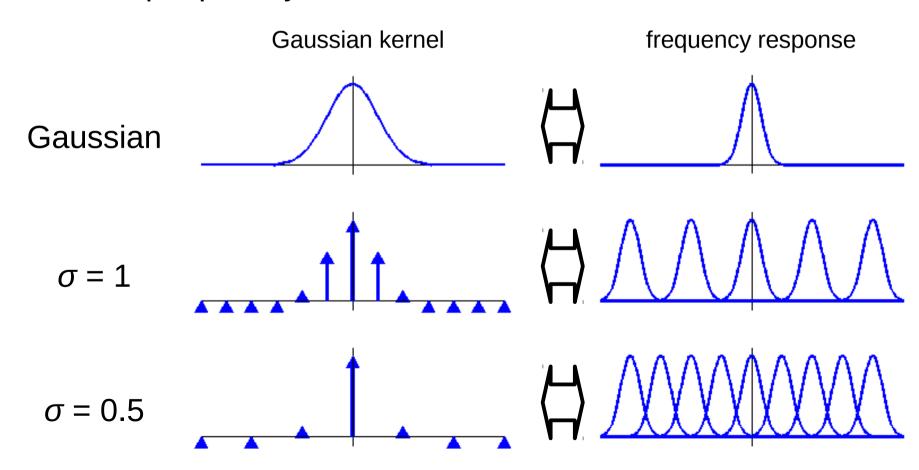






Discretizing the Gaussian

- "Proper" sampling occurs for sampling period $\leq \sigma$
- Thus: $\sigma >= 1$ for proper sampling of Gaussian kernel
 - Some people say $\sigma >= 0.8$



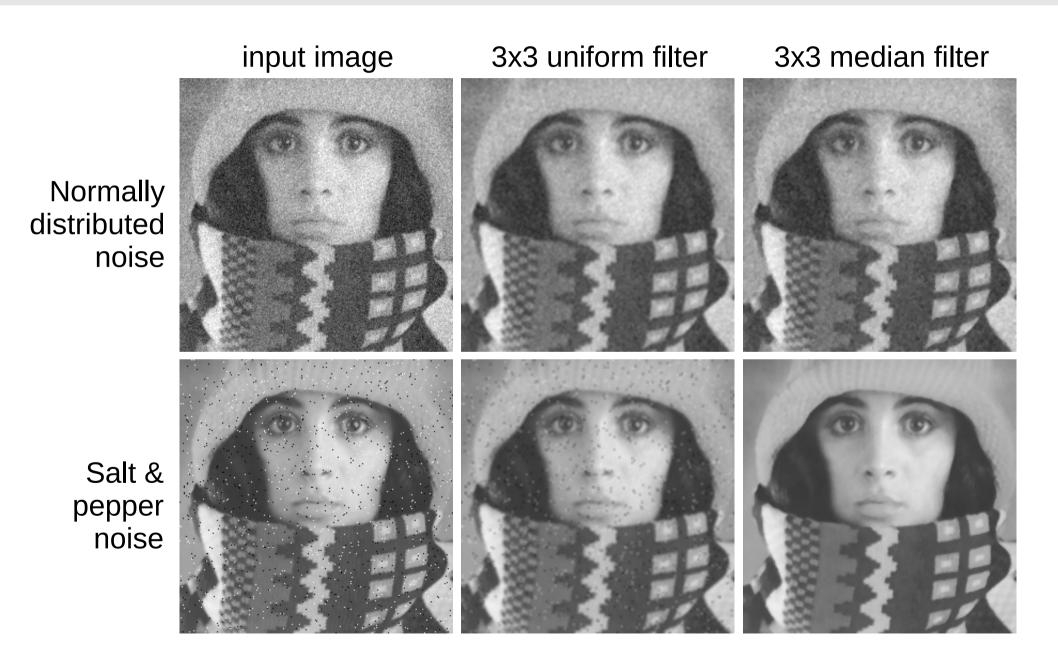
Median filter

- Takes the median of the values in some neighbourhood
- Not separable
- Median is an estimator for the mean
 - Better than mean (linear filters) for some noise models
 - Conserves edges slightly better than linear filters
- Generalizes to percentile filter
 - Median is 50%
 - 0% is min filter (= erosion)
 - 100% is max filter (= dilation)
 - Other useful filters: 5%, 95% (like min and max, but less sensitive to noise)

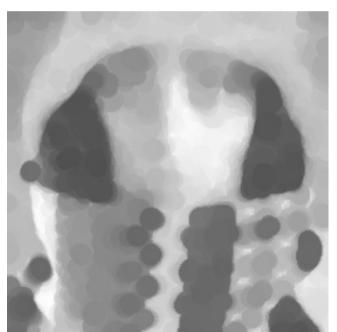
Median statistics

one input image mean of 5 images median of 5 images Normally distributed noise Salt & pepper noise

Median statistics



Max-min and min-max filter



max-min (=closing)

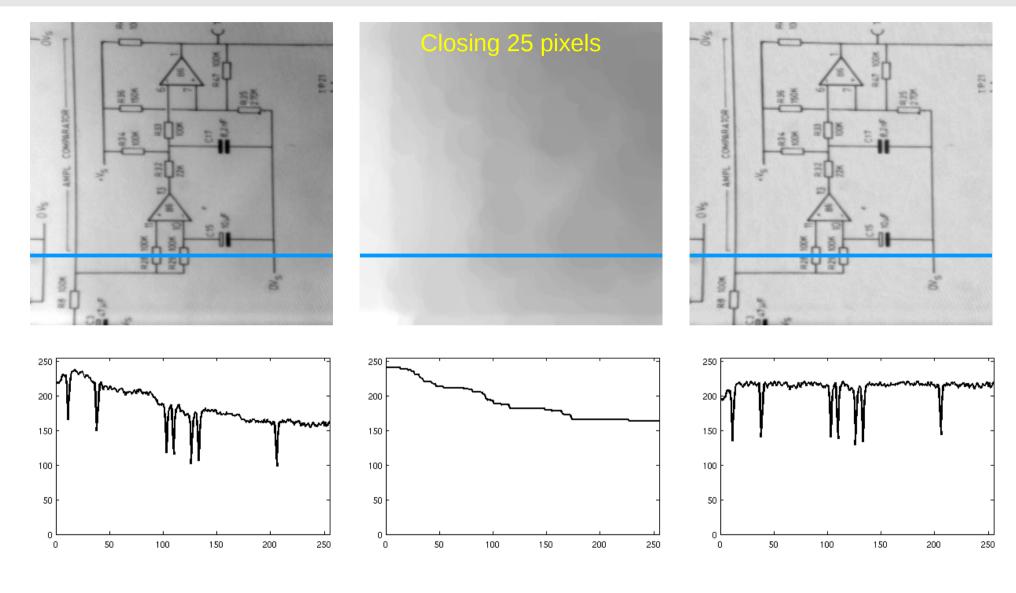
min-max (=opening)

(More on this in Ida-Maria's lecture on Mathematical morphology)

Sequence of max and min filters

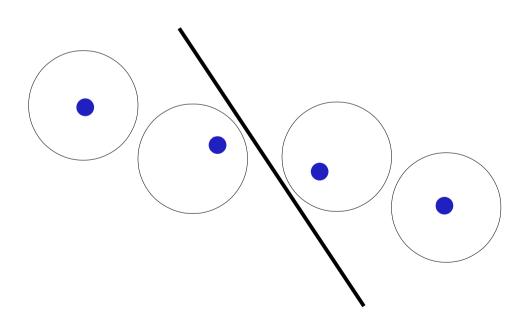
- max min min max $f \approx \min \max \max f$
- Removes local maxima and minima
- Apply first with very small neighbourhood
- Apply repeatedly with increasing size

Application: shading correction



Kuwahara / Nagao filter

- Mean in neighbourhood
- The neighbourhood shifts for each pixel
 - Neighbourhood with minimum variance chosen
- Does not average across edges

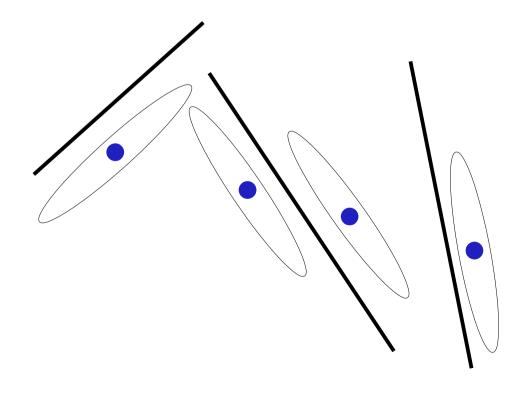


In book: "averaging using rotating mask"

Adaptive filters

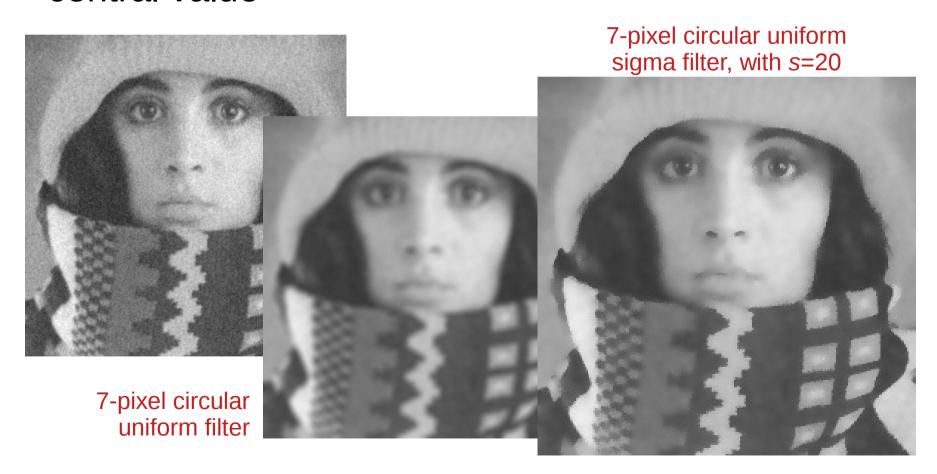
- Generalization of Kuwahara / Nagao
- We can turn or grow and shrink our neighbourhood
- Many, many ways of directing the filter

Gaussian (3x0.8) rotated to align to local contours

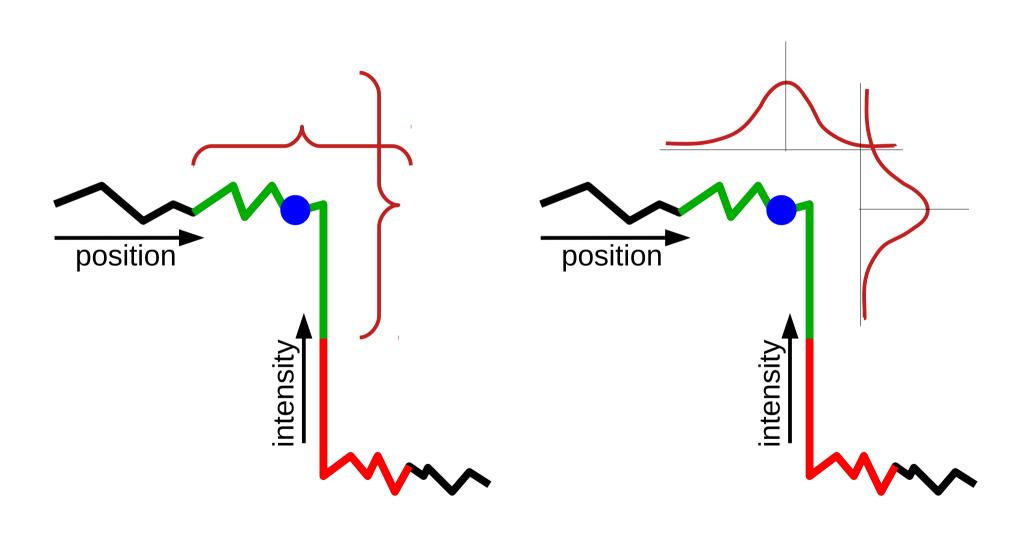


Sigma filter

- Computes mean in neighbourhood, like uniform filter
- But: excludes pixels that differ more than s from the central value

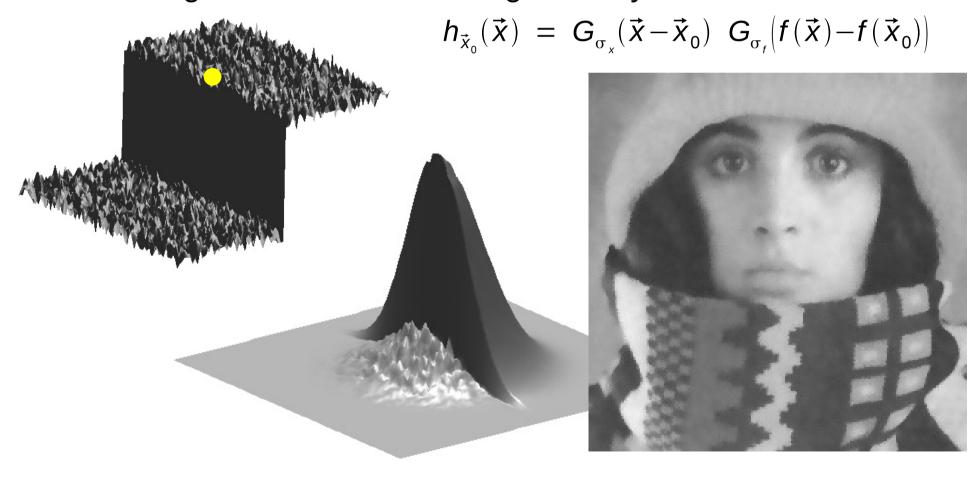


Generalizing the sigma filter



Bilateral filter

- Kernel is Gaussian in distance, like linear Gaussian
- Kernel is also Gaussian in intensity difference
 - Edges attenuate kernel significantly



Anisotropic diffusion

$$\frac{\partial f}{\partial t} = \nabla \cdot \left[D(f, \vec{x}) \nabla f \right] , \quad f(\vec{x}, t)$$

• Linear diffusion = heat equation = Gaussian filter

$$\frac{\partial f}{\partial t} = D\nabla^2 f$$

 Choose diffusion coefficient to be low at edges:

$$D(f, \vec{x}) = g(|\nabla f|)$$

$$g(u) = e^{-(u/K)^{2}}$$

$$g(u) = \frac{1}{1 + (u/K)^{2}}$$

Filtering for detection

- Edge detection
 - linear: gradient magnitude
 - non-linear
- Line detection:
 - linear: Laplace
 - non-linear
- Template matching
 - linear: correlation
 - non-linear:
 - mean square error
 - mean absolute error
 - etc.

2nd derivative

1st derivative

discussed tomorrow

First order derivatives

$$\frac{\partial}{\partial x} f(x) = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{\delta}$$

$$\mathscr{F}\left\{\frac{\partial}{\partial x}f(x)\right\} = i\omega\mathscr{F}\left[f(x)\right]$$

- In a discrete grid, the smallest δ is 1
- Convolve with [1 -1] filter
 - Asymmetric
- Convolve with [1 0 -1]/2 filter
 - Larger δ = worse approximation to derivative

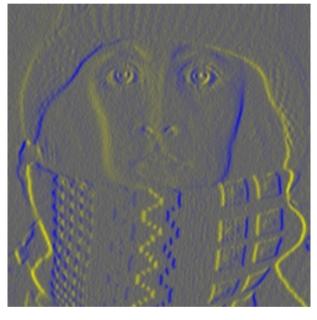
Gaussian derivatives

- Both filters have problems:
 - High response to noise
 - Poor approximation of gradient vector in n-D images
- Solution: use Gaussian derivatives

$$\frac{\partial}{\partial x} \{ f(x) \otimes G(x) \} = f(x) \otimes \frac{\partial}{\partial x} G(x)$$

- Reduced response to noise
- Computes exact derivative of smoothed function (meaning gradient vector has correct direction)
- "Band-limited", so discretisable
- Separable

Gradients



finite difference filter [1 0 -1]/2

Gaussian derivative

Other derivatives

- In the first course you learned about some other derivative operators:
 - Prewitt

$$\begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix} / 6 = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix} / 2 \otimes \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} / 3$$

Sobel

$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} / 8 = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix} / 2 \otimes \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} / 4$$

- Etc.
- You should understand now why Gaussian is better!

Uses of the gradient

- The gradient is a vector perpendicular to the edge
- Gradient magnitude is a measure for edge strength

$$|\nabla f| = \sqrt{\left(\frac{\partial}{\partial x}f\right)^2 + \left(\frac{\partial}{\partial y}f\right)^2 + \dots}$$

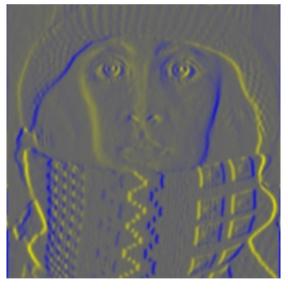
Gradient direction is a measure for local orientation

$$\not\sim (\nabla f) = \operatorname{atan2} \left(\frac{\partial}{\partial y} f, \frac{\partial}{\partial x} f \right)$$

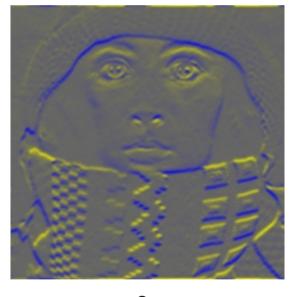
 Of course, you need a rotation invariant filter to accurately measure orientation. The Gaussian gradient operator is rotation invariant

Gradient magnitude

$$|\nabla f| = \sqrt{\left(\frac{\partial}{\partial x}f\right)^2 + \left(\frac{\partial}{\partial y}f\right)^2 + \dots}$$



$$\frac{\partial}{\partial x}f$$



$$\frac{\partial}{\partial y}f$$

$$|\nabla f|$$

Detecting edges

Second order derivatives

$$\frac{\partial^2}{\partial x^2} f(x) = \lim_{\delta \to 0} \frac{f(x+\delta) - 2f(x) + f(x-\delta)}{\delta^2}$$

$$\mathscr{F}\left\{\frac{\partial^2}{\partial x^2}f(x)\right\} = -\omega^2 \mathscr{F}\left\{f(x)\right\}$$

- Finite difference approximation (δ =1)
 - Convolve with [1 -2 1]
 - Note that $[1 -2 1] = [1 -1] \otimes [1 -1]$
- Gaussian approximation
 - Convolve with second derivative of Gaussian

- The Laplace operator is everywhere in physics
 - e.g. remember heat equation: $\frac{\partial f}{\partial t} = D\nabla^2 f$

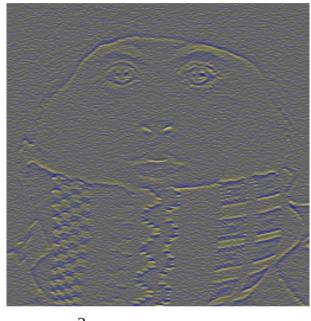
$$\nabla^2 f = \nabla \cdot \nabla f = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \dots \right) f$$

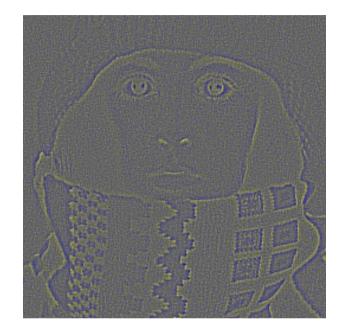
- The Laplace operator is:
 - isotropic
 - generalized 2nd derivative
- It detects lines, and responds strongly to edges
- It does not measure edge magnitude, as commonly claimed (and reported in book on pg. 133)

$$\nabla^2 f = \nabla \cdot \nabla f = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \dots \right) f$$

- Finite difference approximation: $\begin{vmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{vmatrix}$ or $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{vmatrix}$
- Gaussian approximation:
 - Less sensitive to noise, more isotropic
 - But: not separable!
- Another approximation: difference of Gaussians (DoG)
 - Advantage: separable







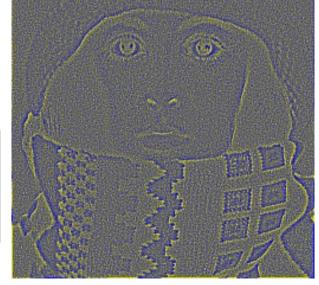
$$\frac{\partial^2}{\partial x^2} f$$

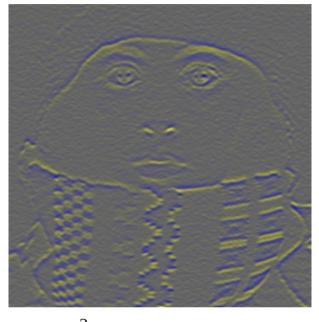
$$\frac{\partial^2}{\partial y^2} f$$

 $\nabla^2 f$

finite difference 2nd derivative: [1 -2 1]

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$





$$\frac{\partial^2}{\partial x^2} f$$

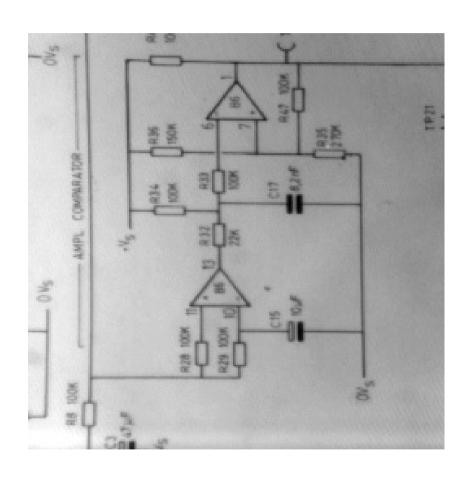
$$\frac{\partial^2}{\partial y^2} f$$

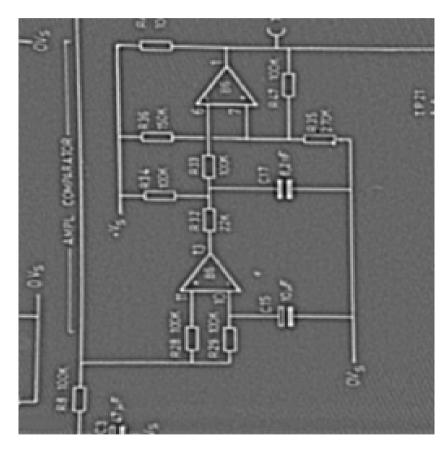
 $\nabla^2 f$

Gaussian 2nd derivative

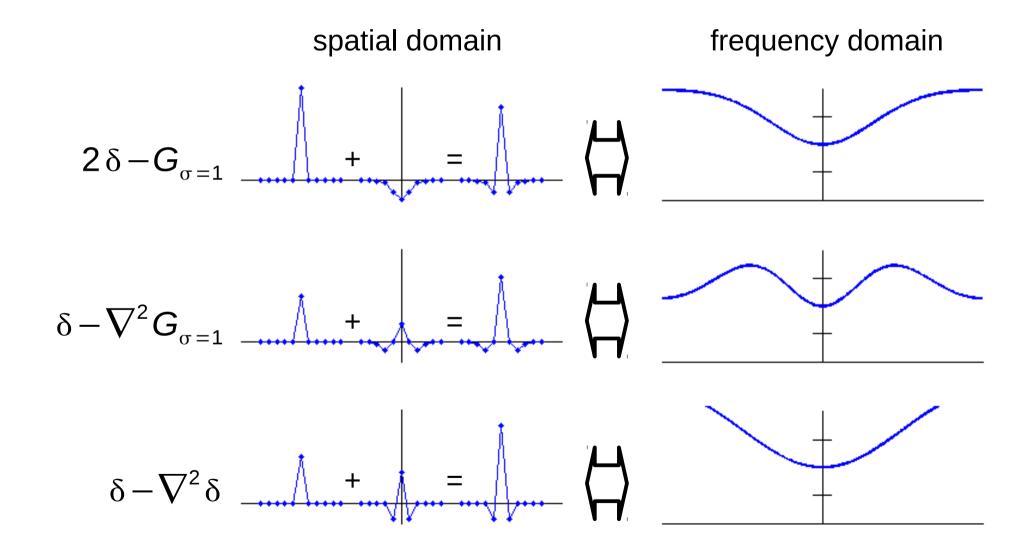
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

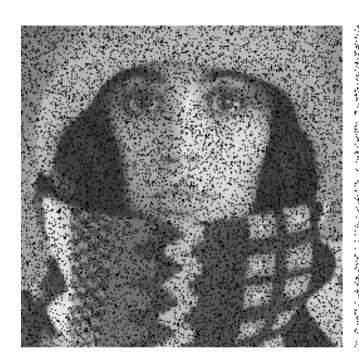
Detecting lines





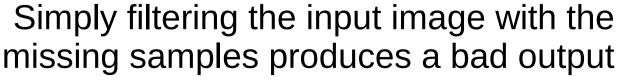
Unsharp masking revisited

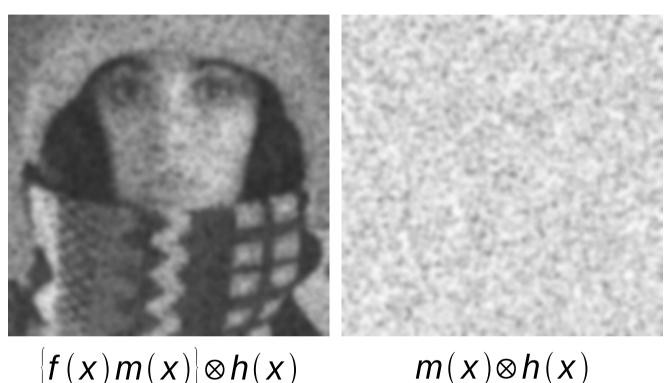




Input data, with missing samples

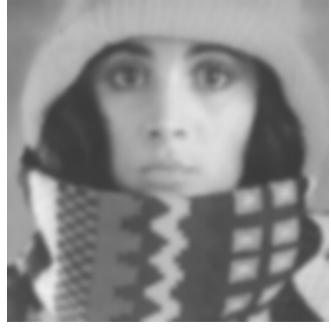
We also know which samples are missing

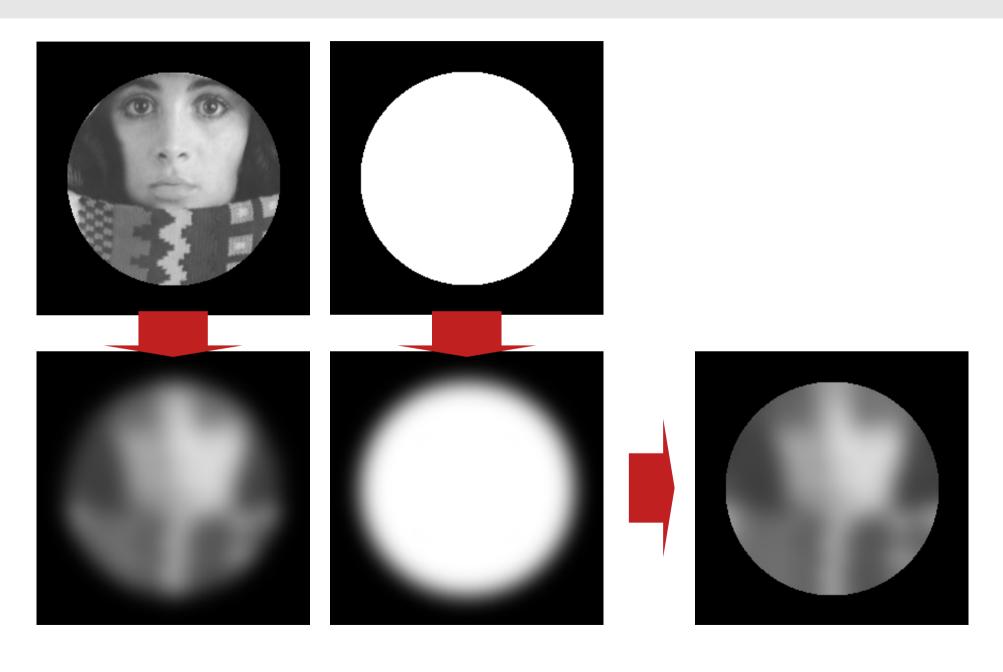


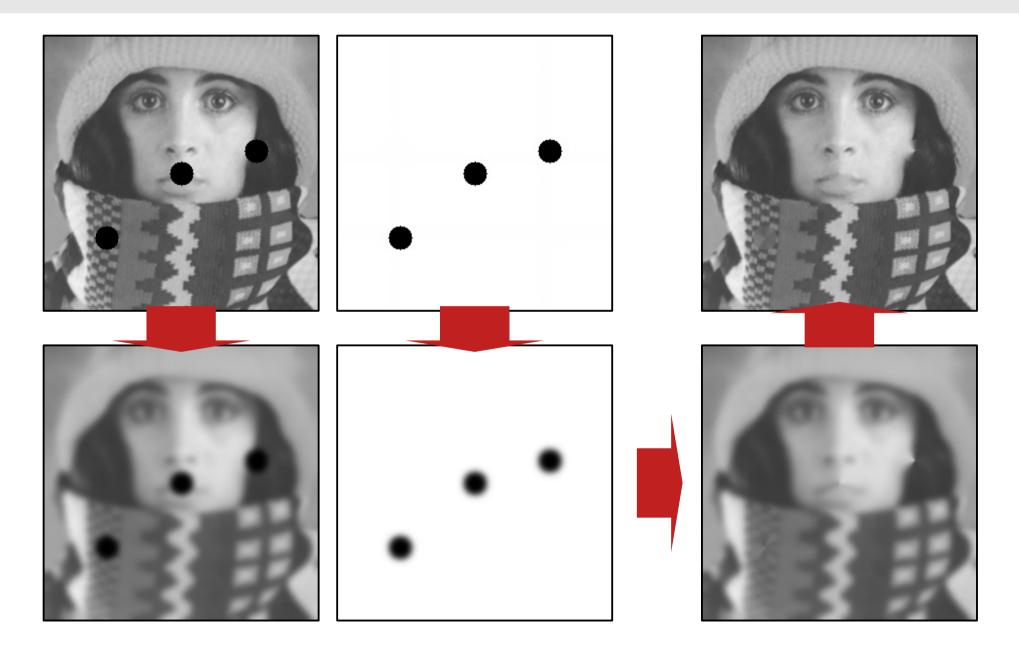


By normalising with the mask, the filter "skips" missing input samples

$$\frac{[f(x)m(x)]\otimes h(x)}{m(x)\otimes h(x)}$$







Summary of today's lecture

- Gaussian filters for:
 - Smoothing
 - Derivatives
 - Laplace operator
- Non-linear filters for edge-preserving smoothing
- Smoothing filters for:
 - Noise reduction
 - Image abstraction (simplification)
 - Shading correction
 - Edge sharpening
- First order derivatives used for edge detection
- Second order derivatives used for line detection