Digital geometry

Digital geometry in 3D and
 Applications using distance transforms

Robin Strand

Outline

-Digital volume (3D) images
-Applications using distance transform

- Path-planning
- Matching
- Skeletonization
- Measurements

Digital volume images

In the cubic grid: Each voxel v has three types of neighbors

face neighbor

edge neighbor

vertex neighbor
in a $3 \times 3 \times 3$ neighborhood of v

- 6 voxels are sharing a face with v
- 12 voxels are sharing an edge with v
- 8 voxels are sharing a vertex with v
in total 26 neighbors

Digital volume images

Three different neighborhoods of a voxel

18-neighborhood
face and edge neighbors face, edge, and vertex neighbors

Straight lines in 3D

"A 3D digital arc is a digital straight line segment if two of its projections onto the principal planes are 2D digital straight lines."

Connectivities

Connectivity paradox also for 3D images Solution 1:

26-connectedness for object 6-connectedness for background or 26-connectedness for background 6-connectedness for object

Connectivities

Connectivity paradox also for 3D images Solution 2:

Cellular complexes

Connectivities

Connectivity paradox also for 3D images Solution 3:

Use other grids
body-centered cubic grid (BCC)

Distance transforms in 3D

Raster scanning

	Square grid (2D)	Cubic grid (3D)
weighted	2 scans	2 scans
Euclidean	3 scans	4 scans

Masks for weighted distance

Masks for Euclidean distance

Applications using distance transforms

- Path-planning
- for robots
- Matching
- find a subimage in an image
- Skeletonization
- curve representation of 2D object
- centers of maximal balls
- Measurements
- Morphological operations (Ida's lecture)

Applications: Path-planning

Path planning:
 Shortest path between two pixels

constrained DT
-Compute DT: distances from pixel p_{0}
-Search for p_{0} from p_{n} in direction of gradient

- Use constrained DT in case of obstacles

Descending mountains using steepest path

Walk in the direction with the largest slope

$$
\frac{I\left(p_{i}\right)-I\left(p_{i}+n_{j}\right)}{w_{k(j)}}
$$

$n_{j}, j=1, \ldots, 8$ are neighbors of p_{i} $\mathrm{w}_{\mathrm{kj}(\mathrm{j}}$ is the weight used to neighbor n_{j}

Applications: Matching

Matching

Used in segmentation to locate known objects in an image, to search for specific patterns etc.

- Registration, matching of car number plates, "målsökning"
- Match-based segmentation localizes all image positions at which close to copies of the search pattern is located

Three classes of matching

- Image pixel values directly
- e.g., correlation methods ("Matching by correlation" 12.2 Gonzalez-Woods)
- Low-level features
- edges and corners
- High-level features
- identified (parts of) objects or relations between features, e.g., graph-theoretic methods

Chamfer matching

- Algorithm based on distance transform to locate one-dimensional features (edges)
- Good response in close to correct positions, but poor elsewhere
- Technique for finding best fit of edge points from two different images by minimizing a generalized distance between them

Matching

- Find unknown objects
- Hierarchical Chamfer Matching Algorithm
- Start from edge image
- DT from edges
- Search for position giving smallest error

Edges

Search for position of 4 which gives minimum

Chamfer matching algorithm

- input $=$ search image $\&$ template image
- \quad output = image with templates overlayed on the best matching
- start = start positions spread all over the image random covering the image or using a priori knowledge

$$
\sqrt{\frac{1}{n} \sum_{i=1}^{n} v_{i}^{2}}
$$

- Extract edges in both search image and template image
- Compute DT of the search edge image DT_search
- Superimpose edge_template on DT search in all stārt positions (and rotations, translations, scalings)
- Compute root-mean-squares for pixel values that the edges hit \rightarrow edge distance
- Optimize by small steps in the directions of lower edge distances

Edge to search for (template)

$$
\begin{gathered}
\substack{1.98 \\
\uparrow \\
\downarrow \\
1.89} \\
1.88
\end{gathered}
$$

Root-mean-square error:

$$
\frac{1}{3} \sqrt{\frac{1}{8} \sum_{i=1}^{8} v_{i}^{2}}
$$

15	12	11	8	7	4	3	3
14	11	8	7	4	3	0	0
13	10	7	4	3	0	3	3
11	9	6	3	0	3	4	6
8	7	6	4	3	0	3	6
7	4	3	3	0	3	4	7
6	3	0	0	3	4	7	8
6	3	0	3	4	7	8	11
DT_search							
$\langle 3,4\rangle$							

HIERARCHICAL Chamfer matching

- Chamfer matching needs good starting positions - Embed chamfer matching in a resolution pyramid

HCMA=hierarchical chamfering matching algorithm

Resolution pyramid

- A set of images, I_{0}, \ldots, I_{n}, of decreasing resolution
- Size of I_{k} is $1 / 4(1 / 8$ for $3 D)$ of I_{k-1}
- Lower level by partitioning the array into $2 \times 2(\times 2)$ block of pixels, children, and associate a single pixel, parent
- Parent is set to object or background depending on the color of its children according to some fixed rule (AND, OR, ...)

Resolution pyramids

I_{1}

I_{2}

I_{3}

"color" of $2 \times 2 \times 2$ children gives "color" of parent

Resolution pyramid for HCMA

use OR to preserve edges

HCMA

- Chamfer matching
- In resolution pyramid
- Gives speed up (reduced computations as low-resolution images are used initially)
- Start positions for original image are reduced as positions are rejected because of too high edge distance value on low levels.

Results

0: edge distance: 0.00
1: edge distance: 1.36
2: edge distance: 1.43
3: edge distance: 1.44
4: edge distance: 1.57
5: edge distance: 1.63
6: edge distance: 1.67

Free camera model

- Example: match lake in aerial photograph with lake edges from a map
- Six parameter problem
- translation x, y, z
- rotation
- scaling
- perspective
- For every parameter a number of start positions are chosen at highest level (low resolution)

Applications: Skeletonization

Medial axis transform

Often described as being the "locus of local maxima" on a distance map

Augmented by radial function, the quench function

Blum 1967

Medial axis representation

Compact representation of objects.
Applications:
-Object description -Object recognition
-Navigation
-Animation

The object should be fully described by the representation

Only the most important features are needed

Topology

- Description invariant under "rubber sheet" transformation
\square
-homotopy -homeomorphism -topologically equivalent

Homotopy equivalent, but not homeomorphic

Medial axis representation in digital images

This can be done in different ways, for example:

- Centers of maximal balls (CMBs)
- Homotopic thinning
- Homotopic thinning keeping the CMBs
- Template matching

Different approaches give different properties of the medial axis.

Medial axis representation in digital images

Centers of maximal balls

Topology

- Description invariant under "rubber sheet" transformation
\square
-homotopy -homeomorphism -topologically equivalent

Homotopy equivalent, but not homeomorphic

Medial axis representation in digital images

- Maximal ball - ball in the object that is not covered by any other ball in object.
- CMB - its center.

Depends on the distance function!

The Quench function associates the radius to each CMB.
Compare with the continuous case.

Pixels as centers of balls

Distance label of pixel p can be interpreted as radius of a ball $B(p, d(p))$, centered on p
$B(p, d(p))$ is fully enclosed in the object

	1			1			
	1	1		1			
	1	1	1	1	1	1	
	1	2	2	2	2	1	
	1	1	1	2	1	1	
			1	1	1		

chessboard distance

Centers of maximal balls

If not completely covered by any other disc

Note: Not all CMBs needed for reconstruction

Centers of maximal balls (CMB)

- Appear as local maxima in DT for weighted distances(!)
- Union of all discs corresponding to CMBs = object

Centers of maximal balls

A pixel is a center of maximal ball
if it is a local maximum in the DT.
(note! take local distance into account)
for pixel in <a, $b>$ WDT labeled p :
edge neighbors $<p+a$
vertex neighbors $<\mathrm{p}+\mathrm{b}$
for city-block:
edge neighbors have lower or equal label
for chessboard:
neighbors have lower or equal label

Centers of maximal balls

Original image

Sets of CMBs with different distance functions
city-block
chessboard
$<3,4>$-weighted

\rightarrow

cityblock is used for this example

Complete description by CMBs

Object can be represented by its CMBs as it is the union of the maximal balls

Reverse distance transformation can be used to recover the object

object

object = grey CMBs = black

reverse DT

Reverse DT from CMBs

max-operation
$<3,4>$ weighted
Propagate from CMBs (in bold)

0	0	0	0	0	0	0
0	0	0	3	0	0	0
0	0	3	4	3	0	0
0	3	4	$\mathbf{7}$	4	3	0
3	4	7	8	7	4	3
4	7	8	$\mathbf{1 1}$	8	7	4

after forward scan

			1			
		3	4	3		
	3	4	7	4	3	
1	4	7	8	7	4	1
2	5	8	11	8	5	2

backward scan

Centers of maximal balls for Euclidean DT

- Not enough to check distance values of neighbors
- Maximal ball: not covered by any other single ball

Remember: the 3×3 neighborhood does not hold enough information about the Euclidean distance

- Simple local comparisons not enough: use look-up tables

Medial axis representation in digital images

Homotopic thinning using simple points

Simple pixels

Pixels that can be removed without altering topology:

- the number of object components and
- the number of background components are the same before and after removal

not simple

simple

not simple (4) simple (8)

not simple (8)
simple (4)

Simple pixels

by local neighborhood operations

Decision on whether a pixel is simple or not can be taken based on local neighborhood configuration.
For 8-connected object and 4-connected background:
$N^{8}(v) \quad$ number of object components in an

8-neighborhood of v

number of background components in an
$\bar{N}^{8}(v)$ 8-neighborhood of v , edge connected to v v is simple if

$$
\begin{aligned}
& N^{8}(v)=1 \\
& \bar{N}^{8}(v)=1
\end{aligned}
$$

Homotopic thinning

- Remove border after border if
- simple pixel
- Number of iterations is dependent on object thickness
$\underset{\text { untail }}{\substack{\text { Repaty } \\ \text { staily }}}\left\{\begin{array}{l}\bullet \text { Find border pixels } \\ \bullet \text { Remove border pixels if simple }\end{array}\right.$
OR use distance transform to define borders!

Homotopic thinning

Original image

Result after homotopic thinning (removing only simple points).

Medial axis representation in digital images

Homotopic thinning keeping the CMBs

Homotopic thinning keeping the CMBs

Keep CMBs and remove simple points sequentially

- Compute distance transform
- Remove border after border if
- not a CMB
- simple pixel
- Number of iterations is dependent on object thickness

Homotopic thinning keeping the CMBs

Original image

Homotopic thinning keeping the CMBs with different distance functions city-block
chessboard
$<3,4>$-weighted

$$
\begin{aligned}
& \because \quad \text { CMBs } \\
& \text { <3,4>-weighted }
\end{aligned}
$$

result

Homotopic thinning keeping the CMBs with different DTs

city block

chessboard

$\langle 3,4\rangle$

Euclidean

Different aspects:

- shape preservation
- compression
- stability under rotation

Medial axis representation in digital images

Homotopic thinning by template matching

Thinning using morphology

- Sequential thinning by a sequence of structuring elements (SE, "masks")
- Application of hit-or-miss
- Identify border pixels (use DT)
- Remove pixels satisfying one SE
- Composite SEs: object, background, don't care

$$
L_{1}=\left[\begin{array}{lll}
0 & 0 & 0 \\
* & 1 & * \\
1 & 1 & 1
\end{array}\right] \quad L_{2}=\left[\begin{array}{ccc}
* & 0 & 0 \\
1 & 1 & 0 \\
* & 1 & *
\end{array}\right]
$$

Thinning by template matching

Original image

Thinning by template matching using the templates on the previous slide.

Skeletal properties

- In an image with object O and background B, the skeleton S is categorized by the following properties
- S is topologically equivalent to O
- S is centered within O
- S is unit-wide
- O is recovered by reversing S

Skeletal properties

The set of CMBs

- S is topologically equivalent to O no
- S is centered within O yes
- S is unit-wide
- O is recovered by reversing S yes

Skeletal properties

Homotopic thinning

- S is topologically equivalent to O yes
- S is centered within O yes
- S is unit-wide
- O is recovered by reversing S no

Skeletal properties

Homotopic thinning keeping the CMBs

- S is topologically equivalent to O yes
- S is centered within O yes
- S is unit-wide
- O is recovered by reversing S yes

Skeletal properties

Thinning by template matching

- S is topologically equivalent to O yes
- S is centered within O yes
- S is unit-wide
- O is recovered by reversing S no

Thickness and length measurements

Thickness:

highest distance label in object gives maximum thickness

DT of elongated object

Length of curve:

distance propagation along the curve starting from one end-point (for instance by constrained DT)

Elongated object represented by a curve

DT of line pattern (constrained) red=low Dtlabel, blue/violett=high DTlabel

Skeletons in 3D

Similar methods as in 2D apply to 3D.
We need to define
-Homotopic transformations,
-Simple points, and
-CMBs in 3D.

Skeletons in 3D

Basic notions

concavity

$>$ dent on the object
tunnel
> background passing through the object cavity
> background component enclosed in the object

Homotopic transformation

Here, a transformation is homotopic (topology preserving) if it can be written as a sequence of adding/removing simple points.

In 2D, the number of components and holes remain unchanged under the transformation

In 3D, the number of object components, the number of cavities and the number of tunnels remain unchanged

Topology preserving removal

A point is simple iff its removal does not alter the topology

non-simple (object)

non-simple (background)

simple

Can be detected in a similar way as for 2D images.

Balls generated by different metrics

Weight $3,4,5$ to face, edge, and vertex neighbors, respectively

Euclidean

Centers of maximal balls

As in 2D, a voxel is a center of maximal ball if it is a local maximum in the DT
for weighted distances.
(note! take local distance into account)
for voxel in $<a, b, c>$ WDT labeled v :
face neighbors $<\mathrm{v}+\mathrm{a}$
edge neighbors < v+b vertex neighbors < v+c
for D^{6} :
face neighbors have lower or equal label
for D^{26} :
neighbors have lower or equal label

Skeletonization in 3D

Surface skeleton is obtained by keeping CMBs and removing simple points sequentially.

- 3D object \rightarrow 2D surface skeleton \rightarrow 1D curve skeleton
- reversibility can only be guaranteed from surface skeleton

Vessel analysis

"blood vessel" with narrowings from two views

Blood vessels \& curve skeletons

D^{6} surface skeleton used \& pruning applied to curve skeleton

Summary

- Grids, connectivities
- Distance transforms in 3D
- Applications using DT
- Path-planning
- Chamfer matching
- Skeletonization in 2D (and 3D)
- Simple points, Centers of maximal balls (CMBs)
- Skeletonization by
- Centers of maximal balls (CMBs)
- Homotopic thinning
- Homotopic thinning keeping the CMBs
- Template matching
- Skeletal properties

