

Digital geometry

2D Digital Geometry

Representations of objects

Digital Geometry

“The geometry of the computer screen”
The elements are points with integer coordinates.

Which primitives do we use?

Grids (2D)

Square grid Hexagonal grid

Tessellation
A tessellation of the plane is a collection of plane figures
that fills the plane with no overlaps and no gaps.

a tessellation of triangles

a tessellation of squares

a tessellation of hexagons

Voronoi diagram
(giving dirichlet tessellation)

of a discrete set of points (generating points):
partition the plane into cells so that each cell
contains exactly one generating point and the
locus of all points which are nearer to this
generating point than to other generating points.

Picture elements (pixels)
Voronoi regions

Square grid Hexagonal grid

Connectivities (2D)

4-connectedness
objects connected through edge-neighbors

8-connectedness
objects connected through edge- and
vertex-neighbors

6-connectedness
for hexagonal grid

Connectivity – object and background

connected object
components (Oi)

the object O is the union
of all Oi

the complement of O
(OC) consists of
background
connected to border of image /
image limits

holes

Connectivity paradox

How many background components?!?

Euclidean geometry:
A closed (simple) curve divides the plane into

two (distinct) connected components.

Digital geometry:

Connectivity paradox:
connected or intersecting lines?

Solution 1
Use 4-connectedness for background and
8-connectedness for object (or vice versa)

Connectivity paradox:
connected or intersecting lines?

Solution 2
Use hexagonal grid

Connectivity paradox:
connected or intersecting lines?

Solution 3
Use cellular complexes:

Elements of dimension
0 (point), 1 (line),

and 2 (area) are used.

Digital Geometry

“The geometry of the computer screen”
The elements are points with integer coordinates.

Different from the Euclidean geometry.

Example: What is a straight line?

Euclidean Geometry

Intuitively:
• A curve traced by a point traveling in a constant

direction
• A curve of zero curvature
• The distance between two points is the length

of the straight line segment between the points

What is a straight line?

Digital Geometry

What is a straight line?

A set of pixels is a (simple) arc if it is connected, and all but
two of its points (the “endpoints") have exactly two
neighbors in the set, while those two have exactly one.

Digital Geometry

In Euclidean geometry:
“The distance between two points is the length of

the straight line segment between the points”

What about digital geometry?

“City-block distance”

Digital Geometry

Digitization of Euclidean straight line by grid
intersection.

Digital Straight Lines

Recognition of digital straight line segments:
“When is an arc the digitization of a Euclidean

straight line?”

Which of these arcs are digital straight line
segments?

Digital Straight Lines

Each arc consists of two “blocks” K and L.
Condition 1: There are at most two block lengths,

l
L
 and l

K
=l

L
+1.

(b) has block lengths 1, 2, and 3 and is therefore
not a digital straight line segment.

Digital Straight Lines

Condition 2: Each occurrence of one of the two
blocks should be adjacent to the other block
both to the left and right.

Example:
(a): KLKLKLK – allowed by Condition 2
(c): KKLLKKLL – not allowed by Condition 2, so (c)

is not a digital straight line.
(d): KLKKKLKLKKK – allowed by Condition 2
(e): KKLKLKKLKLK – allowed by Condition 2

Digital Straight Lines

We have considered blocks of order 0 so far.
Blocks of order 1 are obtained by maximal
segments of blocks of order 0 with only one
transition between K0 and L0. (Superscript
denotes the order.)

Example:
(a) K1K1K1 - length of K1=1
(d) K1L1K1L1 - length of K1=1 L1=3
(e) K1L1K1L1 - length of K1=2 L1=1

Digital Straight Lines

Digital Straight Lines

Condition 3: Condition 1&2 should hold for blocks
of all orders.

Condition 3 does not hold for (d) (block lengths 1
and 3).

A digital line partitioned into blocks of order 0, 1,
and 2.

Let pq denote the Euclidean straight line
segment between p and q. pq lies near a
digital object S if, for any (real) point (x,y) of
pq, there exists a grid point (i,j) of S such that
max (|i-x|,|j-y|) < 1.

Digital Straight Lines
Rosenfelds Chord-property

Rosenfelds Chord-property from 1974:
A digital arc S is a digital straight line segment if

each point on a Euclidean straight line segment
between any two points p,q in S is near S.

Digital Straight Lines
Rosenfelds Chord-property

Digital Straight Lines
Rosenfelds Chord-property

Measuring distances
in an image

Distance functions

Intuitively: Euclidean distance
Often represented by a distance transform
Each object grid point is labeled with the distance to
its closest grid point in background

() ()

() ∞∞
−−=−=

−+−=−=

−+−=−=

lyxyxd

lyxyxd

lyxyxd

chessboard

cityblock

euclidean

2211

122111

2
2

22
2

112

,maxyx

yx

yx

x=(x
1
,x

2
), y=(y

1
,y

2
) ∈Z2

EuclideanEuclidean

city block, number of steps in 4-pathcity block, number of steps in 4-path

chessboard, number of steps in 8-pathchessboard, number of steps in 8-path

22 37 +
37 +
43+

Distance functions in
digital images

A path-based distance function is defined as
the minimal cost-path.

In digital images, two classes of distance functions
are considered:

 path-based and not path-based.

Simple path-based distances
city-block

Shape of ballWeights

Simple path-based distances
chessboard

Shape of ballWeights

Generalizations of
simple path-based distances

city block and chessboard:
fixed neighborhood with unit weights

Weighted distances:
fixed neighborhood with
weights

Distances based on
neighborhood sequences:
variable neighborhood
with unit weights

-Defined as the cost of a minimal path

Weighted distances

The minimal cost-path when
the local steps are weighted.

Usually one weight for each
type of neighbor.

Weighted distances

Shape of ball
with optimal weightsWeights

Weighted distances

Shape of ball
with optimal weightsWeights

Distances based on
neighborhood sequences

Abbreviated ns-distances

The distance is defined as the shortest
path allowed by the neighborhood sequence.

The size of the neighborhood allowed
in each step is given by a
neighborhood sequence B.

The elements in B are 1:s and 2:s,
1 corresponds to a city-block step and
2 corresponds to a chessboard step.

Element i is denoted b(i)

Distances based on
neighborhood sequences

Examples

This path is a B-path for any B

This path is a B-path for
(for example)
B=(2,2,2,2,...) [chessboard]
and
B=(1,2,1,2,...) [octagonal]

ns-distances

Neighborhoods
and weights

Shape of ball
with optimal

neighborhood sequence

Weighted ns-distances

Using both a neighborhood sequence
and weights to define distance

Neighborhoods
and weights

Shape of ball
with optimal weights and
neighborhood sequence

Weighted ns-distances

Comparison of distance
functions I
Circle, radius 3

Connected circles?

weighted distance with
weights <1,4/3>

Ns-distance,
B=(1,2,1,2,...)

Euclidean distance

Comparison of distance
functions II

chessboard distance 5x5 weighted distance

Connected paths?

Comparison of distance
functions III

Computational
efficiency

Connected
paths

Connected
circles

city-block yes yes high low

chessboard yes yes high low

weighted no yes high medium

ns-distance yes yes medium medium

weighted ns-distance no yes medium high

weighted 5x5 no no medium high

Euclidean no - low optimal

Rotational
invariance

Distance transform (DT)

Representation of distances in an image
Gray-level image
non-zero values on object pixels
each object pixel is labeled with the distance to its
closest pixel in the background

Def:

Computing distance transforms

Algorithms

Raster-scanning Wave-front propagation

Separable algorithms

Raster-scanning
The image is scanned row-by-row or column-by-column

in a predefined order.

Distance information (scalars or vectors) are propagated
using a small neighborhood

See image analysis, first course

DTs for the path-based
distances are error-free

By using a 3x3 neighborhood,
any 8-connected path can be “tracked”.

Since the distance is defined as
the cost of a path between pixels,

the propagation is complete.

Raster-scanning algorithm for
Euclidean DT

Mask 1 Mask 2 Mask 3

(0,0)

(-1,-1) (0,-1) (1,-1)

(-1,0)

(0,0)

(-1,1) (0,1) (1,1)

(-1,0)

(0,0)

(1,-1)

(1,1)

(1,0)

Propagate vectors.
Idea: The shortest vector to a background

grid point is propagated using (small) masks.

0000

00

00

0(∞,∞)

(∞,∞)(∞,∞)

0000

(∞,∞)(∞,∞)

(∞,∞)(∞,∞)

(∞,∞)0

(∞,∞)0

0(∞,∞)

00

(∞,∞)(∞,∞)

(∞,∞)(∞,∞)

0000

(∞,∞)(∞,∞)

(∞,∞)(∞,∞)

(∞,∞)0

00

(∞,∞)000

Example Initial image

Raster-scanning algorithm for
Euclidean DT

0000

00

00

0(0,-1)

(0,-1)(1,-1)

0000

(0,-1)(0,-1)

(0,-2)(-2,0)

(-1,0)0

(-1,0)0

0(0,-1)

00

(1,-1)(1,-2)

(1,-2)(2,-2)

0000

(2,-2)(-2,0)

(-2,0)(-1,0)

(-1,0)0

00

(-1,0)000

Example After first scan

Raster-scanning algorithm for
Euclidean DT

0000

00

00

0(0,-1)

(0,-1)(1,-1)

0000

(0,-1)(0,-1)

(0,-2)(-2,0)

(-1,0)0

(-1,0)0

0(0,-1)

00

(1,-1)(0,2)

(0,1)(0,1)

0000

(-2,1)(-1,1)

(-1,1)(-1,0)

(-1,0)0

00

(-1,0)000

Example After second scan

Raster-scanning algorithm for
Euclidean DT

0000

00

00

0(0,-1)

(0,-1)(1,-1)

0000

(0,-1)(0,-1)

(0,-2)(-2,0)

(-1,0)0

(-1,0)0

0(0,-1)

00

(1,-1)(0,2)

(0,1)(0,1)

0000

(-2,1)(-1,1)

(-1,1)(-1,0)

(-1,0)0

00

(-1,0)000

Example After third scan

Raster-scanning algorithm for
Euclidean DT

0000

00

00

01

1√2

0000

11

22

10

10

01

00

√22

11

0000

√5√2

√21

10

00

1000

Example. Last step: compute the distance values
from the vectors.

Raster-scanning algorithm for
Euclidean DT

Errors in the Euclidean DT
Vector propagation

A small neighborhood
does not hold enough information

The reason is that
the Euclidean distance is
not a path-based distance.

Errors in Euclidean DT
using local neighborhoods

known distance from A

A

unknown distance from A l1

l2 l∞

A 3x3 neighborhood does not hold
enough information for the Euclidean distance.

-Even if vectors are propagated(!)

Errors in the Euclidean DT

A small neighborhood
does not hold enough information

Solution:
Use a larger neighborhood
Increase size of neighborhood only when needed

Wave-front propagation
Distance information (scalars or vectors) are propagated

using a small neighborhood at each pixel in the wave-front
starting with small distance values at the border.

• Propagating scalars
• Propagating vectors
• Approx. DE numerically – Fast Marching Methods (FMM)

Wave-front propagation
for weighted DT

Initially, construct a list with pixels 8-connected to the object.
Propagate distance values from the wave-front.

Add new elements to the wave-front.

+a

+b +a +b

+0

+b +a +b

+a

Mask (general)

+3

+4 +3 +4

+0

+4 +3 +4

+3

Mask, <3,4>-weighted distance

0000

00

00

0∞

∞∞

0000

∞∞

∞∞

∞0

∞0

0∞

00

∞∞

∞∞

0000

∞∞

∞∞

∞0

00

∞000

Example. First step: initialize wave-front

Wave-front propagation
for <3,4>-weighted DT

0000

00

00

03

34

0000

33

∞∞

30

30

03

00

4∞

33

0000

∞4

43

30

00

3000

Example. Propagate values from the wave-front

Wave-front propagation
for <3,4>-weighted DT

0000

00

00

03

34

0000

33

66

30

30

03

00

46

33

0000

74

43

30

00

3000

Example. Propagate values from the wave-front

Wave-front propagation
for <3,4>-weighted DT

Wave-front propagation
for ns-distance DT

Propagate distance values from the
neighborhood that is allowed.

Masks:

1

1 1 1

0

1 1 1

11

1

0

1

1

0000

00

00

0∞

∞∞

0000

∞∞

∞∞

∞0

∞0

0∞

00

∞∞

∞∞

0000

∞∞

∞∞

∞0

00

∞000

Example. B=(1,2,1,2,...) First step: initialize wave-front

Wave-front propagation
for ns-distance DT

0000

00

00

01

1

0000

11

∞∞

10

10

01

00

∞∞

11

0000

∞∞

∞1

10

00

1000

Example. Propagate unit values from the wave-front
using the first element in B=(1,2,1,2,...)

∞

Wave-front propagation
for ns-distance DT

0000

00

00

01

1

0000

11

22

10

10

01

00

22

11

0000

22

21

10

00

1000

Example. Propagate unit values from the wave-front
using the second element in B=(1,2,1,2,...)

2

Wave-front propagation
for ns-distance DT

Computing Euclidean DT by
the fast-marching method

A differential equation is approximated:
∥∇I∥=1.

Background pixels are frozen.
Create a list with pixels that should be updated.
Update all pixels in the list

(using a finite difference approximation).
For the updated pixel with lowest distance value:

remove from queue and freeze.

0000

00

00

0∞

∞∞

0000

∞∞

∞∞

∞0

∞0

0∞

00

∞∞

∞∞

0000

∞∞

∞∞

∞0

00

∞000

Fast-Marching
Example. First step: initialize wave-front and

 update distance values

0000

00

00

0~0.7

~0.7∞

0000

11

∞∞

~0.70

10

0~0.7

00

∞∞

~0.71

0000

∞∞

∞~0.7

~0.70

00

1000

Fast-Marching
Example. First step: initialize wave-front and

 update distance values

(T-0)²+(T-0)²=1
=> T=1/√2≈0.7

(T-0)²=1
=> T=1

0000

00

00

0~0.7

~0.7∞

0000

11

∞∞

~0.70

10

0~0.7

00

∞∞

~0.71

0000

∞~1.7

∞~0.7

~0.70

00

1000

Fast-Marching
Example. For each element in the list:

approximate |grad T|=1 numerically using frozen values.
(∂T/∂x)²+(∂T/∂y)²=1

(T-1/√2)²=1
=> T=1/√2+1≈1.7

0000

00

00

0~0.7

~0.7∞

0000

11

∞∞

~0.70

10

0~0.7

00

∞∞

~0.71

0000

∞~1.4

~1.7~0.7

~0.70

00

1000

Fast-Marching
Example. For each element in the list:

approximate |grad T|=1 numerically using frozen values.
(∂T/∂x)²+(∂T/∂y)²=1

0000

00

00

0~0.7

~0.7~1.4

0000

11

∞∞

~0.70

10

0~0.7

00

~1.4∞

~0.71

0000

∞~1.4

~1.7~0.7

~0.70

00

1000

Fast-Marching
Example. For each element in the list:

approximate |grad T|=1 numerically using frozen values.
(∂T/∂x)²+(∂T/∂y)²=1

0000

00

00

0~0.7

~0.7~1.4

0000

11

~1.9~1.7

~0.70

10

0~0.7

00

~1.4~1.9

~0.71

0000

~2.2~1.4

~1.5~0.7

~0.70

00

1000

Fast-Marching
Final result

Errors in the Euclidean DT
Fast marching

• A small neighborhood does not hold enough information.
• Errors due to the finite difference approximations.

Solutions:
• Use a larger neighborhood.
• Use higher-order approximation of derivatives.

Errors in the DTs
Fast marching
Worst case:

0 11

1 ~1.7~1.7

1 ~1.7~1.7

0 ∞∞

∞ ∞∞

∞ ∞∞

⇒

(T-1)²+(T-1)²=1 ⇒ T=1+√2/2≈1.7. Should be √2.

Computing Euclidean DT by
separable algorithms

Idea: x²+y² is (additively) separable.

Compute DT in x-direction first
(two 1D scans needed per row)

Then compute DT in y-direction
(two 1D scans needed per column)

Example: simple
(not linear) algorithm:

Computing Euclidean DT by
separable algorithms

By handling the list efficiently, the algorithm is linear.
Separable algorithm is error-free!

1
1 1 1 1 1 1 1

1
1

1
1

1
1 11111

1
1

11
1 1 2

4
4

2
2

2 4 4
2

2
4
4422

2 2
1

1
1

1
5
55

4

5 8

Last step: Compute the square root of the values.

Computing Euclidean DT by
separable algorithms

Constrained DT

shortest path, avoiding
obstacles

special case: DT of line
patterns

geodesic DT / DT of non-convex region

Constrained DT

Source pixel and obstacles Constrained DT (Euclidean distance)

Distance values are shown modulo 16

Constrained DT (by wave-front)

Object city-block chessboard

weighted ns-distance weighted ns-distance Euclidean

Distance values are shown modulo 16

Computing distance transforms
Raster-scanning

+Fast, O(n), where n is the number of pixels.
-Not suited for constrained DT.
-Not exact for the Euclidean distance.

Wave-front propagation
+Slower than raster-scanning, O(n log(n)).
+Suited for constrained DT (weighted, ns, FMM).
- Not suited for constrained DT (vector propagation).
- Not exact for the Euclidean distance.

Separable algorithms
+Fast, O(n). But slower than raster-scanning.
+Exact for the Euclidean distance.
-Not suited for constrained DT.

Summary

Grids, connectivities
Straight line
Distance functions and their properties

 city block, chessboard, weighted distance, ns-distances, Euclidean
metric

Distance transforms and their properties
 Raster scan algorithm

 propagating scalars, vectors
 Wavefront propagation

 propagation of scalars and vectors
 Fast marching

 Separable algorithm
 Euclidean

 Constrained DT

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 20
	Sida 21
	Sida 22
	Sida 23
	Sida 24
	Sida 25
	Sida 26
	Sida 27
	Sida 28
	Sida 29
	Sida 30
	Sida 31
	Sida 32
	Sida 33
	Sida 34
	Sida 35
	Sida 36
	Sida 37
	Sida 38
	Sida 39
	Sida 40
	Sida 41
	Sida 42
	Sida 43
	Sida 44
	Sida 45
	Sida 46
	Sida 47
	Sida 48
	Sida 49
	Sida 50
	Sida 51
	Sida 52
	Sida 53
	Sida 54
	Sida 55
	Sida 56
	Sida 57
	Sida 58
	Sida 59
	Sida 60
	Sida 61
	Sida 62
	Sida 63
	Sida 64
	Sida 65
	Sida 66
	Sida 67
	Sida 68
	Sida 69
	Sida 70
	Sida 71
	Sida 72
	Sida 73
	Sida 74
	Sida 75
	Sida 76
	Sida 77
	Sida 78
	Sida 79
	Sida 80
	Sida 81
	Sida 82
	Sida 83
	Sida 84

