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Our topics for today 
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 Crisp vs fuzzy 

 Fuzzy sets and fuzzy membership functions 

 Fuzzy set operators 

 Approximate reasoning 

 Defuzzification 

 Fuzziness and images 

 Fuzzy segmentation methods  
 Fuzzy tresholding 
 Fuzzy c-means 
 Fuzzy connectedness 

 

 



 Fuzzy systems –why 

3 

 Fuzzy systems and models are capable of 
representing diverse, inexact, and inaccurate 
information. 

 The qualifiers they can deal with are like those 
used by humans describe knowledge, i.e., they are 
linguistic variables. 

 Examples: a rotten apple, a bright image, a 
medium dark wall, a dark sky. 
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Fuzzy systems and knowledge 

reprezentation 
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 Two forms of knowledge: 
 Objective knowledge – mathematical knowledge, used in 

engineering problems. 

 Subjective knowledge – exists in linguistic form, often not 
possible to quantify. 

 

 Fuzzy systems can coordinate these two forms of 
knowledge. 

 Fuzzy systems can handle numerical data and linguistic 
knowledge simultaneously. 

 



What is a set?         ”... to be an element...” 
Let us observe a set X,         X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 
 
Let us form a subset C of X,    C = {x | 3 < x < 8}. 
C = {4, 5, 6, 7} 
Easy!  ”Yes or no.” 
C is a crisp set. 

What is a fuzzy set? 
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What is a set?         ”... to be an element...” 
Let us observe a set X,         X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 
 
Let us form a subset C of X,    C = {x | 3 < x < 8}. 
C = {4, 5, 6, 7} 
Easy!  ”Yes or no.” 
C is a crisp set. 

Let us form a subset F of  big  numbers in X 

F = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1 } 
”Yes or no”?      More like graded. 
F is a fuzzy set. 

What is a fuzzy set? 
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Crisp vs. Fuzzy 
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Crisp  

        Accept, or reject.  

        A characteristic function of a set    

        

        An example: Set of apples. 

 

Fuzzy 

       Admit intermediate values of memberships to a set. 

       An example: Set of ripe apples. 
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Crisp: A man is either 
tall, or not.  
 
Fuzzy: The degree of 
membership to a set 
of tall men depends 
on the height. 

Example – Fuzzy set of tall men 
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Fuzzy sets and fuzzy membership functions 
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   Each element of a reference set is assigned its degree of 
belongingness to a fuzzy  set. 

 

 Define a fuzzy set   ↔  Define a membership function 

    

A fuzzy subset S of a reference set X is a set of ordered 

pairs                                  where the membership function 

                    represents the grade of membership of x in S. 

  XxxxS  |)(,
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Reference set 
X={0,15,13,2,11,7,8,9,3,7,5,10} 
 

0 15 

0 

1 

x 

0 1 

2 1 

3 1 

5 1 

7 1 

7 1 

8 0 

9 0 

10 0 

11 0 

13 0 

15 0 

Example – Small numbers 
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Reference set 
X={0,15,13,2,11,7,8,9,3,7,5,10} 
 

x 

0 1 

2 13/15 

3 12/15 

5 10/15 

7 8/15 

7 8/15 

8 7/15 

9 6/15 

10 5/15 

11 4/15 

13 2/15 

15 0 

0 15 

0 

1 

Example – Small numbers 
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Reference set 
X={0,15,13,2,11,7,8,9,3,7,5,10} 

x 

0 1 

2 1 

3 1 

5 1 

7 2/4 

7 2/4 

8 1/4 

9 0 

10 0 

11 0 

13 0 

15 0 

0 15 

0 

1 
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Example – Small numbers 

 xS



Membership functions -examples 
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Membership function 

(a) π-function (crisp) 

(b) Trapezoidal function   

(c) Semi-trapezoidal 

(d) Triangular function 

(e) Gaussian  

(f) S-function 



Membership functions - examples 
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0 15 

0 

1 

0 15 

0 

1 

0 15 

0 

1 

 xMEDIUM

 xLARGE

 xSMALL



Fuzziness vs. Probability 
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Number 10 is not probably big! 

...and number 2 is not probably not big. 

 

         Uncertainty is a concequence of  

                 non-sharp boundaries  

         between the notions/objects, 

       and not because of lack of information. 



Terminology: 

Support , core, α-cut  of a fuzzy set 
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 The support of a fuzzy set A is the (crisp) set of all elements 
of X with non-zero membership to A: 

 

 

  The core of a fuzzy set A is the (crisp) set of all elements of 
X with membership to A equal one: 

 

 

 An α-cut of a fuzzy set A is a crisp set of all the elements in 
X with membership to A not smaller than α: 

 

 

  0|)(  xXxASupp A

  1|)(  xXxACore A

    xXxA A|



Fuzzy set operations 
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As for crisp sets, we can define set operations for fuzzy 
sets…in infinitely many ways.  

Three best known and most often applied are: 

 

Intersection    A and B 

 

Union    A or B 

 

Complement    not A 

))(),(min()( xxx BABA  

))(),(max()( xxx BABA  

)(1)( xx AAC  



Approximate reasoning  
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Approximate reasoning  
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Approximate reasoning  
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An application 
Region growing using fuzzy rule based system   
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Defuzzification 
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To find a crisp solution, we need defuzzification.   

We want to select a good crisp representative of a fuzzy set.  

 

Defuzzification to a point:  

 Composite moments: Select the centroid of the fuzzy set. 

 Composite maximum: Select a point from the core of the 
fuzzy set.  

 

Defuzzification to a set:   

 Most often an appropriate α-cut is selected.  



Fuzzy sets in image processing 
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 Image data are rarely of perfect quality.  

 Fuzziness is intrinsic property of images.   

 Fuzzy sets and fuzzy techniques are capable of 
representing diverse, non-exact, uncertain, and 
inaccurate knowledge or information. 



Discrete spatial fuzzy sets 

 Object of interest is represented as a (discrete) 
spatial fuzzy subset of a grid. 

 The mapping   μ: X → [0,1]   becomes 

               μ: Z x Z  → {0, 1, 2, ... , m}   (in 2D) 
    m – maximal number of grey-levels available 

            (e.g., m=255 for 8-bit pixel representation) 

 Negative effects of discretization (loss of data) can be 
signifficantly decreased by utilizing fuzzy object 
representations and corresponding analysis tools.  
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Objects with fuzzy borders – an example 
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Objects with fuzzy borders  

 Most of the pixels in images are easily classified as object 
pixels, or as background pixels. 

 Pixels close to the border of the object are more difficult 
to classify. They can, e.g.,  partly belong to several 
objects. 

 We assign to them a fuzzy membership value according 
to the extent of their belongingness to the object.  

 An intuitive aproach is the pixel/voxel coverage 
approach. Pixel/voxel value is determined as its relative 
size (area/volume) covered by the observed object.   
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Fuzzy thresholding 
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In general, instead of setting a hard threshold, we 
can apply fuzzy thresholding and obtain soft 
transitions between “in” and “out” regions. Fuzzy 
thresholding functions can be defined in many 
ways. Their general form is: 
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Fuzzy image is a grey-level image…     

 (a) A sample slice from acquired MRI data set. 

 Membership functions: (b) gray matter (GM),  

                                                (c) white matter (WM), 

                                                (d) cerebrospinal fluid (CSF).  

 

 (fuzzy c-means algorithm)  
 

 

 

 

 

 

                      (a)                                 (b)                                   (c)                                   (d) 



 

Fuzzy c-means clustering 
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The fuzzy c-means algorithm (FCM) iteratively 
optimizes an objective function in order to detect 
its minima, starting from a reasonable 
initialization. 

Its objective is to partition a collection of numerical 
data into a series of overlapping clusters. The 
degrees of belongingness are interpreted as fuzzy 
membership values. 

 

 

 



Fuzzy c-means clustering 
Extends K-means, ch. 9.2.5 
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 K-means algorithm is a popular, simple, non-parametric, 
non-hierarchical approach to cluster analysis. 

 K-means algorithm minimizes the sum of within-cluster 
variances for the K observed clusters: 

 

 

where        is an element of a nxK matrix  I which represents a 
K-partition of the data set                         ,        is the cluster 
center of the  class                     and                   , for an inner 

product norm metric     .  
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Example: Clustering of n=4 points into K=3 clusters. 

 K-means clustering 
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The distance between point four 
and center of cluster two. 
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Distance matrix contains the distances between  
each point and each cluster center. 

Point four (row) does not 
belong to cluster two (column). 
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Partition matrix contains the (crisp)  membership 
of each point to each cluster. 



K-means clustering 
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 Number of clusters, K, is decided in advance, preferably 
by some a priori knowledge. Naturally,              .  

 Distance measure determines the shape of the cluster; 
Euclidean will produce hyper-spherical clusters, 
Mahalanobis distance will lead to hyper-elliptical clusters. 

 The algorithm iteratively updates cluster centers as the 
means of the clusters created in a previous iteration,  re-
computes the distances of the points to the new cluster 
centers and re-partitions the data.  

 Partition of the data is crisp!  
 The matrix I contains only elements 0 and 1.  

 Each row (corresponding to an element) contains exactly one element 
equal to 1 (the element is assigned to exactly one cluster) 

nK 2



Fuzzy c-means clustering 
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 A partition of the observed set is represented by a nxc 
matrix U=[uki] 

 
 uki corresponds to the membership value of the kth element 

(out of n),  to the ith cluster (out of c). 
 
 Boundaries between the subgroups are not crisp. 

 
 Each element may belong to more than one cluster – its 

”overall” membership equals one. 
 

 Objective function includes parameter controlling degree of 
fuzziness. 

 
 



Fuzzy c-means clustering 
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 The fuzzy c-means algorithm iteratively optimizes the objective 
function in order to detect its minima, starting from a 
reasonable initialization. 

 The objective function belongs to the family of fuzzy  
c-means functionals, using a particular inner product norm 
metric as a similarity measure:  
 

 

 

where        is an element of a nxc matrix  U which represents a fuzzy 
c-partition of the data set                         ,       is the cluster center 
of the  class                   ,                     is the parameter  controlling 
fuzzines of the partition, and                  , for an inner product 
norm metric     .  
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Example: Clustering of n=4 points into c=3 clusters. 

 Fuzzy c-means clustering 
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The distance between point four 
and center of cluster two. 
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Distance matrix contains the distances between  
each point and each cluster center. 

Point four (row) has membership 
0.1 to cluster two (column). 
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Partition matrix contains the fuzzy membership 
of each point to each cluster. 



Fuzzy c-means algorithm: 

the basic steps 
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Choose   
               c – the number of clusters, 

               m - the weighting exponent  (between 1.5 and 2.5), 

               the inner product induced norm metric (e.g., Euclidean norm), 

               the matrix norm (e.g., sup norm), 

               the terminating criterion. 

Initialize (randomly)  the fuzzy c-partition or cluster centres vector. 

Calculate iteratively the next partition, using formulae for updating  
membership values and cluster centres, starting from initial cluster 
centres and the initial partition. 

Stop when two successive iterations produce partitions, or centres, that  
are close enough according to the given termination criterion when 
compared in the chosen matrix, or vector, norm. 

 



 

Fuzzy connectedness (Ch. 7.4) 
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Graded composition 
Heterogeneity of intensity in the 

object region due to 
heterogeneity of object material 
and blurring caused by the 
imaging device. 

Hanging-togetherness 

In spite of intensity heterogeneity, a 
human viewer readily sees 
natural grouping of voxels 
constituting an object in a display 
of the scene. 
 

Images are intrinsically fuzzy 



Hanging togetherness  
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If two regions have about the same grey-level and if 
they are relatively close to each other, then they likely 
belong to the same object (hang together). 

 

To group pixels that seem to hang together  

    Observe local hanging-togetherness based on  
    similarity in spatial location 

        similarity in intensity(-derived features) 

    Determine relationship between each pair of pixels in the 
entire image. 

    Derive global hanging-togetherness (connectedness). 

 

 

 



Fuzzy connectedness 
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Fuzzy connectedness combines 

– fuzzy adjacency (closeness in space) 

– fuzzy affinity (closeness in terms of intensities or 
other properties) 

and assigns a strength of connectedness to each 
pair of image points determined as the strength 
of the weakest link of the strongest path 
between the points. 

 



Fuzzy connectedness 
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 A path         between the points c and d is any sequence 
of points  

 The strength of connectedness of a path        is  

 

 

 Let        denote the set of all paths between c and d. 

    The fuzzy connectedness between  c and d is defined as  
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Fuzzy connectedness 
The strength of the weakest link of the strongest path 
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Fuzzy affinity –  

local hanging- togetherness   
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Fuzzy 
adjacency 

Fuzzy affinity- 
homogeneity 

based component 

Fuzzy affinity- 
object-feature 

based component 

)),(),,((),(),( dcdcgdcdcK   



Fuzzy adjacency function determines spatial closeness of 
the image elements.  
 

Can be hard, when only the elemens with common face/edge (or 
vertex) have non-zero adjacency  
(e.g., 4- or 8-adjacency in binary 2D images).  

 
An example of fuzzy adjacency is  

Fuzzy adjacency 
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Expected properties of g : 

              Range within [0,1]; 
              Monotonically non-decreasing in both arguments. 
 
Examples: 

Fuzzy affinity 
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Fuzzy affinity  
Homogeneity based component 
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The degree of local hanging-togetherness due to the 
similarity in intensity. 

 

 
Expected properties of  

          Range within [0,1] and 

            Monotonically non-increasing. 

Examples: 
            The right-hand side of an appropriately scaled box, 

             trapezoid, or Gaussian function. 
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The degree of local hanging-togetherness with respect to 
some given feature, e.g., intensity distribution.  
 

 

 

 

 

 

 

 

Expected properties of         and           
            Range within [0,1]. 

Examples: 
           An appropriately scaled and shifted box, trapezoidal, or 
Gaussian function.   
     

Fuzzy affinity  
Object-feature-based component 
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In the computer exercise (and in the book): 

Fuzzy affinity 
A concrete example  
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An object as a fuzzy connected component 
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Given one or several seeds: 

     Compute connectedness map for all possible paths. 

     Threshold the connectedness map. 

An object is a fuzzy connected component of a given 
strength. 

 

Variations are proposed to improve 

the performance. 

E.g., if the threshold is known in advance,  

computation can be more efficient. 

 



An object as a fuzzy connected 

component 
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 How to set a threshold is not an easy question.  

 The answers led to improvements of the initial idea of the 
(absolute) fuzzy connectivity algorithm. 
    Relative fuzzy connectivity (for two, as well as multiple 

objects)  
    Instead of thresholding the connectivity map, two (or more) objects are 

competing for points.  

    Iterative fuzzy connectivity  
    Repeated steps in fuzzy connectedness computation to overcome 

problems with weak object borders. 

    Scale-based fuzzy connectivity  
    Affinity is computed w.r.t. scale, and the scale is adapted to locations. 

Improved performance, at a considerable computational cost.  



Iterative relative fuzzy connectedness 
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P1 

P2 

Due to weak boundary between 
objects O1 and O2, the costs of 
paths P1 and P2 may be too 
similar, or even equal.  
 
It is suggested to first determine 
the core of each object  
(by relative fuzzy connectedness) 
and then, in repeated 
computation of connectedness,  
not allow paths from a seed to 
pass through the core of another 
seed/object.     



Segmentation of vascular trees. (a) MIP. 
(b) Segmentation of the entire vascular tree by absolute fuzzy connectedness. 
(c) Artery-vein separation using relative fuzzy connectedness. Multiple seeds 
are determined in an interactive way.  

An example 
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Set all elements of FC to 0 except s which is set to 1 ; 
Push s to Q ; 
While Q is not empty do 
        Remove a spel c from Q for which FC(c) is maximal ; 
        For each spel e such that μK(c,e) > 0 do 
 Set fc = min(FC(c), μK(c,e)) ; 
 If    fc > FC(e)   then 
  Set FC(e) = fc ; 
  If e is already in Q then 
   Update e in Q ; 
  Else 
   Push e to Q ; 

Algorithm for Computing Fuzzy 

Connectedness (Dijkstra-like) 
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Summary 

February 18, 2015 Nataša Sladoje, Computer Assisted Image Analysis II 54 

Today, we talked about: 

 Fuzzy sets (definition, properties, operations) 

 Fuzzy reasoning 

 Applications of fuzzy sets in image processing 

 Image segmentation  
 fuzzy thresholding  

 fuzzy region growing 

 fuzzy connectedness 

Cluster analysis based on fuzzy c-means 
 


