
 

Digital geometry

2D Digital Geometry



 

Representations of objects



 

Digital Geometry

“The geometry of the computer screen”
The elements are points with integer coordinates.

Which primitives do we use?



 

Grids (2D)

Square grid Hexagonal grid



 

Tessellation
A tessellation of the plane is a collection of plane figures 
that fills the plane with no overlaps and no gaps. 

a tessellation of triangles

a tessellation of squares

a tessellation of hexagons



 

Voronoi diagram 
(giving dirichlet tessellation)

of a discrete set of points (generating points):
partition the plane into cells so that each cell 
contains exactly one generating point and the 
locus of all points which are nearer to this 
generating point than to other generating points. 



 

Picture elements (pixels)
Voronoi regions

Square grid Hexagonal grid



 

Connectivities (2D)

4-connectedness
objects connected through edge-neighbors

8-connectedness
objects connected through edge- and 
vertex-neighbors

6-connectedness
for hexagonal grid



 

Connectivity – object and background

connected object 
components (Oi)

the object O is the union 
of all Oi

the complement of O 
(OC) consists of
background
connected to border of image / 
image limits

holes



 

Connectivity paradox

How many background components?!?

Euclidean geometry:
A closed (simple) curve divides the plane into 

two (distinct) connected components.

Digital geometry:



 

Connectivity paradox:
connected or intersecting lines?

Solution 1
Use 4-connectedness for background and 
8-connectedness for object (or vice versa)



 

Connectivity paradox:
connected or intersecting lines?

Solution 2
Use hexagonal grid



 

Connectivity paradox:
connected or intersecting lines?

Solution 3
Use cellular complexes:

Elements of dimension
0 (point), 1 (line),

and 2 (area) are used.



 

Digital Geometry

“The geometry of the computer screen”
The elements are points with integer coordinates.

Different from the Euclidean geometry.

Example: What is a straight line?



 

Euclidean Geometry

Intuitively:
• A curve traced by a point traveling in a constant 

direction
• A curve of zero curvature
• The distance between two points is the length 

of the straight line segment between the points

What is a straight line?



 

Digital Geometry

What is a straight line?

A set of pixels is a (simple) arc if it is connected, and all but
two of its points (the “endpoints" ) have exactly two
neighbors in the set, while those two have exactly one.



 

Digital Geometry

In Euclidean geometry:
“The distance between two points is the length of 

the straight line segment between the points”

What about digital geometry?

“City-block distance”



 

Digital Geometry

Digitization of Euclidean straight line by grid 
intersection.



 

Digital Straight Lines

Recognition of digital straight line segments:
“When is an arc the digitization of a Euclidean 

straight line?”



 

Which of these arcs are digital straight line 
segments?



 

Digital Straight Lines

Each arc consists of two “blocks” K and L.
Condition 1: There are at most two block lengths, 

l
L
 and l

K
=l

L
+1.

(b) has block lengths 1, 2, and 3 and is therefore 
not a digital straight line segment.



 

Digital Straight Lines

Condition 2: Each occurrence of one of the two 
blocks should be adjacent to the other block 
both to the left and right.

Example: 
(a): KLKLKLK – allowed by Condition 2
(c): KKLLKKLL – not allowed by Condition 2, so (c) 

is not a digital straight line.
(d): KLKKKLKLKKK – allowed by Condition 2
(e): KKLKLKKLKLK – allowed by Condition 2



 

Digital Straight Lines

We have considered blocks of order 0 so far. 
Blocks of order 1 are obtained by maximal 
segments of blocks of order 0 with only one 
transition between K0 and L0. (Superscript 
denotes the order.)

Example:
(a) K1K1K1 - length of K1=1
(d) K1L1K1L1 - length of K1=1 L1=3
(e) K1L1K1L1 - length of K1=2 L1=1



 

Digital Straight Lines



 

Digital Straight Lines

Condition 3: Condition 1&2 should hold for blocks 
of all orders.

Condition 3 does not hold for (d) (block lengths 1 
and 3).

A digital line partitioned into blocks of order 0, 1, 
and 2.



 

Let pq denote the Euclidean straight line 
segment between p and q. pq lies near a 
digital object S if, for any (real) point (x,y) of 
pq, there exists a grid point (i,j) of S such that
max (|i-x|,|j-y|) < 1.

Digital Straight Lines
Rosenfelds Chord-property



 

Rosenfelds Chord-property from 1974:
A digital arc S is a digital straight line segment if 

each point on a Euclidean straight line segment 
between any two points p,q in S is near S.

Digital Straight Lines
Rosenfelds Chord-property



 

Digital Straight Lines
Rosenfelds Chord-property



 

Measuring distances 
in an image

Distance functions

Intuitively: Euclidean distance
Often represented by a distance transform
Each object grid point is labeled with the distance to 
its closest grid point in background
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Distance functions in
digital images

A path-based distance function is defined as
the minimal cost-path.

In digital images, two classes of distance functions
are considered:

 path-based and not path-based.



 

Simple path-based distances
city-block

Shape of ballWeights



 

Simple path-based distances
chessboard

Shape of ballWeights



 

Generalizations of
simple path-based distances

city block and chessboard:
fixed neighborhood with unit weights

Weighted distances: 
fixed neighborhood with
weights

Distances based on
neighborhood sequences:
variable neighborhood
with unit weights

-Defined as the cost of a minimal path



 

Weighted distances

The minimal cost-path when
the local steps are weighted.

Usually one weight for each 
type of neighbor.



 

Weighted distances

Shape of ball
with optimal weightsWeights



 

Weighted distances

Shape of ball
with optimal weightsWeights



 

Distances based on 
neighborhood sequences

Abbreviated ns-distances

The distance is defined as the shortest
path allowed by the neighborhood sequence.

The size of the neighborhood allowed
in each step is given by a
neighborhood sequence B.

The elements in B are 1:s and 2:s,
1 corresponds to a city-block step and
2 corresponds to a chessboard step.

Element i is denoted b(i)



 

Distances based on 
neighborhood sequences

Examples

This path is a B-path for any B

This path is a B-path for
(for example)
B=(2,2,2,2,...) [chessboard]
and
B=(1,2,1,2,...) [octagonal]



 

ns-distances

Neighborhoods
and weights

Shape of ball
with optimal

neighborhood sequence



 

Weighted ns-distances

Using both a neighborhood sequence
and weights to define distance



 

Neighborhoods
and weights

Shape of ball
with optimal weights and
neighborhood sequence

Weighted ns-distances



 

Comparison of distance 
functions I
Circle, radius 3

Connected circles?

weighted distance with
weights <1,4/3>

Ns-distance,
B=(1,2,1,2,...)

Euclidean distance



 

Comparison of distance 
functions II

chessboard distance   5x5 weighted distance 

Connected paths?



 

Comparison of distance 
functions III

Computational
efficiency

Connected
paths

Connected
circles

city-block yes yes high low

chessboard yes yes high low

weighted no yes high medium

ns-distance yes yes medium medium

weighted ns-distance no yes medium high

weighted 5x5 no no medium high

Euclidean no - low optimal

Rotational
invariance



 

Distance transform (DT)

Representation of distances in an image
Gray-level image
non-zero values on object pixels
each object pixel is labeled with the distance to its 
closest pixel in the background

Def:



 

Computing distance transforms

Algorithms

Raster-scanning Wave-front propagation

Separable algorithms



 

Raster-scanning
The image is scanned row-by-row or column-by-column

in a predefined order.

Distance information (scalars or vectors) are propagated
using a small neighborhood

See image analysis, first course



 

DTs for the path-based 
distances are error-free

By using a 3x3 neighborhood,
any 8-connected path can be “tracked”.

Since the distance is defined as
the cost of a path between pixels,

the propagation is complete.



 

Raster-scanning algorithm for 
Euclidean DT

Mask 1 Mask 2 Mask 3

(0,0)

(-1,-1) (0,-1) (1,-1)

(-1,0)

(0,0)

(-1,1) (0,1) (1,1)

(-1,0)

(0,0)

(1,-1)

(1,1)

(1,0)

Propagate vectors.
Idea: The shortest vector to a background

grid point is propagated using (small) masks.
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Example Initial image

Raster-scanning algorithm for 
Euclidean DT
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Example After first scan

Raster-scanning algorithm for 
Euclidean DT
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Example After second scan

Raster-scanning algorithm for 
Euclidean DT
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Example After third scan

Raster-scanning algorithm for 
Euclidean DT
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Example. Last step: compute the distance values
from the vectors.

Raster-scanning algorithm for 
Euclidean DT



 

Errors in the Euclidean DT
Vector propagation

A small neighborhood
does not hold enough information

The reason is that
the Euclidean distance is 
not a path-based distance.



 

Errors in Euclidean DT
using local neighborhoods

known distance from A

A

unknown distance from A l1

l2 l∞

A 3x3 neighborhood does not hold
enough information for the Euclidean distance.

-Even if vectors are propagated(!)



 

Errors in the Euclidean DT

A small neighborhood
does not hold enough information

Solution:
Use a larger neighborhood
Increase size of neighborhood only when needed



 

Wave-front propagation
Distance information (scalars or vectors) are propagated

using a small neighborhood at each pixel in the wave-front
starting with small distance values at the border.

• Propagating scalars
• Propagating vectors
• Approx. DE numerically – Fast Marching Methods (FMM)



 

Wave-front propagation
for weighted DT

Initially, construct a list with pixels 8-connected to the object.
Propagate distance values from the wave-front.

Add new elements to the wave-front.

+a

+b +a +b

+0

+b +a +b

+a

Mask (general)

+3

+4 +3 +4

+0

+4 +3 +4

+3

Mask, <3,4>-weighted distance
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Example. First step: initialize wave-front

Wave-front propagation
for <3,4>-weighted DT
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Example. Propagate values from the wave-front

Wave-front propagation
for <3,4>-weighted DT
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Example. Propagate values from the wave-front

Wave-front propagation
for <3,4>-weighted DT



 

Wave-front propagation
for ns-distance DT

Propagate distance values from the
neighborhood that is allowed.

Masks:

1

1 1 1

0

1 1 1
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1

1
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Example. B=(1,2,1,2,...)  First step: initialize wave-front

Wave-front propagation
for ns-distance DT
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Example. Propagate unit values from the wave-front
using the first element in B=(1,2,1,2,...)

∞

Wave-front propagation
for ns-distance DT
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Example. Propagate unit values from the wave-front
using the second element in B=(1,2,1,2,...)

2

Wave-front propagation
for ns-distance DT



 

Computing Euclidean DT by
the fast-marching method

A differential equation is approximated:
∥∇I∥=1.

Background pixels are frozen.
Create a list with pixels that should be updated.
Update all pixels in the list

(using a finite difference approximation).
For the updated pixel with lowest distance value:

remove from queue and freeze.
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Fast-Marching
Example.  First step: initialize wave-front and 

       update distance values
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Fast-Marching
Example.  First step: initialize wave-front and 

       update distance values

(T-0)²+(T-0)²=1
=> T=1/√2≈0.7

(T-0)²=1
=> T=1
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Fast-Marching
Example.  For each element in the list:

approximate |grad T|=1 numerically using frozen values.
(∂T/∂x)²+(∂T/∂y)²=1

(T-1/√2)²=1
=> T=1/√2+1≈1.7
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Fast-Marching
Example.  For each element in the list:

approximate |grad T|=1 numerically using frozen values.
(∂T/∂x)²+(∂T/∂y)²=1
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Fast-Marching
Example.  For each element in the list:

approximate |grad T|=1 numerically using frozen values.
(∂T/∂x)²+(∂T/∂y)²=1



 

0000

00

00

0~0.7

~0.7~1.4

0000

11

~1.9~1.7

~0.70

10

0~0.7

00

~1.4~1.9

~0.71

0000

~2.2~1.4

~1.5~0.7

~0.70

00

1000

Fast-Marching
Final result



 

Errors in the Euclidean DT
Fast marching

• A small neighborhood does not hold enough information.
• Errors due to the finite difference approximations.

Solutions:
• Use a larger neighborhood.
• Use higher-order approximation of derivatives.



 

Errors in the DTs
Fast marching
Worst case:

0 11

1 ~1.7~1.7

1 ~1.7~1.7

0 ∞∞

∞ ∞∞

∞ ∞∞

⇒

(T-1)²+(T-1)²=1 ⇒ T=1+√2/2≈1.7. Should be √2.



 

Computing Euclidean DT by 
separable algorithms

Idea: x²+y² is (additively) separable.

Compute DT in x-direction first
(two 1D scans needed per row)

Then compute DT in y-direction
(two 1D scans needed per column)



 

Example: simple
(not linear) algorithm:

Computing Euclidean DT by 
separable algorithms



 

By handling the list efficiently, the algorithm is linear.
Separable algorithm is error-free!
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Last step: Compute the square root of the values.

Computing Euclidean DT by 
separable algorithms



 

Constrained DT

shortest path, avoiding 
obstacles

special case: DT of line 
patterns

geodesic DT / DT of non-convex region



 

Constrained DT

Source pixel and obstacles                     Constrained DT (Euclidean distance)

Distance values are shown modulo 16



 

Constrained DT (by wave-front)

Object                    city-block                   chessboard 

weighted                    ns-distance          weighted ns-distance         Euclidean

Distance values are shown modulo 16



 

Computing distance transforms
Raster-scanning

+Fast, O(n), where n is the number of pixels.
-Not suited for constrained DT.
-Not exact for the Euclidean distance.

Wave-front propagation
+Slower than raster-scanning, O(n log(n)).
+Suited for constrained DT (weighted, ns, FMM).
- Not suited for constrained DT (vector propagation).
- Not exact for the Euclidean distance.

Separable algorithms
+Fast, O(n). But slower than raster-scanning.
+Exact for the Euclidean distance.
-Not suited for constrained DT.



Summary

Grids, connectivities
Straight line
Distance functions and their properties

 city block, chessboard, weighted distance, ns-distances, Euclidean 
metric

Distance transforms and their properties
 Raster scan algorithm

 propagating scalars, vectors
 Wavefront propagation

 propagation of scalars and vectors
 Fast marching

 Separable algorithm
 Euclidean

 Constrained DT
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